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Abstract

Background: Our goals are to develop a computational histopathology pipeline for characterizing tumor types
that are being generated by The Cancer Genome Atlas (TCGA) for genomic association. TCGA is a national
collaborative program where different tumor types are being collected, and each tumor is being characterized
using a variety of genome-wide platforms. Here, we have developed a tumor-centric analytical pipeline to process
tissue sections stained with hematoxylin and eosin (H&E) for visualization and cell-by-cell quantitative analysis. Thus
far, analysis is limited to Glioblastoma Multiforme (GBM) and kidney renal clear cell carcinoma tissue sections. The
final results are being distributed for subtyping and linking the histology sections to the genomic data.

Results: A computational pipeline has been designed to continuously update a local image database, with limited
clinical information, from an NIH repository. Each image is partitioned into blocks, where each cell in the block is
characterized through a multidimensional representation (e.g., nuclear size, cellularity). A subset of morphometric
indices, representing potential underlying biological processes, can then be selected for subtyping and genomic
association. Simultaneously, these subtypes can also be predictive of the outcome as a result of clinical treatments.
Using the cellularity index and nuclear size, the computational pipeline has revealed five subtypes, and one
subtype, corresponding to the extreme high cellularity, has shown to be a predictor of survival as a result of a
more aggressive therapeutic regime. Further association of this subtype with the corresponding gene expression
data has identified enrichment of (i) the immune response and AP-1 signaling pathways, and (ii) IFNG, TGFB1, PKC,
Cytokine, and MAPK14 hubs.

Conclusion: While subtyping is often performed with genome-wide molecular data, we have shown that it can
also be applied to categorizing histology sections. Accordingly, we have identified a subtype that is a predictor of
the outcome as a result of a therapeutic regime. Computed representation has become publicly available through
our Web site.

Background
While molecular characterization provides average gen-
ome-wide profiling for each biopsy, it fails to reveal
inherent heterogeneity that is only visible through tissue
histology. Molecular characterization has the advantage
of a standardized array-based measurement compared to
the genome and other well curated databases. On the
other hand, histology sections do not provide standar-
dized measurements, yet they are rich in content and
continue to be the gold standard for the assessment of

tissue neoplasm. Because of inter- and intra- observer
variations [1] and the absence of quantitative representa-
tion, some studies have leveraged genome-wide analysis
for improved markers for predicting biological behavior.
If hematoxylin and eosin (H&E) stained tissue sections
can be characterized in terms of cell type (e.g., epithelial,
stromal), tumor type, and histopathological descriptors
(e.g., tumor specific necrotic rate), then a richer descrip-
tion can be linked with genomic information for an
improved basis for diagnostic and therapy. This is the
main value of histological imaging since it captures
detailed morphometric features on a cell-by-cell basis
and their organization. We have tested our system on
Glioblastoma Multiforme (GBM), one of the most
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common and the least curable brain cancer, with glioma
cells infiltrating the surrounding tissue with a median
survival rate of 14.6 month [2]. Figure 1 shows that the
tissue section has a rich spatial composition (e.g., lym-
phocytes in the lower right side, tumor cells), which is
lost through bulk genome-wide array analysis (e.g.,
microarray, copy number). Our goal is to identify mor-
phometric subtypes, based on nuclear structure and orga-
nization, from a very large sample size. First, we provide a
brief review of the current state of art and then proceed
with the details of our computational strategy. Present
techniques for morphometric analysis have focused on
several different aspects of tissue characterization, and
they are summarized below along with a review of the
nuclear segmentation from the H&E sections.

Brief review of analysis of H&E images
A comprehensive review of techniques for the analysis of
the H&E sections is beyond the scope of this paper. How-
ever, a brief review can be found in [3]. From our per-
spective, three key concepts have been introduced to
establish the trend and direction of the research commu-
nity: (I) one group of researchers have focused on tumor
grading through either accurate or rough nuclear seg-
mentation [4] followed by computing cellular organiza-
tion [5,6] and classification. In some cases, tumor grading
has been associated with recurrence, progression, and

invasion carcinoma (e.g., breast DCIS) [7], but such an
association is highly dependent on tumor heterogeneity
and mixed grading (e.g., presence of more than one
grade), which offers significant challenge to the patholo-
gists as mixed grading appears to be present in 50% of
patients [8]. A recent study indicates that detailed seg-
mentation and multivariate representation of nuclear fea-
tures from H&E stained sections can predict DCIS
recurrence [9,10] in patients with more than one nuclear
grade. In this study, nuclei in the H&E stained samples
were manually segmented and a multidimensional repre-
sentation was computed for differential analysis between
the cohorts. The significance of this particular study is
that it has been repeated with the same quantitative out-
come. In other related studies, image analysis of nuclear
features has been found to provide quantitative informa-
tion that can contribute to diagnosis and prognosis
values for carcinoma of the breast [11,12], prostate [13],
and colorectal mucosa [14]. (II) The second group of
researchers have focused on patch-based (e.g., region-
based) analysis of tissue sections through means of super-
vised classification. These methods operate by represent-
ing each patch with color and texture features [15,16] for
training either a kernel or regression tree classifiers. A
recent study evaluated and compared emerging techni-
ques of sparse coding with kernel based methods (e.g.,
support vector machine, kernel discriminant analysis) on

Figure 1 A pinhole view of GBM tumor section indicates a rich spatial composition in terms of nuclear size, cellularity, and presence
of lymphocytes.
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a GBM dataset to conclude that the kernel based method
did equally as well, if not better, than sparse coding.
Alternatively, some researchers have investigated how
architectural features of tumor grades correlate with frac-
tal dimensions [17]. Fractal dimensions differ from topo-
logical dimensions and has been shown to have the
potential to elucidate irregularities by assigning a gross
scalar value for discriminating benign and malignant
breast cells from fine needle aspiration [18]. (III) A third
group of researchers have suggested utilizing the detec-
tion of lymphocytes as a prognostic tool for breast cancer
[19]. Lymphocytes are part of the adaptive immune
response and their presence has been correlated with
nodal metastasis and HER2-positive breast cancer, ovar-
ian [20], and GBM. These cells often respond in larger
quantity, and they can be easily detected because of their
constant size (e.g., approximately 7 micron in diameter)
and high chromatin content.

Brief review of methods for nuclear segmentation
Complexities in delineating nuclear regions originate from
both technical (e.g., non-uniform fixation and staining pro-
tocol, artifacts in a tissue section, non-uniform thickness in
tissue sections) and biological (e.g., different cell types,
overlapping compartment) variations. Present techniques
have focused on adaptive thresholding followed by mor-
phological operators [21,22], fuzzy clustering [4,23], level
set method using gradient information [24-26], color
separation followed by optimum thresholding and learning
[27,28], hybrid color and texture analysis that are followed
by learning and unsupervised clustering [29], and represen-
tation of nuclei organization in tissue [30,31] that is com-
puted from either interactive segmentation or a
combination of intensity, texture, and morphological
operators. Some applications combine the above techni-
ques. For example, in [32], iterative radial voting [33] was
used to estimate seeds for the location of the nuclei and
subsequently, the model interaction between neighboring
nuclei with multiphase level set [34,35]. It is also a com-
mon practice that through color decomposition, nuclear
regions can be segmented using the same techniques that
have been developed for fluorescence microscopy. In
recent papers, we [36,37] and others [38] have reviewed
those techniques. However, none of these methods can
effectively address analytical requirements of the tumor
characterization. Thresholding and clustering assume con-
stant chromatin content for the nuclei in the image. In
practice, there is a wide variation in chromatin content. In
addition, there is the issue with overlapping and clumping
of the nuclei, and sometimes, due to the tissue thickness,
they cannot be segmented. The method proposed in [32]
aims to delineate overlapping nuclei through iterative radial
voting [33], but seed detection can fail in the presence of
wide variations in the nuclear size; thus, leading to

fragmentation. We should also note that many of the tech-
niques that have been developed for analysis of cell culture
models, imaged through fluorescence microscopy, are
applicable to the analysis of histology sections. Accordingly,
methods have been developed to quantify a variety of end-
points using iterative voting [33,39], geometric reasoning
[40,41], evolving fronts [35,37,42], and Gabor filter banks
[43].
Having summarized the current state of computational

histopathology, our objective is to use a large growing
dataset of tumor sections and to identify intrinsic sub-
types within this dataset. These subtypes can then be
used for genomic association. In other words, we don’t
seek to build a system to mimic histological grading. To
meet this objective, it is essential to develop a pipeline
for processing a large scale dataset, to overcome techni-
cal variations, and to incorporate methods that are
extensible to other tumor types. Our testbed consists of
344 sections of GBM, scanned with a 20 × objective in a
bright field, which are typically 40,000-by-40,000 pixels.

Method
Morphometric analysis and multidimensional profiling
We evaluated a number of nuclear segmentation methods
that included level sets [44] or their variants using graph
cut implementation, and integration of these methods
with seed selection using geometric methods [42]. But
these techniques proved to be compute-intensive as a typi-
cal tissue section (of size 40k-by-40k pixels) would take
roughly a week of processing time on a high end desktop
computer. Our experience led to a design of a pipeline
that will delineate nuclei and compute morphometric fea-
tures with a superior computational throughput. The com-
putational model was first validated against synthetic data,
then tested on annotated tissue sections, and finally evalu-
ated by a pathologist. Below, we summarize three major
components of our methodology.

Analytical steps
Figures 2 and 3 show steps in converting an image into a
multidimensional representation. (I) The first step
removes heterogeneity associated with staining by normal-
izing against one gold standard of H&E stain. (II) The sec-
ond step performs color decomposition for further
reduction of the computational load. The standard
approach is a non-negative matrix factorization (NMF)
[45], but it is iterative and a previous analysis has indicated
NMF did not show superior performance [28]. Here, we
used a linear transformation for separating stains [46]
based on the orthonormal transformation of the RGB
space. (III) The third step computes a threshold from the
image corresponding to the nuclei signature. The thresh-
old selection is based on the analysis of the histogram for
the value that minimizes intra-class variance. Other
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techniques, such as modeling foreground and background
as two Poisson distributions, yielded similar results. The
important issue is fast histogram-based thresholding for
subsequent refinement and validation. Refinement consists
of enforcement of intensity and geometric constraints.
Often, when nuclei are close to each other, either their
intercellular contents can leak, the boundaries between
the two adjacent nuclei can become perceptual, or the two
neighboring nuclei, with completely different chromaticity
strength, can merge. The refinement step performs two
tasks: (i) it models the intensity distribution of each thre-
sholded blob as a mixture of up to three Gaussians to
examine if there is a variation in the background model
and whether two adjacent nuclei, with a significantly dif-
ferent amount of DNA content, are merged together, and
(ii) it uses the convexity constrain to partition blobs based
on perceptual boundaries, as outlined in our earlier paper
[40]. Once an image is segmented in terms of nuclear
morphology, a multidimensional representation is

generated for each nucleus that defines its signature and
organization, as we defined in a previous publication [37]
and summarized in Additional file 1.

Computational pipeline
The significance of the pipeline, shown in Figure 4, is
that it can process a large amount of data; thus, meeting
TCGA data processing requirements. The pipeline has
four components: (I) maintaining consistency between
the remote and local registries, (II) visualization of tissue
sections, (III) data processing and importing computed
representation, and (IV) data summarization through
normalization.
The pipeline maintains a local registry where consis-

tency between images at TCGA (at the National Cancer
Institute) and a local repository is constantly maintained,
and new images are downloaded for processing. At pre-
sent, NCI provides both frozen sections and those from
paraffin embedded blocks. Although both types of images

Figure 2 Steps in delineating each nucleus from an H&E stained tissue sections.

Figure 3 Steps in delineation of nuclei. (A) Reference image for color normalization, (B) Original H&E image, (C) normalized image, (D-E) color
decomposition for each stain, (F) thresholding, and (G) refinement and validation.
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are registered and displayed through our system, only par-
affin embedded blocks are processed. Each image is parti-
tioned into strips of 1k-by-number of columns, then the
strips are stored on the OME image server [47,48].
Visualization of each large scale tissue section is rea-

lized through tiling and the utilization of Flash technol-
ogy that enables a client to pan and zoom, similar to
GoogleMaps™. Each image (of the order of 40k-by-40k
pixels or higher) is partitioned into tiles of 256-by-256
pixels at different resolutions, and the tiles are then
stored on a server. As the user drags and zooms on the
image in the browser, the tiles are downloaded from the
server and inserted into the browser page. Data and
images are available through http://tcga.lbl.gov.
Each strip is subsequently partitioned into 1k-by-1k

blocks, and blocks are submitted to a computer cluster
for processing. The block size has been optimized for
processing time and wait time in the queue. At the
moment, the entire GBM data set of 344 images takes 4

days of processing. In addition to cluster-based comput-
ing, the computational methods of the previous section
have a multithread implementation for a more efficient
utilization of each computing node. Once each block is
processed, computed features are imported into an ima-
ging bioinformatics system, named BioSig [37,49], for
further analysis. Several java modules have been devel-
oped that run concurrently to access and update the
database. The “Jobsubmitter” uses JSch (java version of
ssh), and ExpectJ (java version of Expect) to drive shell
scripts on the computing cluster. Computed representa-
tion (e.g., nuclear segmentation) can then be overlaid on
the original image for quality control.
The backend of BioSig uses PostgreSQL (PG) and sum-

marization of feature-based representation is performed
through procedural programming. For high performance
applications, PG server programming interface (SPI)
enables the transparent transformation of SQL queries.
This is a critical component since it adds flexibility for

Figure 4 Computational pipeline consists of four modules: downloads images from the NIH repository. Each image is partitioned into
strips of (1k-by-number of columns), stored in the OMEIS image server. Each strip is partitioned into blocks of 1k-by-1k pixels, where each block
is submitted to one of the two clusters at Berkeley Lab. Computed representations are then imported into a PostgreSQL database.
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computing morphometric and organization features, nor-
malizing them, and analyzing underlying representation
in a new way that was not anticipated. This capability has
proven to increase productivity by testing alternative
representations without reprocessing the original images.
Given the entire GBM (or other tumors) datasets, we
have designed a four-step process to normalize each
computed feature (e.g., nuclear size, texture, cellularity)
for subtyping and genomic association, which is imple-
mented through SPI: (i) each feature is represented as a
density distribution per tissue; (ii) feature-based distribu-
tion for all tissues, within a tumor type, are combined to
construct a global distribution; (iii) the global distribution
is then re-binned so that each bin has a similar popula-
tion of cells of a given feature-value, and (iv) local density
distributions are then remapped to computed global bins
of equal weight. The net result is that the morphological
indices can then be compared, in context, by reporting a
distribution function for each feature. These data are
downloadable and can be visualized for each tissue section.
The rationale for this simplified analysis is that given a
large number of cells in a tissue section, classical cluster-
ing analysis (for quantization) can be computationally
intractable (e.g., computing similarity matrices). In cases
where multiple tissue sections exist for a single patient, an
average distribution is computed and archived.

Subtyping and genomic association
Normalized representation of morphometric data are used
for subtyping. Subtyping is based on consensus voting [50]
by varying the number of subtypes and examining the
similarity matrix. It has also been used in earlier papers for
subtyping 2D and 3D cell culture morphologies [43,51].
Two gene ranking algorithms of moderated F-statistic and
random forests are used for genomic association. (i) Mod-
erated F-statistic [52] utilizes the empirical Bayes method
for assessing differential gene expression. In this method,
the denominator mean squares (e.g., variance) are moder-
ated across genes through the empirical Bayes approach.
The net result is an improved statistical stability given the
limited number of samples. The p-value is computed for
each gene based on the moderated F-statistic, and then
adjusted for multiple hypothesis testing. The adjustment is
based on Benjamini and Hochberg’s method to estimate
the false discovery rate (FDR) [53]. FDR controls the
expected proportion of falsely rejected null hypotheses in
multiple hypotheses testing to correct for multiple com-
parisons. The method is implemented through the R
Limma package. The top genes that are differentially
expressed between subtype 5 and others, with FDR
adjusted p-value less than 0.06, are included in Additional
file 1 as a heatmap. (ii) Random forest is an ensemble clas-
sifier that consists of many decision trees [54]. In random
forest, there are several policies for characterizing

significance of each gene. One policy evaluates the
decrease in classification accuracy by permutation values
of a single gene between multiple samples [55]. We used
the R implementation of a random forest package [56],
where the number of trees (ntree) is increased to 2000 to
accommodate the original subset of genes (1740) that
were used in an earlier TCGA publication [57]. To insure
the robustness and stability of gene selection, the process
is repeated by averaging over 100 randomly generated
forests.

Results
The critical factors in our computational pipeline are the
throughput, quality of segmentation and morphometric
representation for subtyping, and genomic association.
The throughput is significant since images need to be con-
tinuously processed with a newer version of the software
with increased robustness. Presently, the total computa-
tional time for 344 large scale tissue sections (from 133
patients) is less than a week on a shared cluster. Because
segmentation results are also important for quality control,
a number of intermediate data are also released.

Data, intermediaries, and limitations
Since nuclear segmentation provides the basis for morpho-
metric analysis, subtyping, and survival analysis, it is being
released for visualization through our web site at http://
tcga.lbl.gov, where users can pan and zoom through the
images and overlay segmentation results on original
images. The web site also enables exclusion of specific tis-
sue sections for subtyping and genomic association. Com-
puted representations and subtyping is also released
through our web site to the community.
Present limitations are absence of (i) an improved

nuclear segmentation method, (ii) patch-based tissue-based
labeling, (iii) a systematic evaluation of the multidimen-
sional representation, as it relates to the underlying biology,
and (iv) abstraction and complete automation in the com-
putational pipeline. (i) Like others, our approach to nuclear
segmentation is not perfect and introduces morphometric
errors. The major limitation for introducing more powerful
algorithms has been limited computational time for proces-
sing very large sets of data. However, given a very large
number of cells in a tissue section, subsequent consensus-
based clustering tends to treat segmentation errors as
outliers. Figure 5 shows nuclear segmentation and region-
based tessellation overlaid on images with diverse morpho-
metric signatures, where the cellularity index (e.g., density
of cells in a region) is computed as the inverse of each
tessellated region area and its density distribution. (ii) In
certain tumor types, nuclear segmentation is insufficient
for characterizing tissue histopathology. For example, in
GBM, apoptotic and necrotic rates are also important.
There are also patches where the state of the tissue is
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Figure 5 Nuclear segmentation and region-based tessellation for preferred subtypes of Figure 6E: (A) high cellularity, (B) low
cellularity, (C) medium cellularity, (D) high cellularity with pleomorphism, and (E) extreme high cellularity.
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transitory, i.e., both apoptotic and necrotic states coexist in
a population of cells. This is a higher level of analysis that
is difficult to deduce from a simple nuclear segmentation
and additional prior knowledge is needed. (iii) Over 50 fea-
tures are computed per cell, and we have only begun to
evaluate some of those that correlate with the known
pathology (e.g., nuclear size, cellularity). It is desirable to
have an informatics layer for formulating a query and get a
different view of the data. Possible use-cases are dimen-
sionality reduction (e.g., PCA, MDS), or feature selection
based on outcome or known pathology that is followed by
subtyping. Each of these queries provide a unique insight
and into the underlying biology for hypothesis generation.
(iv) Ideally, all processes should be launched, monitored,
and validated through the database. Although, images and
computed features are registered with the database, addi-
tional queries and notification services are required to con-
struct a more flexible system as required in items (ii) and
(iii).

Quality control
Three modules are tested in the computational pipeline:
(i) segmentation, (ii) feature extraction, and (iii) subtyp-
ing. (i) We have created a subset of hand segmented
images, which originate from a diverse set of tissue sec-
tions from TCGA GBM dataset. Even though most
images are stained properly, the emphasis on this subset
has been placed on blocks where the nuclear dye is het-
erogeneous. The recall and precision is at 78% and 65%,

respectively; (ii) feature extraction and representation
were tested against synthetic data with known ground
truth; (iii) subtyping is evaluated qualitatively by display-
ing group similarity matrix.

Subtyping based tissue histology and survival analysis
Our system represents each nucleus as a multidimensional
vector in the tissue section. We have opted the policy to
allow the pathologist to explore clinical questions in terms
of selected morphometric indices. This is based on the
fact that each morphometric feature can represent under-
lying biological processes. For example, when the cells are
stressed, macromolecules are excreted into cytoplasm (or
ECM) to create a textured topography as opposed to a
smooth one in normal cells. In the following experiment,
it was decided to investigate nuclear size and cellularity for
subtyping, survival analysis, and genomic association. The
rationale is clear given larger nuclear size and higher pro-
liferation rate in tumor regions. In this experimental con-
figuration, consensus voting revealed five subtypes
through qualitative analysis and ordering of the computed
similarity matrix, as shown in Figure 5. With respect to
correlation with the outcome as a result of therapy, we
analyzed patients that received more (e.g., concurrent
radiation and chemotherapy or greater than 4 cycles of
chemotherapy) or less (e.g., non-concurrent radiation and
chemotherapy or less than 4 cycles of chemotherapy) [57].
Following the Kaplan Meier estimator, our analysis indi-
cates that only one subtype with extreme high cellularity,

Figure 6 Steps in identifying subtypes from morphological descriptors of a tissue section. (A) Each patient may have multiple tissue
sections, which are accessible along with the computed features and coded clinical information through BioSig in (B). (C) Each feature, from
each tissue, is represented as a density distribution that is normalized in (D). (E) Subtyping identifies 5 classes through consensus voting. (F)
Following the Kaplan Meier test, only one subtype proved to have a significant p-value between pair-wise survival curves.
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shown in Figure 5E, has a significant p-value through pair-
wise comparison of the survival curves using a log-rank
test [58]. Figure 6F indicates that with a more intensive
therapy (the red curve) life span is increased as compared
to a less intensive therapy (blue line). The p-values of
other subtypes were not favorable for survival analysis. A
possible interpretation is that extreme high cellularity is
more homogeneous and highly proliferative; thus,
responding better to a more aggressive therapy.

Genomic association
Given that the therapeutic regime has increased life span
for the subtype with extreme high cellularity, as shown in
Figure 5E, we queried for its molecular marker through
differential gene expression analysis as well as random for-
est. Both gene lists are provided in Additional file 1, and a
more detailed discussion of the gene lists through random
forest follows. We have analyzed the top 100 genes for
pathway and subnetwork enrichment analysis through

Figure 7 Subnetwork enrichment analysis has revealed 6 hubs with p-value < 0.05: IFNG, TGFB1, MAPK14, Cytokine, PKC, and ILB1.
Union of these subnetworks and interactions indicates interactions between of these hubs.
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Pathway Studio. Pathway analysis reveals enrichment of
immune response, such as NK-cell (Natural killer cell) and
T-cell activation, and AP-1 signaling with p-value of less
than 0.05. In support of these findings, the literature sug-
gests that GBM expresses antigens that is recognized by
the immune system to eliminate virus infected cells and
GBMs [59,60]. Tumor associated antigen (TAA) indicates
that glioma cells can be recognized by the immune
response, but this process is hindered by the tumor loca-
tion and evasion strategies developed by GBM. AP-1 (JUN
oncogene) is a transcription factor is responsible for high
level regulation of IL-13Ra2 that is expressed in GBM cells
[61], and is also a highly ranked gene in the TCGA gene
tracker.
Subnetwork enrichment analysis has revealed six hubs,

with p-values of less than 0.05 that regulate eight or
more other components. These are IFNG, TGFB1,
MAPK14, Cytokines, PKC, and IL1B. The union of these
subnetworks is shown in Figure 7. IFNG and MAPK14
are shown to be highly scored by TCGA gene tracker;
TGFB1 is known to be upregulated in GBM [62]; PKC
(Protein Kinase C) is well established in cancer signaling
and therapy as it is involved in proliferation, migration,
and malignant transformation [63], and its isozyme has
been suggested for chemotherapeutic targets in GBM
[64]; and ILB1 is down stream of NF-kB and is known to
play an important role in cellular response to stress [65]
and is constitutively activated in most tumor types. In
summary, bioinformatics analysis has provided hypoth-
eses for new modes of potential therapy based on mor-
phometric subtyping.

Comparison with prior art
It is important to note that another laboratory [66] has
analyzed the same dataset. There are differences in the
outcome and methodologies. For example, they have
reported four subtypes in the GBM dataset. We suggest
that the (i) addition of the cellularity index, (ii) utility of
feature distributions as opposed to the feature means, (iii)
selection of specific combination of features as opposed to
all computed features, and (iv) absence of curation have
been the deciding factors. Besides cell-based multidimen-
sional representation, there are also differences in nuclear
segmentation. It is difficult to assess the differences in seg-
mentation in the absence of source code and computed
results on a large dataset; however, color normalization
(with respect to the gold standard) and separation of the
touching nuclei has not been addressed in [66]. These dif-
ferences, especially curation, can have a significant impact
on morphometric analysis. Finally, we have designed and
built an open system, where algorithms and software are
going through constant improvement, and computed
representation and intermediaries are being made available
for each version of the software.

Conclusions
We have developed an integrated pipeline to process large
scale tissue sections for morphometric analysis. The data
are downloaded from the NIH web site, partitioned into
blocks, and then processed on a cluster. Computed repre-
sentation is then transferred to a database where (i) data
can be downloaded for molecular association, and (ii)
computed information is overlaid on the original image
and that through panning and zooming, quality control
can be performed. Thus far, GBM and kidney data have
become publicly available.
We have shown that through morphometric analysis

and cellular organization of tissue histology of a large
dataset, subtypes can be identified that are predictive of
outcome as a result of therapeutic protocol. The main
theme is that histological subtyping reveals intrinsic
categories that are independent of supervised histologi-
cal grades. In other words, TCGA’s large curated dataset
offers potential for revealing subtypes based on intrinsic
properties of tissue signatures as opposed to the classical
tumor grading (e.g., Gleason ranking in prostate cancer),
practiced by pathologists. In this context, TCGA’s his-
tology database can provide a complementary repository
for diagnostic and molecular underpinning for histologi-
cal subtypes. Subsequently, molecular signature of a
subtype can hypothesize a more effective targeted ther-
apy. Our continued research focuses on addressing lim-
itations that has been addressed in the Result section.
Ultimately, we plan to develop a system that will process
all tumor types.

Additional material

Additional file 1: Supplementary Material for Morphometic Analysis
of TCGA Glioblastoma Multiforme. Supplementary Material for
Morphometic Analysis of TCGA Glioblastoma Multiforme.
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