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Abstract
Cardio-oncology is a medical discipline that identifies, prevents, and treats the cardiovascular
complications related to cancer therapy. Due to the remarkable proliferation of new cancer
therapies causing cardiovascular complications, such as hypertension, heart failure, vascular
complications, and cardiac arrhythmia, we provide an extensive, comprehensive revision of the
most up-to-date scientific information available on the cardiovascular complications associated
with the use of newer, novel chemotherapeutic agents, including their reported incidence,
suggested pathophysiology, clinical manifestations, potential treatment, and prevention. The
authors consider this topic to be relevant for the clinicians since cardiovascular complications
associated with the administration of recently approved drugs are relatively underappreciated.

The purpose of this article is to provide a state-of-the-art review of cardiovascular complications
associated with the use of newer, novel chemotherapeutic agents and targeted therapies, including
their reported incidence, suggested pathophysiology, clinical manifestations, potential treatment,
and prevention. 

Ongoing efforts are needed to provide a better understanding of the frequency, mechanisms of
disease, prevention, and treatment of cardiovascular complications induced by the newer, novel
chemotherapeutic agents. Development of a cardio-oncology discipline is warranted in order to
promote task forces aimed at the creation of oncology patient-centered guidelines for the
detection, prevention, and treatment of potential cardiovascular side effects associated with newer
cancer therapies.

Categories: Cardiology, Internal Medicine, Oncology
Keywords: cancer treatment, cardiac dysfunction, cardiotoxicity, cardio-oncology, cardiovascular events

Introduction And Background
Cancer is one of the top leading causes of death in the world. As a result of improved survival with
novel cancer therapies, cardiovascular disease is a prominent cause of death in many cancer
survivors, with cardiotoxicity being a serious side effect of chemotherapy and radiation therapy.
The cardiotoxicity profile of the various chemotherapeutic agents, mechanisms of disease and
potential approaches to prevention of cardiovascular disease differ substantially. While the
cardiotoxic effects of time-honored chemotherapeutic agents, such as anthracyclines and alkylating
agents, are well recognized and extensively studied, the cardiovascular complications associated
with the administration of recently approved drugs are relatively underappreciated.
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The purpose of this article is to provide a state-of-the-art review of cardiovascular complications
(i.e., hypertension, myocardial ischemia and infarction (MI), heart failure, thromboembolism, QT
prolongation, and arrhythmias) associated with the use of newer, novel chemotherapeutic agents
and targeted therapies, including their reported incidence, suggested pathophysiology, clinical
manifestations, potential treatment, and prevention. 

Review
Small molecule tyrosine kinase inhibitors
The human genome contains about 90 tyrosine kinase and 43 tyrosine kinase (TK)-like genes whose
expression translates into two important groups: transmembrane receptor and intracellular non-
receptor tyrosine kinases. The overexpression and/or mutation of tyrosine kinase signaling proteins
have been shown to cause abnormal cell proliferation and differentiation, angiogenesis, and
inhibition of apoptosis [1-2].

Tyrosine kinase inhibitors (TKIs) are small molecules that inhibit phosphorylation, and hence
activation, of tyrosine kinases [3]. The discovery that administration of imatinib mesylate (i.e.,
Gleevec®), a TKI, dramatically improved survival in patients with chronic myeloid leukemia (CML)
rapidly advanced the development and application of molecular-targeted therapies [4]. Since
tyrosine kinases are ubiquitous in distribution, TKIs can adversely affect multiple organs,
including the heart [5]. Figure 1 summarizes the main targets of these agents as well as the
common mechanisms. 

FIGURE 1: Small Molecule Tyrosine Kinase Inhibitors
The overexpression and/or mutation of tyrosine kinase signaling proteins has been shown to cause
abnormal cell proliferation and differentiation, angiogenesis, and inhibition of apoptosis. Tyrosine
kinase inhibitors (TKIs) are small molecules that inhibit phosphorylation and, hence, activation of
kinases by targeting them at the receptor or intracellular level. Since tyrosine kinases are
ubiquitous in distribution, TKIs can adversely affect multiple organs, including the heart. Figure 1
shows the activity of each inhibitor drug on the different kinases.

Imatinib Mesylate

2017 Hurtado-de-Mendoza et al. Cureus 9(5): e1258. DOI 10.7759/cureus.1258 2 of 29

http://assets.cureus.com/uploads/figure/file/8191/lightbox_282ec3b08f5e11e69f3fe1bd67a3c0ad-A__1600x1041_.png


Imatinib mesylate targets multiple tyrosine kinases, including Bcr-Abl (the fusion protein encoded
by the Philadelphia chromosome), c-Kit (the stem cell factor receptor), and platelet-derived growth
factor receptor (PDGFR)-α and β. It is the drug of choice for the treatment of CML and indicated as
the first-line or adjuvant therapy for individuals with Philadelphia chromosome-positive pre-B cell
acute lymphoblastic leukemia (B-ALL), gastrointestinal stromal tumors (GIST), and acute and/or
chronic eosinophilic leukemia (CEL).

Of patients treated with imatinib monotherapy, 0.5% to 1.7% develop heart failure symptoms due
to left ventricular (LV) systolic dysfunction [6]. Initial studies that used serum B-type natriuretic
peptide or troponin T levels as a marker of cardiac function reported no cardiotoxicity with
imatinib therapy [7]; however, noninvasive imaging studies have demonstrated a decline in the left
ventricular ejection fraction with therapy [8]. Although pathological findings characteristic of
toxin-induced myopathy have been demonstrated on biopsy in imatinib-treated patients [8],
studies have failed to correlate pathologic findings with clinical evidence of cardiac dysfunction.
Which patients are most susceptible to developing cardiac dysfunction with imatinib therapy and
are candidates for appropriate preventative and management interventions is currently unknown.

Dasatinib

Currently indicated for the treatment of CML and Philadelphia chromosome (+) ALL (acute
lymphoblastic leukemia) after imatinib failure, dasatinib is a very potent TKI targeting Bcr-Abl,
cKit, PDGFR-α and -β, and the Src family of kinases [9]. The most commonly associated adverse
cardiovascular effect is peripheral edema. Heart failure incidence is reported to range between 2%
to 4% [9-10]. Dasatinib treatment is associated with asymptomatic QT interval prolongation (≥ 500
ms) in 2% to 3% of patients, and isolated cases of pericardial effusion have also been reported [6,
10]. Based on similar pharmacodynamic profiles, imatinib and dasatinib-induced cardiotoxicity
likely have a common mechanism of action.

Nilotinib

Nilotinib is an inhibitor of Bcr-Abl, c-Kit, and PDGFR-α and -β receptors. Its potency in vitro is 30-
fold compared to imatinib, and it is used as the second-line treatment in patients with CML
initially treated with imatinib and also used in those patients with Philadelphia positive B-ALL. The
major cardiac event reported is an increased incidence of QT prolongation (1% to 10% incidence),
warranting the issuance of a black box warning from FDA as part of the agreement for its
approval [6, 11]. An experiment performed on canine heart myocytes demonstrated that the
mechanism behind this action potential delay is an inhibition of phosphoinositide-3-kinase due to
“on-target” effects of nilotinib. As a result, multiple ion channels are decreased (including delayed
K+ currents IKr and IKs, L-type calcium ion current ICa, L, and peak sodium ion current INa) and
persistent Na+ current INaP is increased [12]. Strict monitoring and repletion of magnesium and
electrolyte levels are warranted when using this agent.

Lapatinib

Lapatinib is an orally administered quinazoline targeting epidermal growth factor receptor (EGFR)
and ErbB2, which is also the target of the monoclonal antibody, trastuzumab (see below),
commonly associated with significant cardiotoxicity. ErbB receptors cause carcinogenesis by
complexing with phosphoinositide 3-kinase (PI3K) complexes to activate the serine-threonine
kinase Akt pathway [13-14].

In a large randomized trial of combination chemotherapy with lapatinib for metastatic breast
cancer, 2.5% of patients had a marked decrease (> 20% decline from baseline) in left ventricle
ejection fraction (LVEF) without heart failure symptoms [15]. In a pooled analysis of 3,689 patients
enrolled in Phase I to III lapatinib clinical trials, 1.6% of patients experienced a significant decline
in LV systolic dysfunction, with 0.2% being symptomatic [16]. For patients who were previously
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treated with anthracyclines, trastuzumab, or neither prior to lapatinib therapy, the incidence of
cardiac events was 2.2%, 1.7%, and 1.5%, respectively [16]. The mean time to the onset of cardiac
events was 13 weeks, and 88% of patients followed had a partial or full recovery of LV function
regardless of continuation or discontinuation of lapatinib [16]. QT interval prolongation (QTc > 480
ms or an increase in QTc > 60 ms from baseline) was not found to be significant in a retrospective
study, although the group analyzed only included 16 patients, and one patient increased in
common terminology criteria for adverse events [17]. Nevertheless, other studies have found it to
occur in up to 16% of patients [6]. Experiments using a whole-cell patch clamp suggest that this
arises from the human Ether-à-go-go-related gene (hERG) channel current delay, which slows heart
repolarization. This seems to arise from the inhibition of the coding of the main IKr current pore-

forming subunit [18].

Erlotinib and Gefitinib

EGFR is overexpressed and/or mutated in many solid tumors [3]. Erlotinib and gefitinib are orally
active TKIs targeting EGFR and are used in the treatment of refractory, locally advanced, or
metastatic non–small-cell lung cancer after platinum-based chemotherapy [19-20]. Non-smokers,
females, Asian descent, and adenocarcinoma phenotype (bronchioalveolar type, in particular) are
preferred candidates for these agents [21-23]. Erlotinib is also approved for the treatment of
pancreatic cancer in combination with chemotherapy.

In a study of pancreatic cancer patients administered gemcitabine with or without erlotinib,
myocardial ischemia or infarction occurred in 2.3% of patients receiving both and 1.2% of those
who received gemcitabine alone [19]. An increased incidence of deep venous thrombosis (DVT) with
erlotinib and gemcitabine combination therapy was also noted (3.9% vs 1.2% with gemcitabine,
respectively). The mechanism by which these agents contribute to venous thromboembolic
events (VTE) remains to be elucidated, but a meta-analysis suggests that the possible mechanism
that associates anti-EGFR drugs and thrombosis events is linked to the anti-angiogenic effect of
this inhibition. This blockage results in a decrease in production of angiogenic factors, such as
VEGF, which enhances the production of nitric oxide (NO). This, in turn, has antiplatelet action and
inhibition of leukocyte adhesion that has the potential to expose prothrombotic phospholipids and
lead to thrombosis [24].

Additionally, it is important to consider that both erlotinib and gefitinib are agents that are used
after platinum-based chemotherapy. A meta-analysis determined that of 932 patients in cisplatin
chemotherapy analyzed, 18.1% developed a thromboembolic event. Of these, 49.7% exhibited deep
vein thrombosis [25]. Thus, it cannot be discarded that there is a possibility that some of the
thromboembolic risk attributed to the mentioned TKIs can arise from a predisposition generated by
the previous treatment with platinum-based chemotherapy. It has been demonstrated in-vitro that
cisplatin has the potential to increase platelet count and endothelial cell damage, which can
increase thrombotic events, especially when coupled with gemcitabine treatment [26].

Sunitinib

Sunitinib is an orally active, multitargeted, antiangiogenic small molecule TKI that inhibits
vascular endothelial growth factor receptor (VEGFR), c-Kit, PDGFR-α and -β, rearranged during
transfection (RET) receptor, and FMS-like tyrosine kinase 3 (FLT-3) receptor [27]. It is considered
the standard-of-care for treatment of renal cell carcinoma and as a second-line treatment for
patients with GIST refractory to imatinib monotherapy [28].

Sunitinib-induced cardiotoxicity is well recognized and the cause of considerable cardiac morbidity
(i.e., hypertension, heart failure, myocardial ischemia, etc.) that may not be manifest for weeks or
months after completion of sunitinib therapy [29]; the mean time to development of heart failure
is highly variable, ranging from 22 days to 27 weeks post-therapy [30-31].
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Sunitinib inhibits a large number of “direct targets” and “off-targets”, which makes it difficult to
determine the specific pathway(s) leading to cardiotoxicity. The cardiotoxic effects are mediated, at
least in part, through inhibition of PDGFR-β; microscopic findings compatible with toxin-induced
myopathy and mitochondrial damage are present in endomyocardial biopsies from patients with
sunitinib-induced heart failure [30]. Cardiomyocyte PDGFR-β expression and activity increase in
response to pressure overload and regulate myocardial angiogenesis, with PDGFR-β knock-out
animal models exhibiting impaired stress-induced angiogenesis, myocardial contractile
dysfunction, and heart failure [32]. “Off-target” inhibition of AMP-activated protein kinase,
ribosomal S6 kinase, and a tyrosine kinase receptor by sunitinib leads to maladaptation to pressure
overload (i.e., systemic hypertension), myocyte adenosine triphosphate (ATP) depletion and
apoptosis [3, 31]. Maladaptation to pressure loading may be particularly important as hypertension
is a common side effect of sunitinib and other VEGFR inhibitors [31]. The mechanism whereby
VEGFR antagonists cause hypertension and heart failure is decreased capillary permeability leading
to increased cardiac afterload (see also bevacizumab) [33].

LV systolic dysfunction and heart failure are reported in an interval from 3% to 18% [34] and
symptomatic heart failure in 3% to 15% [30-31, 35] of sunitinib-treated patients, with the
variability due to the heterogeneous patient populations. Most of these patients with sunitinib-
induced cardiotoxicity have coronary artery disease as their only risk factor for heart disease. In
clinical studies, heart failure symptoms occurred 22 to 435 days after initiation of sunitinib therapy
(average 30.5 weeks) and usually responded well to discontinuation or dose modification of
sunitinib and initiation of routine heart failure medical therapy. However, in some individuals,
myocardial dysfunction was not reversible despite appropriate therapy.

Other cardiovascular complications associated with sunitinib therapy include elevated serum
troponin levels (18%), MI (2.4%), and transient ischemic attack (1%) [30- 31]. Approximately one-
fourth of sunitinib-treated patients develop systemic hypertension (> 150/100 mmHg) with severe
(Grade 3 or higher) hypertension occurring in 2% to 12% [30, 33, 36]. If hypertension develops, it
usually does so with the first cycle of sunitinib and persists throughout treatment [30].

Sorafenib

Sorafenib is a multitargeted, small molecule TKI that inhibits pathways important in cellular
proliferation (i.e., RAF-1, B-type Raf [BRAF], and c-Kit) and pathways that are pivotal in tumor
angiogenesis (i.e., VEGFR-2, VEGFR-3, FLT-3, and PDGFR-β) [37]. It is currently indicated as a
second line for the treatment of renal cell and hepatocellular carcinoma, and as such, it is
frequently administered after sunitinib therapy, which raised concerns of cardiotoxicity
potentiation [38]. However, a retrospective analysis of 68 patients treated with sorafenib following
sunitinib treatment did not reveal increased cardiotoxicity rates with sequential
administration [39].

The incidence of acute coronary syndromes, including MI, in patients treated with sorafenib, has
been reported to occur in 2% to 3% of such individuals [38-42]. In an observational study of 74
patients with metastatic renal cell carcinoma who received either sunitinib, sorafenib, or both by
sequential administration, 34% experienced a cardiac event -- defined as the occurrence of
increased cardiac enzymes, symptomatic arrhythmia requiring treatment, new LV systolic
dysfunction, or acute coronary syndrome, 40% had electrocardiographic changes, and 18% were
symptomatic, with 9% of patients seriously compromised and requiring intermediate care and/or
intensive care admission [43].

The pathophysiology of sorafenib-associated cardiotoxicity may be explained by VEGFR and PDGFR
inhibition [33, 44-46]. Additionally, RAF inhibition may play a role in its toxicity profile. RAF1 is a
member of the RAF family of intracellular signal transducing kinases that inhibit proapoptotic
kinases -- MST2 and apoptosis signal-regulating kinase 1 (ASK1) – that regulate oxidant stress-
induced injury [47-49]. RAF1 gene deletion in cardiomyocytes results in the development of a
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dilated, hypocontractile heart in animal models [49].

A meta-analysis of 4,599 sorafenib-treated patients reported an overall incidence of hypertension
of 23% with the frequency of Grade 3 or 4 hypertension ranging from 2% to 31% [50]. When studied
prospectively, a persistent increase in blood pressure was observed within three weeks of sorafenib
treatment in most patients, and vascular stiffness increased significantly for up to 10 months of
observation [51]. VTE has been associated with sorafenib administration, but the incidence is low
(< 2%) [33, 52].

Cabozantinib

Cabozantinib is a tyrosine kinase inhibitor that is Food and Drug Agency (FDA) approved for the
treatment of renal cell carcinoma that has been previously treated with anti-angiogenic therapy. It
has inhibitory action over VEGFR2 and tyrosine protein kinase Met (c-MET) [53].

A meta-analysis that revised the development of hypertension in prospective trials with cancer
patients following cabozantinib treatment found an incidence of 27.8% (95% confidence interval
(CI): 23.2 - 32.8%) for all grade hypertension and 12.0% (95% CI: 10.2 - 14.1%) for high-grade. It is
suggested that this occurs through the interaction with VEGFR 2 and VEGF-induced vasodilatory
and hypotensive effects. Contrariwise, inhibition of this pathway can produce a hypertensive
response [53].

An FDA risk assessment report for cabozantinib indicated that, during the clinical testing program
for this drug, no patients suffered torsades des pointes nor were the QTcF > 500 reported [54].
Another FDA risk assessment report wrote that arterial and venous thromboembolism occurred
with the administration of cabozantinib in 2% and 6% incidence, respectively [55].

Dabrafenib and Trametinib

Dabrafenib and trametinib are serine-threonine kinase inhibitors that work by blocking the BRAF
(dabrafenib and trametinib) and MEK (trametinib only) kinases, which then signal the ERK
pathway [56]. Their combined use is FDA approved for the treatment of metastatic melanoma
previously diagnosed by an FDA-approved test that detects a mutation in BRAF V600E or V600K.
They have a synergistic effect arising from the targeting of different stages of the pathway [57].

Nevertheless, these inhibitors show a series of cardiotoxic complications with their use. For
instance, a review that reports on the safety of TKIs establishes that, across clinical trials, evidence
for cardiomyopathy (left ventricle dysfunction as measured by the decrease of LVEF > 10% below
baseline) was 11% when trametinib was administered as a single agent (n = 329) and 8% when
combined with dabrafenib (n = 202). It also mentions that a study found that the incidence was 9%
(5/55) with the combination therapy, while dabrafenib alone showed an incidence of 0%. This
suggests that the adverse cardiotoxic effects of dabrafenib might appear only in combination
therapy. Correspondingly, this exhibits an average onset of 63 days (range: 16 - 156 days) for single
trametinib administration and 86 days (range: 27 - 253 days) for combined treatment [58].

Comparably, the incidence of hypertension (all grades) was found to be 4% in a clinical trial
performed on the adverse effects of combined trametinib and dabrafenib therapy. Crossing over
from a trametinib only treatment to a combined one in the same trial led to an incidence of 9% for
all grades of hypertension and 7% for Grades 3 or 4 [59].

It is suggested that the cardiotoxic effects of these drugs and other BRAF inhibitors arise from
blocking of the activation via growth factor of the ERK pathway in cardiomyocytes. This was
investigated in perfused rat hearts [56].

Lenvatinib
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Lenvatinib is recognized as a multi-targeted tyrosine kinase inhibitor. Its primary activity is over
vascular endothelial growth factor receptor (VEGFR), which has an anti-angiogenic effect. This
effect accounts for it being FDA approved as a second-in-line treatment for metastatic and
progressive thyroid cancer that is refractory to radioiodine (iodine-131), after receiving previous
anti-angiogenic therapy. Moreover, it also inhibits other molecular pathways of tumor growth, such
as platelet-derived growth factor receptor (PDGFR) and the fibroblast growth factor receptor (FGFR)
[60].

One of the major cardiac incidents reported in the use of lenvatinib is the high incidence of
hypertension in clinical trials. For instance, a study of this type recognized the appearance of this
condition in 69.3% (n = 261) of the subjects for all grade hypertension and 42.9% for Grades 3 and
above [60]. This consequence might arise from a similar mechanism than in cabozantinib
administration, where the VEGFR is also inhibited. Less common, although severe, effects reported
for the use of lenvatinib in clinical trials were cardiac dysfunction, with a reported incidence of 2%
against 0% in placebo, and arterial thrombosis, reporting an incidence of 5% against 2% placebo
(lenvatinib n = 261; placebo n = 131) [61].

Ponatinib

Ponatinib is indicated in chronic myelogenous leukemia (CML), which is intolerant or resistant to
previous treatments. Ponatinib is also used for the treatment of Philadelphia-positive acute
lymphoblastic leukemia (ALL) that has the T315I mutation and are resistant to prior therapy with
TKIs, such as dasatinib or nilotinib [62-63]. This drug is a third generation inhibitor of the BCR-ABL
receptor; its potency relies on the fact that it has clinical activity on both the wild-type and
mutated (for example, in CML) BCR-ABL, including the T315I mutation [64].

The two predominant clinical manifestations reported in trials for the use of ponatinib were
hypertension and arterial thrombotic events (ATEs). In the case of the first condition, a clinical
trial - which involved the analysis of patients with chronic-phase (n = 270), accelerated-phase (n =
85), and blast-phase (n = 62) CML, and Ph-Positive ALL (n = 32) –  determined an incidence of 9%,
7%, 2%, and 3% of all-grade hypertension for each type of cancer, respectively, and 2%, 4%, 2%,
and 3%, also respectively, for Grade 3 or 4 hypertension [65]. In a similar manner, a trial that
evaluated the efficiency and safety of ponatinib in 449 CML or ALL (Ph-positive) patients describes
that ATEs were present in 19% of patients, including 10% cardiovascular, 7% cerebrovascular, and
7% peripheral vascular events. Additionally, it reports that venous thromboembolic events were
observed in 5% of the patients. It might be important to mention that this trial had to be
temporarily interrupted due to the appearance of ATEs, requiring ponatinib dosage modification
before continuing [66].

Furthermore, ponatinib is a TKI that had to be provisionally removed from the market until
modifications in the labeling for the safety of thromboembolic events and arterial occlusion were
included before its reintroduction [58].

Epigenetic modulators
Histone deacetylase (HDAC) and acetyltransferases are “epigenetic agents” that regulate the
acetylation of histone proteins, thereby activating chromatin transcription at specific gene loci.
They also regulate the acetylation of non-histone proteins, including transcription factors involved
in cell cycle progression and apoptosis [67-69]. HDAC inhibitors can favorably affect transcription
patterns in cancers that exhibit aberrant acetylation patterns that result in (a) transcriptional
silencing of tumor suppressor genes [70-71]; (b) inactivation of heat shock protein (HSP) 90
chaperone function; and/or (c) abnormal nuclear factor kappa B (NF-κB) signaling [72] as shown in
(Figure 2).
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FIGURE 2: Epigenetic Modulators
Histone deacetylase (HDAC) and acetyltransferases are "epigenetic agents" that regulate the
acetylation of histone proteins, thereby activating chromatin transcription at specific gene loci.
They also regulate the acetylation of non-histone proteins, including transcription factors involved
in cell cycle progression and apoptosis. HDAC inhibitors can favorably affect transcription patterns
in cancers that exhibit aberrant acetylation patterns that result in (a) transcriptional silencing of
tumor suppressor genes; (b) inactivation of heat shock protein (HSP) 90 chaperone function; and/or
(c) abnormal nuclear factor kappa B (NF-kB) signaling. 

Vorinostat

Vorinostat (suberoylanilide hydroxamic acid, SAHA) is an HDAC inhibitor that is currently FDA
approved for the treatment of recurrent cutaneous T-cell lymphoma (CTCL) and is under
investigation for other (i.e., hematologic) malignancies. In the cardiomyocyte, HDAC influences
cardiac hypertrophy, and epigenetic modifications may contribute to cardiac dysfunction and heart
failure [73-75]. In dilated cardiomyopathy-derived myocardial human tissue, epigenetic changes in
several signaling regulatory pathways have been demonstrated [76].

In patients without known heart disease, vorinostat therapy has been associated with dyspnea in
32% to 47% of patients, QT interval prolongation in 3.5% to 6%, and thromboembolic events (DVT
or pulmonary embolism) in 5% to 8% [77-81]. Results of ongoing studies of vorinostat and other
cancer therapies targeting epigenetic modifiers are needed to provide further information regarding
their cardiotoxicity profile.

Proteasome inhibitors
Bortezomib

Bortezomib (PS-341) is the first proteasome inhibitor approved by the FDA for the treatment of
malignancies. It exhibits antiproliferative and proapoptotic effects on plasma cells and is approved
for initial treatment of patients with multiple myeloma [82-83]. As shown in Figure 3, the main
target of bortezomib is the ubiquitin–proteasome system (UPS), which is a lysosome-independent
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cellular protein degradation system involved in the regulation of protein expression signaling and
proliferation of malignant cell lines [84-86]. Bortezomib also inhibits proteasomal degradation of
IκB-alpha, leading to the suppression of the antiapoptotic and proinflammatory transcription
factor, NF-κB, and subsequent enhancement of chemotherapy sensitivity [73]. Figure 3 represents
the mechanism of action of this drug and its role in the enhancement of chemotherapy sensitivity.

FIGURE 3: Proteasome Inhibitors
The main target of bortezomib is the ubiquitin-proteasome system (UPS). Bortezomib inhibits
proteasomal degradation of IkB-alpha, leading to suppression of the antiapoptotic and
proinflammatory transcription factor NF-kN and subsequent enhancement of chemotherapy
sensitivity. 

Although case reports of bortezomib-induced cardiotoxicity have been published [87-89], the
frequency has not been determined. In a Phase III clinical trial of 669 multiple myeloma patients
comparing bortezomib with high-dose dexamethasone, the incidence of cardiovascular
complications was 15% versus 13%, respectively, with 2% of patients in both treatment groups
experiencing heart failure [90]. Other proteasome inhibitors (i.e., NPI-0052, CEP-18.770, and RP-
171) are currently in early phase trials may help to elucidate the clinical impact of UPS disruption
on the cardiovascular system [73, 91].

Patients suffering from subclinical heart disease are thought to be at particularly increased risk for
developing cardiotoxicity with bortezomib treatment [73, 88]. In animal models, UPS is critical for
the maintenance of normal cardiac physiology [85, 88], with its impairment leading to the
accumulation of oxidized ubiquitinated proteins, which promote cardiomyocyte death and
myocardial dysfunction [92]. In ischemia/reperfusion injury models, UPS may be activated as an
adaptive mechanism to preserve myocyte and cardiac function [93].

Monoclonal antibodies
Bevacizumab

Bevacizumab is a chimeric, monoclonal antibody [94] that binds to biologically active isoforms of
vascular endothelial growth factor A (VEGF-A), thereby preventing interaction with its endothelial
cell receptors (Fms-related tyrosine kinase 1 (FLT-1) and kinase insert domain receptor (KDR)).
Bevacizumab is FDA approved for the treatment of various malignancies: it is used in combination
with intravenous 5-fluorouracil-based (5-FU) chemotherapy for(a) for first- or second-line
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treatment of patients with metastatic carcinoma of the colon or rectum; (b) in combination with
carboplatin and paclitaxel for the first-line treatment of patients with unresectable, locally
advanced, recurrent or metastatic non-squamous non-small cell lung cancer; and (c) for the
treatment of metastatic renal cell carcinoma in combination with interferon alfa. It is also
approved, in combination with paclitaxel, for the initial treatment of patients with metastatic
human epidermal growth factor receptor 2 (HER2) negative breast cancer. Lastly, it has recently
been approved for treatment of glioblastoma, as a single agent for patients with progressive disease
following prior therapy [95].

As with other anti-VEGF targeted therapies, hypertension is a common adverse effect in patients
treated with bevacizumab monotherapy or in combination with other targeted agents. In clinical
trials, the incidence of bevacizumab-induced hypertension has been reported between 4% to 35%
[6, 33, 96-103], with Grade 3 hypertension reported in 11% to 18% of patients [6, 96-98, 100, 104-
105] and approximately 2% of patients having severe (Grade 4) hypertension requiring
discontinuation of the drug [106]. The median interval from the initiation of bevacizumab therapy
to the development of hypertension (HTN) is 4.5 to 6 months [33]. Interestingly, the development
of hypertension during bevacizumab therapy is considered a favorable prognosticator, as it denotes
the presence of certain “hypertension-susceptible” VEGF polymorphisms (VEGF-2578 AA and
VEGF-1154 A) linked to a better response to chemotherapy and increased survival [107]. Higher
doses and concomitant therapy with sorafenib are associated with an increased incidence of
hypertension [33, 108-109].

Cardiac dysfunction and heart failure are potential adverse effects of therapy with bevacizumab,
with a reported incidence of heart failure ranging from 1.7% to 3% [95-97]. Patients previously
exposed to traditional therapies known to cause cardiomyopathy, such as anthracyclines [96, 110],
mitoxantrone [111], or capecitabine [96], are at particular risk of suffering this complication
through potentiation of their cardiotoxic effects.

The mechanism of bevacizumab therapy-related HTN is thought to be related to microvascular
rarefaction and inhibition of the nitric oxide-mediated vasomotor effects of VEGF. Microvascular
rarefaction is an anti-angiogenic effect leading to the extinction of the small arterioles and
capillaries that comprise the microcirculation, and it is a common finding present in individuals
suffering from arterial hypertension [112]. The presence of this phenomenon associated with
bevacizumab therapy was documented in a prospective study demonstrating a decline in the mean
dermal capillary density after six months of treatment and its association with the development of
hypertension [113].

Inhibition of VEGFR-2 activation with bevacizumab leads to blockage of endothelial nitric oxide
synthase up-regulation through the Src and Akt signaling pathways. The resultant decreased nitric
oxide production promotes vasoconstriction and increases peripheral vascular resistance [114].

Bevacizumab-induced heart failure is closely related to uncontrolled hypertension and the cardiac
remodeling response. VEGF signaling in cardiomyocytes is a major mediator, not only in
angiogenesis but also in compensatory responses to pressure load and injury [33, 115-116]. In
animal models mimicking bevacizumab anti-VGEF effects, pressure overload results in the
reduction of myocardial capillary density, global contractile dysfunction, cardiac fibrosis, and
eventually decompensated heart failure [117].

Venous and arterial thromboembolic events, including angina pectoris, myocardial ischemia, or
infarction and cerebral infarction, occur at a higher incidence in patients treated with bevacizumab,
plus chemotherapy, as compared with those treated with chemotherapy alone [95]. A meta-analysis
of 15 randomized trials demonstrated a 33% increased risk of developing VTE associated with
bevacizumab treatment (relative risk: 1.33; p < .001) [118]. A pooled analysis of five randomized
clinical trials demonstrated an incidence of arterial thrombotic events of 3.8% in the bevacizumab-
treated patients and 1.5% developed myocardial infarction or ischemia [119]. An observational
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study reported serious arterial thrombotic events in 1.8% and MI in 0.6% of bevacizumab-treated
patients [120]. These events tend to occur at any time during therapy, with a median time-to-event
of about three months and are not dose-dependent. A history of prior vascular thrombosis and age
> 65 years have been identified as potential risk factors [119-120].

VEGF plays a significant role in the maintenance of vascular integrity through the stimulation of
endothelial cell proliferation and preservation of endothelial cell junctions [121]. VEGF inhibition
with bevacizumab promotes endothelial cell dysfunction and apoptosis and decreases the
endothelial regenerative potential, which predisposes to both hemorrhagic and thrombotic events,
especially in the setting of trauma [114, 121]. Platelet activation and aggregation due to
subendothelial collagen exposure and subsequent tissue factor activation are key factors in the
prothrombotic cascade [114]. Additionally, reduction of nitric oxide and prostacyclin promote
vasoconstriction and thrombosis [33, 114].

Trastuzumab

Trastuzumab is a chimeric, monoclonal IgG antibody against the extracellular domain of
HER2 [122-123]. HER2 protein overexpression is observed in 20% to 35% of primary breast cancers
[122-125] and is associated with poorer outcomes [124]. Trastuzumab, as a single agent or in
combination with immunochemotherapy, improves outcome in breast and gastroesophageal
cancer patients who overexpress HER2 [124, 126]. The risk of recurrence and mortality are reduced
when trastuzumab is integrated into adjuvant chemotherapy for early stage localized breast cancer
that overexpresses HER2 [124, 127]. As a result, many breast cancer patients who are treated with
trastuzumab receive anthracyclines before or simultaneously. 

LV systolic dysfunction is the most common cardiotoxic effect induced by trastuzumab, with the
mechanism, pathologic findings, and clinical outcome different than anthracycline-induced cardiac
dysfunction. The cardiotoxic effects of the trastuzumab are not cumulative or dose-related, as seen
with anthracyclines. Although the risk of cardiomyopathy is increased in patients who have been
treated with both agents, some develop heart failure during treatment with trastuzumab in the
absence of exposure to anthracyclines [125, 127-129]. Endomyocardial biopsies have revealed two
types of chemotherapy-induced cardiac dysfunction (Table 1) [128-129]. Type I cardiotoxicity is
characteristic of anthracycline exposure with myocyte damage on pathologic biopsy, clinical heart
failure, and minimal or no improvement in ventricular function with cessation of therapy. Type 2
cardiotoxicity is characterized by reduced contractility with little myocyte necrosis on microscopic
examination and frequent improvement in ventricular function with cessation of therapy [128].

Type I CRCD (model: doxorubicin) Type II CRCD (model: trastuzumab)

Cellular death Cellular dysfunction

Myocyte necrosis and typical ultrastructural changes on light and electron
microscopy

No injury or myonecrosis by light and electron
microscopy

Cumulative dose-related Not cumulative dose-related

Permanent damage Generally reversible with cessation of drug

TABLE 1: Clinical Features Distinguishing Type I and Type II Chemotherapy- related
Cardiac Dysfunction (CRCD)
[128, 130]
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Endomyocardial biopsies in patients with trastuzumab-induced LV dysfunction show no light or
electron microscopic evidence of injury [5, 128], suggesting that trastuzumab depletes adenosine
triphosphate by impairing mitochondrial function without permanently altering myofibrillar
ultrastructure [131]. Alternatively, the cardiotoxicity associated with HER2 receptor blockade may
result from a decreased ability to mount an integral response to stress [127-128]. Signal
transduction via epidermal growth factors is fundamental in regulating the hypertrophic response
to myocytes and the sarcomeric organizational response towards different stimuli, including
protection against cardiac toxins [127-128, 132]. The HER2 gene knock-out mice have a higher
sensitivity for anthracycline-associated cardiotoxicity and the development of progressive heart
failure and premature death compared to wild-type mice [127-128, 133].

It is postulated that trastuzumab induces cardiotoxicity in hearts susceptible to dysfunction as a
result of prior or concomitant anthracycline treatment (the so-called “two-hit theory”) [132] by
interfering with the repair of myocytes damaged by anthracycline exposure.

In a pooled analysis of 1,219 patients enrolled in Phase II and III clinical trials, LV systolic
dysfunction was noted in 9.2% of those who received trastuzumab, and the incidence was increased
when trastuzumab was administered concurrently with anthracyclines. Severe heart failure
symptoms (New York Heart Association (NYHA) Class III to IV) were present in 16% of
trastuzumab-treated patients who received an anthracycline concomitantly and only 2% of those
who received paclitaxel concomitantly [127, 134]. Of the patients who developed symptomatic
heart failure with trastuzumab therapy, LV function normalized in 79% when the agent was
discontinued and appropriate heart failure therapy initiated. Cardiotoxicity reversed quickly
(average: 1.5 months) [134]; when trastuzumab therapy was reinitiated in 25 patients, only
three (12%) had a recurrence of LV dysfunction [5, 135].

A pooled analysis of randomized controlled trials and case-control studies showed that the
prevalence of cardiotoxicity in the trastuzumab-treated patients was 10% whereas, in the non-
trastuzumab comparator arm, the prevalence was 2% [136]. In a meta-analysis of five randomized
controlled trials, a 10% decline in LV ejection fraction was observed in 3% to 34% of
trastuzumab-treated patients [128, 137].

Independent risk factors for trastuzumab-induced cardiotoxicity are simultaneous or prior exposure
to anthracycline and increased patient age [6, 125, 128, 138]. Similar to anthracycline-induced
cardiotoxicity, previous cardiac disease and NYHA Class II symptoms are suspected risk
factors [6]. However, traditional cardiac risk factors, prior cardiac disease, prior chest radiation,
and preexisting hypertension have not been identified as risk factors for trastuzumab-induced
cardiac dysfunction [6, 128]. In patients receiving concurrent anthracycline and trastuzumab
therapy, the risk of cardiac dysfunction increases after the cumulative dose of doxorubicin
exceeds 300 mg/m2 [6, 127, 137-138].

Rituximab

Rituximab is a chimeric murine/human monoclonal antibody that binds the cluster of
differentiation 20 (CD20) protein, which is expressed on the surface of B cells [139]. CD20
functions as an ion channel essential for regulating cell cycle progression and calcium
homeostasis. Stimulation of the CD20 receptor induces depletion of intracellular calcium
stores, thereby affecting calcium-dependent signaling processes, such as transcriptional
control, cell cycle progression, and apoptosis [139-140].

Rituximab is indicated for the treatment of various non-Hodgkin’s lymphomas, either alone or in
combination with other chemotherapeutic agents [141-142]. The major cardiovascular side effect
observed with Rituximab therapy is hypotension, which occurs in up to 10% of patients
[125]. It typically occurs in the first few hours of the drug’s initial infusion and is responsive to
fluid therapy [125, 141-143]. The exact mechanism in which the cardiovascular system is
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affected is unknown, but it is likely related to rituximab’s calcium channel blocking function.
Despite the acute effects, there is no increased risk of cardiotoxicity in patients with non-
Hodgkin’s lymphoma when rituximab is added to standard (i.e., CHOP - cyclophosphamide,
hydroxydaunorubicin, oncovin, and prednisone) chemotherapy [143].

Alemtuzumab

Alemtuzumab, a humanized IgG1 directed against the CD52 protein, is primarily indicated in
patients with chronic lymphocytic leukemia (CLL) or small cell lymphoma [125, 144-145]. It is also
used in patients with immune-mediated, nonmalignant conditions, such as rheumatoid arthritis,
solid organ transplants, multiple sclerosis, and as a conditioning agent for bone marrow
transplantation [144].

Alemtuzumab has been associated with infusion-related reactions, including hypotension,
bronchospasm, and rash, typically during the first week of therapy [125, 142]. LV dysfunction is
rare but has been reported in patients with cutaneous T-cell lymphoma who had previously
received multiple chemotherapy regimens [125, 146]. The mechanism is not fully understood
[146]. Close monitoring for hypotension is recommended for patients with the preexisting
cardiac disease who are treated with this agent [125].

Ibritumomab Tiuxetan

Ibritumomab tiuxetan is an agent used in patients with relapsing or refractory low-grade follicular
transformed B-cell non-Hodgkin’s lymphoma [144]. It is composed of an anti-CD20 mouse
antibody (i.e., ibritumomab) chemically attached to a chelator linked to the beta-emitting
isotope yttrium90 [147-148].

Hypotension and cardiac arrhythmias are rare complications associated with ibritumomab infusion
[125, 142]. Since ibritumomab tiuxetan is administrated in combination with rituximab [147], it
is unknown if the adverse cardiovascular reactions are the result of one or the other agents or
their interaction. Additionally, the long-term cardiac effects of local beta-irradiation are
unknown.

Tositumomab

Tositumomab is an IgG2a anti-CD20 monoclonal antibody derived from immortalized mouse cells.
It is administrated in a sequential infusion followed by iodine131 (131I) tositumomab (i.e., the
antibody linked to I131 by a covalent reaction) which emits both beta and gamma radiation [149-
150]. It is indicated for the treatment of patients with CD20 antigen-expressed refractory, low-
grade, follicular or transformed non-Hodgkin’s lymphomas, and in patients with rituximab-
refractory non-Hodgkin’s lymphomas [144, 149].

Hypotension (7%), peripheral edema (9%), chest pain (7%), and vasodilatation (5%) are
cardiovascular complications that have been described with the use of this antineoplastic
compound [149]. Due to its radioactive emissions, studies assessing the potential
cardiovascular effects of this radio-immunotherapeutic agent are still needed.

Cetuximab

Cetuximab, a human/mouse chimeric monoclonal IgG1 antibody that binds to human EGFR, is
currently used to treat colorectal [125, 144, 151] and head and neck cancer [151]. Cetuximab
blocks phosphorylation and activation of receptor-associated kinases, resulting in the
inhibition of growth and survival of tumor cells that overexpress EFGR [152].
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Potentially fatal infusion reactions involving severe hypotension have been described in
approximately 3% to 5% of patients receiving this medication [125, 142, 144].

Panitumumab

Panitumumab is a recombinant human IgG2 kappa monoclonal antibody to EGFR [153] that has
been approved for EGFR-expressing metastatic colorectal carcinoma with disease progression on or
following fluoropyrimidine, oxaliplatin, and irinotecan-containing chemotherapy regimens.

Panitumumab and cetuximab have the same target receptor but different IgG isotypes, which may
convey different ligand affinities and cardiotoxicity profiles. Peripheral edema is the most common
cardiovascular side effect, occurring in 12% of panitumumab-treated patients [153]. As the use of
this agent increases in patients with RAS and BRAF wild-type colorectal cancers, the
cardiotoxic effects common to other agents that target the EGFR ligand (e.g., erlotinib,
lapatinib, etc.) could also be noted in these patients.

Ofatumumab

Ofatumumab is an IgG1-kappa monoclonal antibody that binds to the CD20 molecule resulting in
B-cell lysis [154]. This agent is FDA approved for the treatment of patients with CLL refractory
to fludarabine and alemtuzumab [154]. Its role in the treatment of follicular non-Hodgkin’s
lymphoma, diffuse B-cell lymphoma, rheumatoid arthritis, and multiple sclerosis is currently
under investigation.

Reported adverse cardiovascular reactions include peripheral edema (9%), hypertension (5%),
hypotension (5%), and tachycardia (5%) [154]. The pathophysiology of these side effects may be
related to its interaction with CD20-like ligands in noncancerous tissues.

Lenalidomide

Lenalidomide is a thalidomide analog possessing immunomodulatory and antiangiogenic
properties [149]. Lenalidomide is FDA approved for the treatment of myelodysplastic syndrome
associated with chromosome 5q deletion and multiple myeloma, in combination with
dexamethasone, in patients who have received at least one prior therapy [155-156]. Its exact
mechanism of action is not fully understood, but it inhibits cell proliferation and affects
inflammatory cytokines in vitro [156].

The most common cardiovascular adverse reactions associated with this agent are peripheral edema
(20% incidence), atrial fibrillation (2.9%), and VTE. The latter varies in incidence from 3% to 75% [6,
156]. A black box FDA warning is included in the package insert for this medication indicating that
patients with multiple myeloma who receiving lenalidomide combination therapy may benefit from
simultaneous thromboembolism prophylaxis or aspirin [157]. Administered as a single agent, it is
not associated with an increased risk of thrombotic events [6, 158].

Checkpoint inhibitors
Nivolumab and Pembrolizumab

Nivolumab and pembrolizumab are two checkpoint inhibitors that work on PD-1 receptors to
trigger T-cell activation. When T-cells reach cancer cells, inactivation of this pathway can happen
due to the binding of the ligand PD-L1 to the mentioned receptor [159] as schematized in Figure 4.
Therefore, the use of these drugs serves as immunotherapy against tumor cells. These are FDA
approved for the treatment of (a) non-small cell lung cancer that has metastasized and (b)
melanoma that cannot be removed by surgery. Additionally, nivolumab is approved for the
treatment of classical Hodgkin lymphoma and advanced renal cell carcinoma.
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FIGURE 4: Checkpoint Inhibitors
Nivolumab and pembrolizumab are two checkpoint inhibitors that work on PD-1 receptors to trigger
T-cell activation. When T-cells reach cancer cells, inactivation of this pathway can happen due to
the binding of the ligand PD-L1 to the mentioned receptor. Therefore, the use of these drugs serves
as immunotherapy against tumor cells. 

The incidence of cardiotoxicity of checkpoint inhibitors is reported to be very low in early clinical
trials. For instance, a review reported that only 2% of 296 patients who received 10 mg/kg of
nivolumab exhibited hypotension. Similarly, only 7% of 135 melanoma patients who received 10
mg/kg of pembrolizumab showed a development of hypertension [160]. Cardiotoxic mechanisms
are still to be elucidated, but mouse models suggest that heart dysfunction and dilation occur
as an autoimmune response to cardiac troponin I in PD-1 deficient mice through chronic
stimulation of Ca2+ influx [161]. It might be relevant to assess potential cardiotoxic effects
from PD-1 ligand inhibition as treatment with these checkpoint inhibitors is expected to
expand to several other cancer types.

mTOR inhibitors
Figure 5 exhibits simplified pathways for the mammalian target of rapamycin and the roles it serves
in cell cycle progression, transcription, and other factors related to proliferation. 
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FIGURE 5: mTOR Inhibitors
The target of these agents is the mammalian target of rapamycin (mTOR), a key regulatory kinase
that interferes with cell cycle progression from the G1 to S phase via the formation of an
immunosuppressive complex with FK binding protein 12 (FKBP-12). Inhibition of this pathway by
everolimus, sirolimus, or temsirolimus reduces possible angiogenesis and proliferation of cells. 

Sirolimus

Sirolimus inhibits (a) T-lymphocyte activation and proliferation in response to antigenic and
cytokine stimulation and (b) antibody production by inhibiting the mammalian target of rapamycin
(mTOR), a key regulatory kinase that interferes with cell cycle progression from the G1 to S phase,
via the formation of an immunosuppressive complex with FK binding protein-12 (FKBP-12) [162-
163]. This agent is used to prevent rejection in solid organ transplantation and treat Kaposi
sarcoma in renal transplant patients.

Since this medication and its derivatives (discussed below) have a complex mechanism of action --
interacting with various growth factors, the redox state of the cell, transcription and protein
synthesis, and cell survival -- the cardiovascular effects are also complex and not fully elucidated.
In the mice model, mTOR expression preserves cardiac function by controlling collagen generation,
attenuating fibrosis [164], and suppressing cytokine-mediated pathways responsible for cardiac
dysfunction [165]. In animal models, rapamycin (or everolimus) interferes with post-MI LV
remodeling through augmentation of autophagy [166].

Clinical studies have demonstrated dose-related cardiovascular effects in ≥ 20% of patients treated
with rapamycin, including peripheral edema (in 54% to 64%), hypertension (in 39% to 49%),
peripheral edema (in 16% to 24%), and chest pain (in 16% to 24%) of affected individuals. Severe
cardiovascular effects -- atrial fibrillation, heart failure, DVT, and hypotension -- are uncommon,
with a reported incidence of < 3% [162].
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Everolimus

Everolimus, a derivative of sirolimus, is FDA approved for the treatment of patients with advanced
renal cell carcinoma (RCC) after failed treatment with sunitinib or sorafenib and as prophylaxis for
renal transplant rejection [167]. Through the formation of a complex with the FKBP-12 protein,
it inhibits mTOR and subsequent phosphorylation of P70 S6 ribosomal protein kinase, thereby
preventing protein synthesis and cell proliferation [167]. Additional antiproliferative effects are
exerted by decreasing eukaryotic elongation factor 4E-binding protein and expression of VEGF
and hypoxia-inducible factor [167].

In clinical trials, patients treated with everolimus experienced hypertension (4% of advanced renal
cancer patients and 30% of kidney transplant recipients), peripheral edema (25% of advanced renal
cancer patients and 45% of kidney transplant recipients), and tachycardia rarely [167].

Temsirolimus

Temsirolimus, also a derivative of sirolimus, leads to G1 phase cycle cell arrest and exerts
antiangiogenic properties by reducing the synthesis of VEGF. It is FDA approved for the treatment
of advanced renal cell carcinoma [168]. Cardiovascular side effects associated with its use
include hypertension (7%), and VTE (2%) [168]. Figure 5 presents the mechanism of action of
the mTOR inhibitors herein described.

Prevention and treatment
Increased awareness of the potential cardiovascular side effects associated with the various
chemotherapeutic agents allows early detection and appropriate treatment. Cardiac events
associated with newer agents have a highly variable incidence and onset, ranging from days to
months after the treatment is administered. Oncologists, cardiologists, and primary care physicians
should educate patients about potential cardiotoxicity associated with chemotherapy, risk factors,
the need for ongoing monitoring during administration of chemotherapy, and long-term follow-up
to assess for late cardiovascular complications. Although the Heart Failure Society guidelines do
not recommend reevaluation of cardiac function on a regular basis, monitoring of LV function at
regular intervals should be strongly considered since many patients who develop decreased LV
ejection fraction are asymptomatic [169]. Regular monitoring of cardiac function is particularly
important in individuals considered to be at increased risk of chemotherapy-induced
cardiotoxicity or those receiving an agent or agents with a high incidence of cardiotoxicity.

For patients receiving trastuzumab, some oncology centers propose that patients with elevated risk
(i.e., elderly, reduced LV ejection fraction, cardiac risk factors present, etc.) undergo a clinical and
echocardiographic assessment every three months while receiving chemotherapy and then every
six months for five years subsequently [169-170]. For patients without elevated risk, the
assessments can be performed every six months until the conclusion of trastuzumab therapy
and yearly thereafter for three years. If new symptoms occur or if the LV ejection fraction
declines by more than 10%, cessation of treatment – at least transiently -- may be
necessary. If late cardiac complications related to trastuzumab are found, longer term
monitoring may be appropriate [128, 171].

Newer noninvasive imaging modalities (i.e., speckle tracking echocardiography) may allow earlier
detection of chemotherapy-induced cardiac dysfunction, even before frank systolic dysfunction
occurs [172]. Efforts to identify biomarkers, such as serum cardiac isoenzymes, including
troponin and/or brain natriuretic peptide, for early diagnosis of chemotherapy-induced
cardiotoxicity and follow-up of this entity are also under investigation [128, 169, 171, 173].

Once a cardiovascular complication has been detected, efforts should be aimed to minimize the
progression of cardiac and endothelial dysfunction. This may require pharmacokinetic changes,

2017 Hurtado-de-Mendoza et al. Cureus 9(5): e1258. DOI 10.7759/cureus.1258 17 of 29



switching to chemotherapeutic analogs that are less cardiotoxic, administering cardioprotective
agents (e.g., dexrazoxane), and avoiding additional cardiotoxic regimens. In many patients,
discontinuation of the chemotherapeutic agent is the only available option, which might not be
feasible or acceptable to the patient due to the risk of cancer progression. 

With regard to pharmacologic therapy, evidence-based management guidelines have not been
established, although most experts initiate standard therapies based on presumed benefit. These
treatments may include antihypertensive medications, diuretics, renin-angiotensin-aldosterone
system (RAAS) blockers, beta-blockers, antiplatelet agents, or antiarrhythmics.

Treatment of hypertension should be aimed to reduce morbidity and mortality and lower the risk of
associated end-organ damage. Hypertension induced by VEGF targeting agents is highly responsive
to antihypertensive therapy, which means that interruption of chemotherapy is not usually
necessary. Angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs)
are the initial treatment of choice due to their potential to increase nitric oxide release and to
reduce bradykinin catabolism, plasminogen activator inhibitor-1 expression, microcirculatory
changes, and proteinuria [102, 174-175]. An additional benefit of RAAS inhibitors may be
potentiation of the antiangiogenic effects of VEGF-based therapy since angiotensin II–IV
(downstream cleavage products of angiotensinogen) upregulates VEGF in tumor tissue [176].

In some individuals, additional antihypertensive medications may be required to control
hypertension [175]. If such is the case, non-dihydropyridine calcium channel blockers (e.g.,
verapamil and diltiazem) should not be used in combination with cytochrome P450 3A4
(CYP3A4) isoenzyme inhibitors (e.g., sorafenib), due to the risk of markedly increased
concentrations of the chemotherapeutic agent. If therapy with a calcium-channel blocker is
desired, amlodipine or nifedipine are preferred.

If cardiac systolic dysfunction develops, the offending chemotherapeutic agent(s) should be
discontinued until the patient has been stabilized and started on appropriate heart failure–based
therapy according to guidelines published by the American College of Cardiology, American Heart
Association, and Heart Failure Society of America [173]. An ACE inhibitor or ARB, in combination
with a beta-blocker, is recommended unless contraindicated. In patients with anthracycline-
induced cardiomyopathy, enalapril therapy can reduce the decline in LVEF and subsequent
cardiac events [177]. Valsartan, an ARB, blocked the acute cardiotoxic effects of anthracycline
treatment during a small randomized trial [178]. Among the beta-blocking agents, carvedilol
demonstrated cardioprotection in anthracycline-treated patients, probably by virtue of its
intrinsic antioxidant properties [179]. In addition to heart failure therapy, treatment should be
instituted for any comorbid conditions that may adversely affect cardiovascular function (i.e.,
hypertension, diabetes, and hyperlipidemia). Optimal management of hypertension is pivotal
to prevent heart failure progression.

Patients with asymptomatic bradycardia or QT interval prolongation as a result of chemotherapy
should continue therapy with ongoing monitoring. Conversely, symptomatic patients may require
discontinuation of the offending agent (including beta-blockers, calcium channel blockers, and
digoxin) and placement of a permanent pacemaker if advanced heart block is present [79]. Multiple
myeloma patients who develop symptomatic bradycardia with thalidomide therapy should be
considered for pacemaker implantation [180].

Treatment of myocardial ischemia in the setting of chemotherapy may include medical therapy,
such as beta blockers, calcium channel blockers, statins, antiplatelet agents, and anticoagulants,
and percutaneous coronary intervention (PCI) [181-182]. If PCI is performed, the procedure
choice – balloon angioplasty, placement of a bare metal stent, or a drug-eluting stent) -- may
be determined by whether the patient can receive dual antiplatelet therapy for an extended
period (i.e., six to 12 months, in which case placement of a drug-eluting stent can be
considered) or for only a limited time (up to four weeks), in which case a balloon angioplasty
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or placement of a bare-metal stent is advised.

The decision to administer therapy to prevent VTE events should be individualized based on the
patient’s risk factors. Aspirin may be used in selected patients considered to be at increased risk for
arterial and VTE complications, especially if platelet count and function are preserved [119]. The
International Myeloma Working Group recently issued recommendations regarding the
prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma patients
[183]. Aspirin (81 to 325 mg) is recommended for low-risk patients, and low-molecular-weight
heparin (LMWH), enoxaparin 40 mg, or full-dose Warfarin is recommended for those with two
or more risk factors or receiving concomitant high-dose dexamethasone or doxorubicin. The
risk factors include age, history of VTE, central venous catheter, comorbidities (infections,
diabetes, and cardiac disease), immobilization, surgery, inherited thrombophilia, and
hyperviscosity.

Once a VTE is diagnosed, the LMWH (enoxaparin, dalteparin, or nadroparin) should be
administered for three to six months, followed by anticoagulant therapy with warfarin or LMWH
indefinitely or until cancer remission is achieved [184].

Radiotherapy
It must be highlighted that radiotherapy itself may be cardiotoxic, so conjunction with
chemotherapy that has the same effects may worsen the risk. Nevertheless, further studies need to
be done with regard to the combined use of each drug and radiotherapy. This is especially salient in
agents like tositumomab, which combine radiation and targeting by monoclonal antibodies in their
mechanism of action. It has been demonstrated that radiation of the mediastinum as a result of
treatment for early stage breast cancer or Hodgkin’s lymphoma is associated with late cardiac
repercussions [185]. For instance, a surgical and autopsy study of radiation-induced heart disease
found valve injuries in 70% (12 out of 17 available) of studied hearts, although only eight of these
were diagnosed with clinically significant dysfunction. Similarly, 63% of myocardiums (10 out of 16
available) exhibited fibrosis related to radiation [186]. The main mechanisms associated with these
phenomena are inflammation and vascular damage, which lead to cellular death [187]. This can be
related to heart fibrosis found in the aforementioned study.  

In the case of breast cancer, a case-control study that evaluated women with major coronary events
after oncotherapy found that incidental exposure of the heart increased the rate of major coronary
events in 7.4% per gray of radiation [188], establishing a direct correlation between the dose of
radiotherapy and the risk of developing heart conditions. On the other hand, Hodgkin’s lymphoma
patients, in an echography study, were found to present Grade 1+ (scale: 0-3) aortic and/or mitral
valvar regurgitation in 24% of the patients (15% aortic, 7% mitral, and 2% both) [189].

Strain scores in echocardiography
Strain is a term used in echocardiography to describe local shortening, thickening, and lengthening
of the myocardium as a measure of regional LV function. It can be measured by tissue Doppler
imaging (TDI) or by speckle-tracking echocardiography (STE), the latter being the most widely used
strain modality.

Monitoring cardiac function and administration of appropriate therapy during chemotherapy is
essential in current clinical practice. Nonetheless, no high-level evidence exists to guide the choice
of imaging method or frequency of measurements. LVEF should be measured prior to chemotherapy
using echocardiography. Patients who develop heart failure during chemotherapy are treated with
standard guideline-based heart failure therapy just as any other heart failure patient [190]. For
patients who develop asymptomatic LV dysfunction, however, there is not sufficient evidence
to give firm recommendations with regard to medical therapy [191].

When a reduction in LVEF during chemotherapy is established, it may be too late for treatment
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[192]. Reduction in myocardial strain precedes significant change in LVEF [193]. A relative decrease
in global longitudinal strain (GLS) > 15% compared with the baseline is likely to be of clinical
significance, whereas a decrease < 8% is not [194]. Although strain imaging may detect subclinical
myocardial changes, the value of these changes in predicting a clinical outcome is still unknown. A
combination of strain imaging with ultrasensitive troponin has been proposed [191].

Conclusions
Ongoing efforts are needed to provide a better understanding of the frequency, mechanisms of
disease, prevention, and treatment of cardiovascular complications induced by the newer, novel
chemotherapeutic agents. Development of a cardio-oncology discipline is warranted, in order to
promote task forces aiming at the creation of oncology patient-centered guidelines for the
detection, prevention, and treatment of potential cardiovascular side effects associated with newer
cancer therapies. 
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