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Visual motion information 
modulates tactile roughness 
perception
Yosuke Suzuishi1,2*, Souta Hidaka1 & Scinob Kuroki2

We perceive the roughness of an object through our eyes and hands. Many crossmodal studies have 
reported that there is no clear visuo-tactile interaction in roughness perception using static visual 
cues. One exception is that the visual observation of task-irrelevant hand movements, not the texture 
of task-relevant objects, can enhance the performance of tactile roughness discrimination. Our study 
investigated whether task-irrelevant visual motion without either object roughness or bodily cues 
can influence tactile roughness perception. Participants were asked to touch abrasive papers while 
moving their hand laterally and viewing moving or static sine wave gratings without being able to 
see their hand, and to estimate the roughness magnitude of the tactile stimuli. Moving gratings with 
a low spatial frequency induced smoother roughness perceptions than static visual stimuli when the 
visual grating moved in the direction opposite the hand movements. The effects of visual motion did 
not appear when the visual stimuli had a high spatial frequency or when the participants touched 
the tactile stimuli passively. These results indicate that simple task-irrelevant visual movement 
without object roughness or bodily cues can modulate tactile roughness perception with active body 
movements in a spatial-frequency-selective manner.

In daily life, when we touch an object with our hands, we automatically feel its texture. Texture information from 
the tactile modality consists of roughness, stickiness, slipperiness, and friction1. Specifically, roughness is one 
of the fundamental properties of texture information2. While we can perceive roughness through other sensory 
modalities besides touch (vision and audition), dominance of the tactile modality in roughness perception has 
been reported, especially for fine textures3,4.

Studies of crossmodal interactions have consistently demonstrated that our percepts consist of multisensory 
information5,6 that establishes robust and coherent percepts of the outer world7. In this context, modulatory 
effects of auditory information on tactile roughness perception8–10 have been reported that can be explained based 
on consistency in the temporal frequency domain11. In contrast to these audio-tactile interactions, visuo-tactile 
interactions in roughness perception have not been clearly reported12. It has been reported that the presentation 
of visuo-tactile information does not result in better performance in roughness discrimination than does the 
presentation of unimodal information for abrasive papers with the same roughness for vision and touch13. When 
different roughness information was presented to the visual and tactile modalities, the tactile modality appeared 
to be dominant over the visual modality12,14,15: Visuo-tactile matching of abrasive papers was more weighed on 
the tactile than the visual modality16 and visual roughness discrimination of fabric stimuli was biased by tactile 
stimuli, but the reverse was not observed17. These findings suggest that tactile roughness information is dominant 
over visual information, so that visual information has no effect on tactile roughness perception.

These absences of visual modulation of tactile roughness perception has been demonstrated by presenting 
static visual information (i.e., visual information without any movement) and dynamic tactile information (i.e., 
observers explored the tactile stimuli with their hands, or their hands were scanned by moving stimuli). However, 
when dynamic visual information is presented with dynamic tactile information, clear visuo-tactile interactions 
have been reported. Heller18 asked participants to explore a set of three abrasive papers by picking up, holding, 
and moving each stimulus freely. The participants were also asked to wear a cotton glove whose index finger was 
removed for tactile observations. Smoothness discrimination was performed unimodally (vision or touch) or 
crossmodally (vision and touch). Discrimination performance in the crossmodal condition was superior to that 
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in the unimodal condition. Intriguingly, better performance in the crossmodal condition was still observed when 
the participants observed the abrasive papers through a half-transparent plastic plate so that visual roughness 
information was not available and only their hand movements were visible. Similar findings were reported in 
a classification task for textured objects19. These findings suggest that the presentation of dynamic visual cues, 
not only through the texture itself but also through the body (hand movements), can affect tactile roughness 
perception.

This type of visuo-tactile interaction, an effect of task-irrelevant visual information (i.e., body information) on 
a tactile task, has been demonstrated for tasks other than roughness perception20–24. The effects of dynamic visual 
information regarding the hands on tactile roughness perception18,19, as mentioned above, can be explained in the 
context of noninformative vision. We note that dynamic information on touch (i.e., spatiotemporal information 
on the body surface) itself plays an important role in roughness perception25, and visual motion information 
co-occurs with tactile dynamic information when we observe an object’s roughness crossmodally. Given that the 
presentation of dynamic visual information per se is also a key factor in visuo-tactile interactions in roughness 
perception due to the congruency of crossmodal dynamic information, visual motion without bodily cues or 
roughness information may also affect tactile roughness perception. To the best of our knowledge, no study has 
investigated the effects of simple, task-irrelevant visual motion information on tactile roughness perception. The 
current study examined whether and how visual motion information without bodily cues or roughness informa-
tion affects tactile roughness perception.

In our experiments, we asked the participants to touch abrasive papers by laterally moving their right hand 
consistently with a visual reference maker. During the presentation of the tactile stimuli, a dynamic visual grating 
with a low spatial frequency was presented on a display covering the tactile stimuli and hiding the participant’s 
hand. The visual motion was presented in a spatially different location (the upper half of the display) from the 
tactile stimuli (beneath the lower half of the display). The speed of the visual motion was the same as the visual 
reference marker for hand movement, and the direction of the visual motion was either the same as (congruent 
condition) or opposite (incongruent condition) the hand movement. We also included a condition with a static 
visual grating as a baseline. After the presentation of these stimuli, the participants performed a magnitude 
estimation of the roughness of the abrasive paper. Experiment 1 showed that the presentation of visual motion 
incongruent with the hand movement induced a smoother roughness estimation than the baseline condition. 
Experiment 2 replicated these findings, and further revealed that the velocity of participants’ recorded hand 
movements and the perceived velocity of the visual reference marker for hand movements did not correlate with 
the roughness estimation in any visual conditions among participants, indicating that the visual effect observed 
in the incongruent condition was not due to the modulation of hand movements and/or visual motion contrast 
between the grating and reference marker. Experiments 3 and 4 respectively demonstrated that the effects of 
visual motion did not appear when the moving visual stimuli had a high spatial frequency or when the par-
ticipants touched tactile stimuli passively. These results suggest that simple visual motion without information 
on the hand and roughness, whose direction is opposite the hand movements, can modulate tactile roughness 
perception with active body movements in a spatial-frequency-selective manner.

Methods
Participants.  Sixty people (15 males and 45 females; 18–48 years old) participated in the experiments. Each 
experiment involved 15 participants. All of them reported normal or corrected normal vision and normal touch. 
They were naive to the purpose of the experiment.

Apparatus and stimuli.  Tactile roughness perception differs between finer and coarser textures25. Dynamic 
touch is assumed to mainly contribute to the percept of roughness, specifically for finer textures25. Since the cur-
rent study asked the participants to touch the stimuli dynamically, we presented relatively finer abrasive papers 
(P180, P400, P600, P800, and P1000 in meshes following the Japanese Industrial Standards; the average particle 
diameters were 75, 35, 25.8, 21.8, and 18.3 μm, respectively) as the tactile stimuli. The size of the abrasive papers 
was 23 × 28 cm in Experiments 1–3, while in Experiment 4, the size of the abrasive papers was 6 × 22.5 cm. The 
abrasive papers were set in a cardboard frame on a desk to fix their position while they were being touched 
in Experiments 1–3. In Experiment 4, we set the abrasive papers on a motorized x-stage (CKD, ERL2-45E06-
50BM-R3F2). The abrasive papers moved leftward at 13.5 cm/s for 1.67 s. White noise bursts were presented 
through headphones (Sennheiser, HDA 200) in Experiment 4 in order to prevent the participant from hearing 
artificial noises from the x-stage.

Visual stimuli were presented on a linearized LCD (LG, D2342, 1,360 × 768 pixels, 60 Hz) using a custom-
ized computer (Dell, Precision T3500) and MATLAB (MathWorks, Inc.) with the Psychophysics Toolbox26,27 
for Experiments 1–3. In Experiment 4, the visual stimuli were presented on a linearized LCD (DELL, U2311Hb, 
1920 × 1,080 pixels, 60 Hz) using a computer (Dell, Vostro 3,268) and Python with Psychopy28,29. In all experi-
ments, the display was set laterally on a hand-made aluminum stand above the tactile stimuli so that the par-
ticipants could see neither their hand nor the tactile stimulus during the experiments (Fig. 1a,b). The viewing 
distance was 30 cm. The background of the display was set to gray (44.00 cd/m2). On the display, a sine wave 
grating (0.15–88.20 cd/m2: mean = 44.00 cd/m2) was presented as static or moving at 14.25° in height and 80.73° 
in width (corresponding to the width of the display) (Fig. 1c,d). We presented the sine grating because we could 
show visual motion with a minimum modulation of one stimulus dimension (luminance)30 and without rough-
ness or bodily cues. The moving grating shifted rightward or leftward at 25.36°/s. The absence of clear visuo-
tactile interactions in tactile roughness perception has been reported for relatively finer visual roughness14. This 
may be due to a low discriminant ability for finer roughness in vision3. Furthermore, vision studies have reported 
that relatively coarser visual roughness is discriminable and utilized for visual roughness estimation15,31. Based 
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on these findings, we presented a sine wave grating with a relatively low spatial frequency (7.15° in wavelength, 
0.14 cycles per degree) for Experiments 1, 2, and 4 (Fig. 1c). In Experiment 3, we presented a visual grating that 
was 1.43° in wavelength (0.70 cycles per degree), a spatial frequency five times higher than in the other experi-
ments (Fig. 1d). We also presented a white circle (0.69° in radius) at the center of the display as a fixation point 
and a red marker (1.07° in radius) moving rightward from the left side of the display at 25.36°/s for 1.67 s as the 
reference for hand movements. The distance between the fixation point and the reference maker and between 
the fixation point and the grating was 10.72°. In Experiment 4, we did not present the reference marker because 
the participants touched tactile stimuli passively without moving their hands. The duration of the presentation 
of the tactile and visual stimuli was 1.67 s.

In Experiment 2, we also used a video camera (SONY HDR-SR12, with a 30 Hz refresh rate) to record the 
participants’ hand movements. The video camera was set in front of the table. A flashlight was also set on the 
table to illuminate the participants’ hands. A ruler was also attached to the table to record the hand movement 
distance and to calculate hand movement velocity.

Procedure.  We performed four experiments. Experiment 1 presented the visual stimuli with a low spatial 
frequency (0.14 cycles per degree, Fig. 1c) and asked the participants to touch the tactile stimuli with active 
hand movements. We conducted Experiment 2 using the same procedure as Experiment 1 to replicate the find-
ings. Furthermore, we recorded the participants’ hand movements during the presentation of the comparison 
stimuli and measured the perceived velocity of the reference marker. In Experiment 3, the stimuli and proce-
dures were identical to those in Experiment 1, except that visual gratings with high spatial frequency (0.70 cycles 

Figure 1.   Schematic illustrations of the experimental setups and stimuli. (a) Tactile stimuli (abrasive paper) and 
participants’ hands were placed on a table. A visual display sat on a hand-made aluminum stand above them. 
Participants were asked to touch the abrasive paper with their index finger of the right hand moving rightward. 
(b) Photograph of the experimental setups in Experiments 1, 2, and 3. (c) Visual stimuli used in Experiments 
1 and 2. The visual grating stimuli had a low spatial frequency (0.14 cycles per degree). A white marker was 
presented at the center of the display as a fixation point. A moving red marker was presented as a reference for 
the participants’ hand movements. In Experiment 4, we presented the same visual stimuli except that the red 
reference marker for hand movements was not presented. (d) Visual stimuli used in Experiment 3. The grating 
had a higher spatial frequency (0.70 cycles per degree) than in the other experiments.
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per degree) were presented (Fig. 1d). The stimuli and procedures in Experiment 4 were also identical to those in 
Experiment 1, except that the participants were asked to touch the tactile stimuli passively.

For all experiments, we adopted a magnitude estimation method to measure the perceived magnitude of 
roughness. The participants sat on a chair in front of a table. They were asked to place their right hand under-
neath the display on the table (Fig. 1a,b). We used a tactile stimulus with intermediate physical roughness (i.e., 
P600-mesh abrasive paper) as the standard stimulus. One of the five abrasive papers, including a P600 mesh, was 
presented as the comparison stimulus. At the beginning of each trial, the standard stimulus was presented without 
the visual grating. Following a 10-s interval after the presentation of the standard stimulus, the comparison stimu-
lus was presented together with the visual grating (Fig. 1c,d). After the presentation of the comparison stimulus, 
the participants orally reported the subjective roughness of the comparison stimulus on a 10-point scale (where 
1 corresponded to the smoothest and 10 to the roughest) compared to the standard stimulus, whose perceived 
roughness value was set at 5. Further, the participants reported the perceived direction of the visual motion (left 
or right) or the absence of movement. The fixation point was presented on the display, and the participants were 
asked to fixate on it during the trial. In Experiments 1–3, the reference marker for hand movements was also 
presented. The presentation of the tactile stimuli was terminated when the visual stimuli disappeared.

In Experiments 1–3, the participants were asked to place their right index finger on the leftmost side of the 
tactile stimulus and move their finger from left to right on the tactile stimulus to accompany the visual reference 
marker’s movement (active scan). In Experiment 4, the participants were asked to place their right or left index 
finger on the tactile stimulus and keep it still while the tactile stimulus moved leftward (passive scan).

We introduced three visual movement conditions: congruent (rightward visual motion with rightward hand 
movement), incongruent (leftward visual motion with rightward hand movement), and baseline (static visual 
stimuli with rightward hand movement). In Experiment 4, the leftward and rightward visual motions against 
leftward motion by the tactile stimuli (i.e., the spatiotemporal properties of touch corresponding to rightward 
hand movement) were defined as congruent and incongruent, respectively. Each participant performed 45 tri-
als in all (3 visual movement conditions × 5 tactile comparison stimuli × 3 repetitions) in Experiments 1–3, 
while Experiment 4 involved 120 trials in total (3 visual movement conditions × 5 tactile comparison stimuli × 8 
repetitions). The presentation orders of the visual movement conditions and tactile comparison stimuli were 
randomized for each participant and counterbalanced across them.

Before the main experiment, each participant completed a practice session. In Experiments 1–3 (active scan 
condition), the participants moved their hand over the standard stimulus three times. In Experiment 4 (passive 
scan condition), the participants conducted five trials with five different roughness stimuli in random order.

Experiment 2 recorded the participants’ hand movements during the presentation of the comparison stimuli 
for 1.7 s in each trial. An additional session was also introduced to measure the perceived velocity of the refer-
ence marker. The reference marker was first presented without the visual grating and subsequently presented 
with one of the grating stimuli in the same manner as in the tactile roughness estimation session (Fig. 1c). After 
the presentation of the visual stimuli, the participants were asked to orally report the perceived velocity of the 
reference marker in the second presentation (comparison) compared to that in the first presentation (standard, 
set as 5 on the scale) on a 10-point scale (where 1 corresponded to the slowest and 10 to the fastest). This session 
was performed for nine trials (three visual movement conditions × three repetitions).

Data analysis.  We analyzed all individual data for the perceived magnitude of roughness using the general-
ized linear mixed model (GLMM) with a Gaussian distribution. Since we focused on the effect of visual motion 
on the perceived roughness, the visual movement condition was set as a fixed effect (slopes), and the particle 
diameters of the abrasive papers and the participants’ responses were set as a random effect (intercepts). We per-
formed a one-way full-factorial analysis of variance (ANOVA) for fixed effects32. We further performed multiple 
comparisons with a corrected alpha level (p < 0.05) using the Holm-Bonferroni method to compare the fixed 
effect across visual movement conditions when the ANOVA showed a significant main effect.

In Experiment 2, we calculated the hand movement velocity in each condition for the trials with the P600-
mesh comparison stimulus having the same roughness as the preceding standard stimulus. We divided the data 
into 17 time bins (100 ms interval in each time bin) because the obtained hand movement velocities were not 
linear. We then performed a two-way repeated-measures ANOVA (3 visual movement conditions × 17 time 
bins). We also analyzed the perceived velocity of the visual reference marker with GLMM. The visual move-
ment condition was set as a fixed effect (slopes), and the participants’ responses as a random effect (intercepts). 
We then performed an ANOVA for the fixed effects. We further performed correlation analyses between the 
perceived roughness and the hand movement velocity or the perceived velocity of the visual reference marker 
in each visual movement condition. For the calculations of correlation coefficients, we averaged the perceived 
magnitudes of roughness across all comparison stimuli and trials in each visual movement condition. We also 
calculated the mean hand movement velocities across all time bins and the mean perceived velocity of the visual 
reference marker across the trials in each visual movement condition.

Analyses with GLMM were performed using R33 and RStudio34 with lme435 and lmerTest36. Other statistical 
tests were conducted using JASP37.

Results
The judgments of visual stimuli.  The proportions of correct responses for the judgments of the visual 
motion direction or absence of visual motion were above 0.98 (chance level = 0.33) in all experiments, showing 
that the participants perceived the visual motion correctly.
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Effects of visual motion on tactile roughness perception.  Experiment 1.  In Experiment 1, we pre-
sented a visual grating with a low spatial frequency (0.14 cycles per degree; Fig. 1c) in order to investigate the 
effect of visual motion without bodily cues or roughness information on tactile roughness perception. We asked 
the participants to evaluate the perceived roughness for each tactile comparison stimulus in comparison to the 
standard stimulus (Fig. 2a, left). The perceived roughness magnitudes averaged across the comparison stimuli 
in each visual movement condition were as follows: congruent: 5.16; incongruent: 5.00; baseline: 5.31 (Fig. 2a, 
right). Full-factorial ANOVA with the GLMM model showed a significant difference for the fixed effects of 

Figure 2.   Results for tactile roughness judgments in Experiments 1–4 (a–d). The left-hand panels show the 
mean roughness evaluation of each comparison stimulus relative to the standard stimulus. The horizontal axis 
denotes the particle diameter, such that larger values indicate higher physical roughness. The right-hand panels 
show the perceived roughness magnitudes averaged across the comparison stimuli. The small dots represent 
each participant’s data. The error bars denote the standard errors of the mean (N = 15). Asterisks indicate 
significant differences in the fixed effect with GLMM (p < 0.05).
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the visual movement conditions [F(2, 654) = 4.49, p = 0.012]. Multiple comparisons showed that the perceived 
roughness in the incongruent condition was smaller than in the baseline condition [M =  − 0.31, t(654) = 3.00, 
p = 0.003]. The differences were not significant between the congruent and baseline conditions [M  =  − 0.14, 
t(654) = 1.39, p = 0.17] or between the congruent and incongruent conditions [M = 0.16, t(654) = 1.61, p = 0.11].

Experiment 2.  The aim of Experiment 2 was to replicate the findings of Experiment 1. We thus repeated the 
same procedures as Experiment 1 for the other participants. The mean perceived roughness magnitudes were 
as follows: congruent: 5.05; incongruent: 4.84; baseline: 5.18 (Fig. 2b). Full-factorial ANOVA showed a signifi-
cant difference for the fixed effects of the visual movement conditions [F(2, 653.97) = 5.84, p = 0.003]. Multiple 
comparisons revealed a significant difference between the incongruent and baseline conditions [M =  − 0.34, 
t(654.1) = 3.38, p < 0.001], but not between the congruent and baseline conditions [M =  − 0.13, t(654.1) = 1.26, 
p = 0.21] or congruent and incongruent conditions [M = 0.21, t(654) = 2.12, p = 0.035]. These results clearly rep-
licate the findings of Experiment 1.

It has been reported that changes in hand movements induce differences in spatiotemporal information on the 
skin surface and affect tactile roughness perception38. We therefore analyzed the participants’ hand movement 
velocities when the participants hepatically scanned a comparison stimulus identical to the standard one. We 
divided the nonlinear hand movement velocity data into 17 time bins (100 ms interval in each time bin) (Fig. 3a, 
left-most). The two-way repeated-measures ANOVA with the factors of visual movement conditions (congruent, 
incongruent, and baseline) and time bins revealed a significant main effect of the time bins [F(16,224) = 65.667, 
p < 0.001, η2 = 0.75]. The main effects of the visual movement conditions [F(2, 28) = 1.45, p = 0.25, η2 = 0.000] 
and the interaction [F(16,192) = 1.32, p = 0.12, η2 = 0.004] were not significant. We also investigated whether the 
perceived velocities of the reference marker differed across the visual conditions. The mean perceived velocity 
of the reference marker in each visual movement condition was as follows: congruent: 5.04; incongruent: 4.82; 
baseline: 4.69 (Fig. 3b, left-most). The full-factorial ANOVA of the fixed effects of visual movement condition 
found no significant main effect [F(2,0.08) = 1.49, p = 0.23].

We also calculated correlation coefficients between the perceived roughness magnitude in each visual move-
ment condition and the hand movement velocities averaged across the time bins or the perceived velocity of 

Figure 3.   (a) Results for hand movement velocity in Experiment 2. The leftmost panel shows the mean hand 
movement velocities for each condition plotted for each time bin (0.1 s). The dashed line denotes the physical 
velocity of the visual reference marker. Right-hand panels show scatter plots of the perceived roughness 
magnitude against the hand movement velocity in each visual movement condition. (b) Results for the perceived 
velocity of the visual reference marker in Experiment 2. The leftmost panel shows the mean perceived velocity of 
the reference marker in each condition. The small dots represent each participant’s data. Right-hand panels show 
scatter plots of the perceived roughness magnitude against the perceived velocity of the visual reference marker 
in each condition. The error bars denote the standard errors of the means (N = 15).
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the visual reference marker. We found no significant correlations for either hand movement velocities (congru-
ent: r = 0.13, p = 0.64; incongruent: r = 0.21, p = 0.46; baseline: r = 0.15, p = 0.60) (Fig. 3a, right) or the perceived 
velocity of the visual reference marker (congruent: r =  − 0.26, p = 0.35; incongruent: r = 0.31, p = 0.26; baseline: 
r =  − 0.15, p = 0.60) (Fig. 3b, right).

Experiment 3.  This experiment investigated whether the visual effect on tactile perceived roughness observed 
in Experiment 1 also appeared for a different spatial frequency of the visual gratings. We presented a visual grat-
ing whose spatial frequency was five times higher (0.70 cycles per degree) than in Experiments 1 and 2 (Fig. 1d). 
The mean perceived roughness magnitudes were as follows: congruent: 5.41; incongruent: 5.38; baseline: 5.35 
(Fig. 2c). The full-factorial ANOVA did not show a significant difference for the fixed effects of the visual move-
ment conditions [F(2, 654) = 0.18, p = 0.84].

Experiment 4.  Experiment 4 tested whether the visual effect on tactile perceived roughness observed in Experi-
ment 1 also appeared with passive touch. The mean perceived roughness magnitudes were as follows: congruent: 
5.12; incongruent: 5.03; baseline: 5.06 (Fig. 2d). The full-factorial ANOVA did not find a significant difference 
for the fixed effects of the visual movement conditions [F(2, 1779) = 1.07, p = 0.34].

Discussion
Studies of visuo-tactile interactions with roughness perception have consistently shown that static visual 
roughness information cannot affect tactile roughness perception12. However, it has been reported that see-
ing hand movements without object roughness information modulated the performance of tactile roughness 
discrimination18. The current study investigated whether simple visual motion (i.e., sine wave gratings) without 
bodily cues or object roughness information affected tactile roughness perceptions of abrasive paper. Our find-
ings provide the first demonstration that simple, task-irrelevant visual movement modulates tactile roughness 
perception. We found that visual motion with low spatial frequency and horizontal direction opposite that of 
the active hand movement (the incongruent condition) induced smoother tactile roughness perception than 
the situation where the static visual stimulus was presented (the baseline condition) (Experiments 1 and 2). This 
visuo-tactile interaction was not observed when the visual motion had a high spatial frequency (Experiment 3) 
or when the participants touched the stimuli passively (Experiment 4).

Thus far, visuo-tactile interactions in motion perception have been demonstrated. The movement of visual 
gratings altered the perceived speed of the tactile grating movement39, and the visual motion of dot patterns 
affected motion direction judgments of tactile dot patterns even when the visual and tactile motion were pre-
sented in different positions40. The motion aftereffects were reported as transferring between vision and touch41. 
We should note that in our experiments, the participants were asked to report not only the perceived roughness of 
the abrasive paper but also the direction or absence of visual grating movement, so they needed to pay attention 
to the visual motion. Nonetheless, the effects of visual motion did not appear when the visual motion moved 
in the same direction as the hand movement or when the participants touched the abrasive paper passively. 
We could assume that the simple visuo-tactile interactions in motion perception cannot explain our findings.

One may argue that the effect of simple visual motion on tactile roughness perception is related to tactile 
memory42. In our experiments, the temporal interval between the standard and comparison stimuli was 10 s. 
During this interval, the memory of the standard stimulus decayed, and consequently the participants’ roughness 
judgments might shift toward a smoother value. We note that the presentations of the standard and comparison 
stimuli were identical in all experiments. If tactile memory affects tactile roughness perception, the effects should 
be observed equally in all conditions across all experiments. However, we found differences in tactile roughness 
perception between the incongruent and baseline conditions only in Experiments 1 and 2. These results cannot 
be explained by the effects of tactile memory. The involvement of attentional effects such as distractions from 
tactile stimuli and/or inhibition of return43 from visual to tactile stimuli may also be assumed. The presentation 
of the incongruent visual motion may induce an attentional capture and/or attentional distraction toward the 
visual motion and reduce or divert attention to tactile stimuli, whereupon the perceived roughness becomes 
smoother. It should be noted that the modulatory effects of visual motion on perceived tactile roughness were 
not observed in Experiment 3, where the spatial frequency of the visual stimuli was higher, or Experiment 4, 
where the tactile stimuli were presented passively, although the incongruent visual motion was presented. We 
can thus assume that the effects of visual motion on tactile roughness perception are not simply explained by 
attentional capture and/or attentional distraction.

One plausible explanation for the effect of visual motion incongruent with hand movement on tactile rough-
ness perception is the perceptual expectation of friction-like sensation on actual tactile inputs induced by the 
incongruence in motion direction between visual motion and hand movements. It has been demonstrated that 
the temperature of a blue object is felt to be warmer than a red object or an object touched with the eyes closed44. 
When we see a blue object, we spontaneously expect its temperature to be cooler, so our brain perceives the 
object to be warmer than it is when the perceived temperature of a blue object is not as cold as expected. It has 
also been shown that the presentation of visual motion incongruent with exploring hand movements (where the 
visual motion is slower than the hand movements) induces a pseudo-haptic friction sensation on the touched 
surface45. In our experiment, the participants moved their hand laterally while seeing horizontal visual motion 
opposite the hand movements. This incongruence might induce the exaptation/interpretation that the hand 
movements were not smooth because the touched surface was coarser, then because the touched surface had 
the same particle diameters across visual movement conditions, tactile roughness was perceived as smoother 
by this expectation of friction-like sensation in the incongruent condition versus the baseline condition. Such 
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a perceptual expectation may not occur in the congruent condition because there was no conflict in motion 
direction between visual motion and hand movements.

Another possible explanation is that hand movements were modulated by visual motion information. Changes 
in hand movement induce modulations of spatiotemporal information on the skin surface, which would con-
tribute to tactile roughness perception38. In fact, a minor effect of the mean velocity of hand movement on tactile 
roughness perception has been reported46. Another previous study47 also reported that tactile detection perfor-
mance was at chance level when the exploring speed of hand exceeded 20 cm/s. In the current study, although 
the averaged hand movement velocities were below 20 cm/s, the peak velocity of hand movements seemed to be 
stable at approximately 20 cm/s (Fig. 3a). This suggests that hand movement velocity affects tactile roughness per-
ception. However, we did not find any differences in hand movements between the visual movement conditions 
and no significant correlations between the perceived roughness magnitudes and the hand movement velocity 
in any visual movement condition (Fig. 3a). It thus appears that the changes in hand movement velocity did not 
play a critical role in the effects of visual motion on perceived tactile roughness, at least under our experimental 
conditions. It may also be possible that the perceived velocity of the reference marker for hand movements was 
modulated by the incongruent visual motion, for example, based on the visual motion contrast effect. However, 
we found no differences in the perceived velocity of the reference marker across conditions and no significant 
correlation between the perceived roughness magnitudes and the perceived velocity of the reference marker in 
any visual movement condition (Fig. 3b). The changes in the perceived velocity of the reference marker thus 
cannot explain the effect of visual motion on tactile roughness perception.

Consistent with previous findings regarding visuo-tactile roughness perception18,19, our results showed that 
the visual effects on tactile roughness perception were observed only with active touch (Experiments 1 and 2). 
The effects of simple visual motion on tactile roughness perception did not appear when the tactile stimulation 
was presented passively (Experiment 4). The inconsistency of the results between Experiments 1 and 2 and 
Experiment 4 can only be explained by the difference in the manner of touch (active vs. passive) because the 
stimuli and procedures were almost identical apart from the manner of touch across the experiments. Tactile 
surface discrimination performance was reported to be enhanced during active exploration relative to passive 
touch18, whereas tactile vibratory discrimination performance was degraded during active tactile exploration 
compared to a situation of no hand movement49. We might argue that active hand movements are associated 
with this tactile perceptual process, gaining information about the surface properties, so that our visuo-tactile 
interaction occurred only with active hand movements.

Our findings suggest that simple visual dynamic information and active body movements are key factors in 
inducing visuo-tactile interactions in roughness perception, in line with previous findings18,19. Some fMRI studies 
have reported shared brain activity for visual and tactile texture perception. The visual image of a body part being 
touched induced activation in the secondary somatosensory cortex (S2)50. Similarly, the observation of another 
person’s body being touched induced activation in the primary somatosensory cortices (S1) as well as S251. With 
respect to tactile roughness perception, stronger posterior S1 activations were observed when the participants 
saw dynamic visual images touching their own or others’ bodies during a tactile roughness discrimination task 
than when only the visual images were presented52. S1 was also reported to be activated by visual texture images 
related to tactile sensation (roughness), but not by those unrelated to tactile sensation (color)53. Furthermore, 
shared activations were reported for visual and tactile texture perception in a higher cortical region (the medial 
occipital cortex)54,55. These shared cortical processes in both the lower somatosensory and higher cortical regions 
might be involved in the visual modulations of tactile roughness perception observed here.

The effect of the incongruent visual motion on tactile roughness perception was observed only for the visual 
grating having a low spatial frequency (0.14 cycles per degree, Fig. 1c) and not for a grating with higher spatial 
frequency (0.70 cycles per degree, Fig. 1d) (Experiment 3). It has been demonstrated that motion detection sen-
sitivity was greater for higher spatial frequency gratings than for lower spatial frequency gratings at a relatively 
low velocity48. This implies that the visual motion of the gratings with a high spatial frequency was well per-
ceived in our experimental situation with the relatively low velocity of the visual gratings, and the differences in 
sensitivity to visual spatial frequency cannot explain the effect of visual motion on tactile roughness perception. 
We speculate that the expectation of friction-like sensation induced by the incongruence in motion direction 
between visual motion and hand movements may predominantly occur with low-frequency visual gratings. 
Further studies should directly investigate this point.

We should also note that the current study measured hand movements just in a lateral, one-dimensional space 
with a low-frequency visual grating, even though people can haptically explore objects in any direction in daily 
life. Future studies need to conduct detailed investigations of hand movements in two- or three-dimensional 
space while presenting visual gratings of different spatial frequencies. Furthermore, investigations of the effects 
of simpler visual motion stimuli like visual cursor movements are worth performing to test possible effects of 
simple visual motion without spatial frequency information on tactile roughness perception. These detailed 
manipulations of the properties of visual motion and hand movement could improve our understanding of the 
mechanisms underlying visuo-tactile integrations in roughness perception.

Ethics statement.  The experimental procedures were approved by the local ethics committee of Rik-
kyo University and the NTT Communication Science Laboratory and were performed in accordance with the 
approved guidelines and the Declaration of Helsinki. Informed consent was obtained from each participant 
before each experiment.
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