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Karol Baca-López1,2, Miguel Mayorga2, Alfredo Hidalgo-Miranda3, Nora Gutiérrez-Nájera4,

Enrique Hernández-Lemus1,5*
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Abstract

Metabolic transformations have been reported as involved in neoplasms survival. This suggests a role of metabolic
pathways as potential cancer pharmacological targets. Modulating tumor’s energy production pathways may become a
substantial research area for cancer treatment. The significant role of metabolic deregulation as inducing transcriptional
instabilities and consequently whole-system failure, is thus of foremost importance. By using a data integration approach
that combines experimental evidence for high-throughput genome wide gene expression, a non-equilibrium
thermodynamics analysis, nonlinear correlation networks as well as database mining, we were able to outline the role
that transcription factors MEF2C and MNDA may have as main master regulators in primary breast cancer phenomenology,
as well as the possible interrelationship between malignancy and metabolic dysfunction. The present findings are
supported by the analysis of 1191 whole genome gene expression experiments, as well as probabilistic inference of gene
regulatory networks, and non-equilibrium thermodynamics of such data. Other evidence sources include pathway
enrichment and gene set enrichment analyses, as well as motif comparison with a comprehensive gene regulatory network
(of homologue genes) in Arabidopsis thaliana. Our key finding is that the non-equilibrium free energies provide a realistic
description of transcription factor activation that when supplemented with gene regulatory networks made us able to find
deregulated pathways. These analyses also suggest a novel potential role of transcription factor energetics at the onset of
primary tumor development. Results are important in the molecular systems biology of cancer field, since deregulation and
coupling mechanisms between metabolic activity and transcriptional regulation can be better understood by taking into
account the way that master regulators respond to physicochemical constraints imposed by different phenotypic
conditions.
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Introduction

It is known that tumors could depend on energy production

pathways that are different from those of normal cells. These

unique pathways require in some cases the expression and

function of so-called tumor-specific enzymes. Some of these glycolytic

enzymes, as well as other modulators of tumor behavior, have

recently been analyzed in search for a clue that inhibition of such

enzymes or appropriate tuning of such modulators should deprive

tumors of energy, while leaving non-transformed cells unaffected.

Recent findings seem to point out to several so-called metabolic

transformations that permit neoplasms survival, thus suggesting a role

of metabolic pathways as potential pharmacological targets [1]. In

fact, preliminary experiments on animals with hepatocellular

carcinoma have indeed shown very encouraging results. It appears

that modulating the energy production pathways of tumors is

poised to become a substantial research area for cancer treatment

[2]. The role of perturbed local cell energetics in association with

cancer is not new. In the past, under several instances,

relationships seem to appear between metabolic variation and

tumorigenesis, spread and dissemination of malignancy. In recent

times a growing interest (or best a revival of it) has taken place and

evidence seem to suggest closer connections than those suspected.

For instance, the importance of glycolysis in cancer development

[3]. It has been discussed how a combination of agents that inhibit

both energy production and cell signaling may provide a novel and

effective approach to target pancreatic cancer effectively.

Thermodynamic studies at the transcriptional [4], epigenetic

[5,6], and metabolic [7] levels have pointed out to energetics as

playing a non-trivial role in the onset and development of

malignancy. In the particular case of this paper, we will focus on

the relationship between transcriptional de-regulation of a set of

genes that present transcription factor (TF) and metabolic activity

(some of them) while at the same time have been associated with

the presence of breast cancer. We will then study its regulatory and

thermodynamical behavior by means of gene expression data

obtained from genome-wide analysis experiments in RNA from
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biopsy-captured tissue of both primary breast cancer and normal

breast.

The role of gene interaction networks have also been extensively

mentioned in relation to cancer phenomenology, it has been

claimed that these network effects are, in fact much more

important than individual gene contributions [8]. Some of these

networks are indeed related to energetic and metabolic processes

[9], tyrosine-related deregulation [10], and immunity weakening

[11]. One usually think of tumor cells as having successful

mechanisms to evade normal control and cell regulation of

proliferation and apoptosis. Alterations in gene expression have

become a better (but far from completely) understood component

of normal development and disease progression. In particular, TFs

have become a promising target for therapy. In brief, gross

alterations in TF regulation would result in cascade triggering

affecting both the whole cell cycle and the metabolic activity thus

resulting in possible development of cancer. Many people have

come to conclude that cancer is a transcriptional disorder disease [12–

15], while, as we have mentioned other authors have recently

turned their attention to the metabolic and energetic component

[7,9], hence a possible connection between these two approaches

could be found in the energetic deregulation?transcriptional disorder

leading both to cascade triggering and metabolic disorders related

to neoplasm formation and development. For these reasons this

paper will attempt to model the role of TFs at both the energetics

(thermodynamic) level and the network approach.

Analysis

One of the cornerstones of contemporary genomic studies, in

particular of the systems biology approach, is data integration (DI).

DI is useful to make sense out of the extremely large corpus of

experimental evidence given, for instance by genome-wide

expression analysis. With the continuous advent of novel

techniques in high throughput molecular biology and the ‘omics

maybe just one thing has been established: Complex biological

systems need to be studied from several standpoints to unveil the

actual mechanisms behind them. In the present case, our aim is to

sketch some hints for a proposal of functional mechanisms behind

gene expression in cancer and cell energetics. The analysis work-

flow for the present study was as follows (see also Figure 1):

1. Statistical pre-processing of the microarray gene expression

data.

2. Determination of differentially expressed genes and statistical

significance assessment.

3. Data mining for functional features within the statistically

significant differential expression gene set.

4. Non-equilibrium thermodynamics calculations (Figures 2, 3, 4,

5).

5. Probabilistic inference of gene regulatory networks.

6. Pathway statistical enrichment analysis.

7. Search for common non-linear correlations found for human

MEF2C in this work (Figure 6) that are present also in a highly

curated A. Thaliana transcription factor database, indicating

modular conservation among species.

8. Gene Set Enrichment Analysis applied to the 1191 samples

expression matrix to look up for dysregulated functions and

pathways as a complement for the gene analysis in cancer and

metabolic pathways (Figure 7 and Figure 8).

Differentially expressed genes
After pre-processing (background correction, normalization and

summarization) of the samples [16] according to the RMA

algorithm [17], we proceeded to implement a statistical analysis by

using linear modeling (limma) to look up for significant differen-

tially expressed genes (full data matrix available upon request).

Empirical Bayes and other shrinkage methods are used to borrow

information across genes making the analyses stable even for

experiments with small number of arrays. This method allows very

general experiments to be analyzed as easily as single replica

experiments. The approach requires two matrices, the first one is

called the design matrix which gives a representation of the different

RNA targets which have been hybridized to the arrays. The

second one, or contrast matrix which allows the coefficients defined

by the design matrix to be combined into contrasts of interest.

Each contrast corresponds to a comparison of interest between the

RNA targets [18].

Data mining for metabolic and transcription factor
activity

Once we had a set of differentially expressed genes, we

proceeded to implement a data mining search over it. Search

parameters include the following constraints:

N Genes that are well known transcription factors, reported not

only by sequence homology but also by actual experimental

evidence.

N Genes that have been associated in the literature with the

presence of breast cancer (higher scores) or any other tumors -

liquid neoplasms were excluded- (lower scores).

N Genes whose protein products are related to cellular level

metabolic pathways.

N Genes whose transcripts possess a complete physicochemical

characterization, e.g. AffymetrixH calibration probes have

reported free energies of formation.

From the set of genes included in the GeneChipH under study

(namely Affymetrix HGU133-A) which were statistically signifi-

cant in their differential expression between tumors and controls,

we built sets that satisfy the aforementioned constraints. Then we

made the intersection set of all these. This set, that we will call

hereon a Core set consisted in four genes, namely MNDA,

POU2AF1, MEF2C and SMAD3. In what follows we will analyze

in detail the non-equilibrium thermodynamics of transcription as

well as the regulatory network structure of such genes within a

sample set of 1191 microarrays.

Non-equilibrium thermodynamic model
On general grounds, the finding of relevant genes associated

with a cancer phenotype is based on determining features such as

differential expression patterns. However, two important issues

that should be also taken into account besides the gene expression

levels, are the energetics within the cell and the physicochemical

properties of the biomolecules involved in transcriptional regula-

tion (transcription factors in particular). Both features could be

responsible for TF activity since they affect the mechanism behind

the activation of target genes according to previous specific cellular

energetic conditions.

An interesting trend in the transcriptional energetics in some

well-studied genes [19] is that, the values of the activation energies

are in general lower for genes that act as transcription factors and

higher for genes with no-known TF-activity. The physicochemical

meaning of this finding seem to point-out to transcription factors
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as genes whose expression is regulated by lower activation-energy

barriers. Since TF’s are involved in the transcriptional activation

of other genes, it is expected that they are synthesized first when

energy is started to being released by metabolic processes in the

cell. Transcriptional targets should, in general be synthesized later

and with higher activation energies. These higher saturation limits

for the chemical potentials of TFs suggest both stability and

spontaneity in the expression of these as compared to target genes.

In brief, since master TFs are needed in early stages of whole-

genome transcription (i.e. upstream in the regulatory cascade) in

order to kick-start such processes and, by taking into account that

transcriptional regulation has been characterized as an activated

process [20]; a hierarchy in the synthesis of mRNA templates (and,

further on, in their product proteins) is established in terms of the

corresponding activation energies -as given by their chemical

potentials- and of the availability of free energy in the cellular

environment. Then, by calculating thermodynamic properties for

TFs, it is possible to unveil the order or priority in their activation

which is dependent on energy accessibility.

Figure 1. Flow chart design for this work. It is noticeable that this is an hybrid model which incorporates both data-driven discovery (gene
expression analysis, gene-set enrichment and probabilistic network inference) and hypothesis driven inquiries (data mining and non-equilibrium
thermodynamics modeling).
doi:10.1371/journal.pone.0042678.g001

Figure 2. Gene Expression Intensity profile. We can notice strong stochasticity in the signals. However, a definite background tendency may be
identified, as it may be clearer when examining the concentration profile.
doi:10.1371/journal.pone.0042678.g002
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A non-equilibrium thermodynamical theory of gene regulation

has already been proposed [20]. As it was shown the thermody-

namic analysis of transcriptional regulation presents several

challenges, in particular associated with the fact that the cell is a

small system, in the sense that the role of fluctuations and noise plays

a rather fundamental role for its characterization. Systems outside

the domain of the thermodynamic limit are characterized by large

fluctuations and hence stochastic effects need to be taken into

account. An extremely important conundrum in contemporary

thermal physics lies in the connections between probability and

thermodynamics. A developed theory exists however, called

mesoscopic nonequilibrium thermodynamics (MNET) [21] which specif-

ically addresses the issue by considering the stochastic nature of the

time evolution of small non-equilibrium systems, in a context

which is extremely close to our work. To account for stochasticity

one needs to recognize that scaling down the description of a

physical system brings up energy contributions that are commonly

neglected in thermodynamical descriptions. The time-evolution of

these systems could be described as a generalized diffusion process

over a potential landscape in the space of mesoscopic variables.

This process is driven by a generalized mesoscopic-thermody-

namic force whose stochastic origin could be tracked back by

means of, for example, a Fokker-Planck-like analysis [21]. These

classes of formalisms are appropriated in the case of activated

Figure 3. mRNA concentration profile. In spite of strong stochasticity, we can notice some trends. For instance, there are some genes with a low
concentration and low variability while others present larger concentrations and variabilities.
doi:10.1371/journal.pone.0042678.g003

Figure 4. Transcriptional affinities profile, a strong stochastic behavior can be noted, however when considering the associated chemical
potentials of transcription (see Fig. 5) definite trends arise.
doi:10.1371/journal.pone.0042678.g004
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processes, for instance, a system crossing a potential barrier. The

complex biochemical reactions involved in transcriptional regula-

tion belong also to this category.

The present theoretical framework [20] shares similar ideas with

MNET (although treated in a less formal way due to present

unavailability of information regarding the non-local probability

distributions) and deals with intensity levels of gene activity as

measured in whole genome gene expression profiling on

GeneChips. It is based on the thermodynamics of hybridization

[22] that considers a basic two-state model that quantifies mRNA

concentrations by competitive hybridization [23,24]. This non-

equilibrium thermodynamical theory has been used to study the

role of transcription factors in the phenomena of anomalous

transcriptional bursts [19,25].

As is usual in non-equilibrium thermodynamics we will assume

that a generalized entropy-like function Y exists, which may be

written in the form [26,27]:

dtY~T{1½dtUzpdtv{
X

i

midtCi{
X

j

Xj8dtWj � ð1Þ

Eq. 1 is a formal extension of the Gibbs relation of equilibrium

thermodynamics. The quantities appearing are as usual: U is the

internal energy, T is the local temperature, p and v the pressure

and volume, mi is the chemical potential for the i-th mRNA

species. Xj and Wj are extended thermodynamical fluxes and

forces [26]. For a multicomponent mRNA mixture (under fixed

volume and pressure), the set of relevant variables consists in the

temperature T(~rr,t) and concentration of each gene species Ci(~rr,t)
as the slow varying (classical) parameters set and the mass flux of

these species ~WWi(~rr,t) and their corresponding forces Xi as fast

variables. These latter variables will take into account the presence

of inhomogeneous regions (concentration domains formed because

of the gene regulatory interactions) to correct the predictions based

on the local equilibrium hypothesis.

The non-equilibrium Gibbs free energy for a mixture of

i~1 . . . M, mRNA transcripts reads:

dtG~{YdtTz
X

i

midtCiz
X

j

Xj8dtWj ð2Þ

Quantities are local fields defined as usual, (e.g. T:T(~rr,t)), within

the mentioned formalism one can consider that a generalized

entropy-like function Y exists [26,27], also T is the temperature, p

the pressure, mi the chemical potential, etc.; Ci is the concentration

for species i, b~
1

RT
, with T the absolute temperature and R the

gas constant, DGi is the free energy of hybridization of i, Ai is a

parameter that sets the scale of intensity [22] corresponding to the

saturation limit CiwwebDGi ; Wj and Xj are extended thermo-

dynamical fluxes and forces that take into account non-local

effects.

If we recall from reference [20] given the relation between gene

expression intensity Qi and concentration Ci, we have that:

Ci~
Qi ebDGi

(Ai{Qi)
ð3Þ

After this, a proposal on the form for the extended fluxes and

forces should be given. Hence, we are proposing a system of linear

(in the forces) coupled fluxes with memory [20].

The constitutive equations are,

~WWj(~rr,t)~
X

k

ðt

{?
lWj,k~uue

(t’{t)

tW
j mj,k(~rr,t’)dt’ ð4Þ

~XXj(~rr,t)~

ðt

{?
lX

j e

(t’’{t)

tX
j ~WWj(~rr,t’’)dt’’ ð5Þ

The l’s are time-independent amplitudes,~uu is a unit vector in the

direction of mass flow (the nature of~uu will not affect the rest of our

Figure 5. Chemical potentials of transcription profile. As in the case of the concentration profiles we can notice some trends in spite of
stochasticity. There are some genes with a low concentration and low variability while others present larger concentrations and variabilities.
doi:10.1371/journal.pone.0042678.g005
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description, since we will be dealing with the magnitude of the

mass flux D~WWj D) and t’s are relaxation times considered path-

independent scalars. Since we have a linear relation between

thermodynamic fluxes and forces some features of the Onsager-

Casimir formalism will still hold.

Irreversible coupling is given by Eq. 4 and 5, nevertheless due to

the fact that actual transcription measurement experiments are

made either on homeostasis (steady state) settings or within time

series designs with intervals several orders of magnitude larger

than the associated relaxation times (which are of the order of a

few molecular collision times) it is possible to take the limits tWj ?0

and tX
j ?0, then the integrals become evaluated delta functions to

give:

~WWj(~rr,t)~~uu
X

k

lWj,k mj,k(~rr,t) ð6Þ

~XXj(~rr,t)~lX
j
~WWj(~rr,t) ð7Þ

Also due to the spatial nature of the experimental measurements

(either RNA blots or DNA/RNA chips measure space-averaged

mRNA concentrations) it is possible to work with the related scalar

quantities instead, to give:

Wj(~rr,t)~
X

k

lWj,k mj,k(~rr,t) ð8Þ

Xj(~rr,t)~lX
j Wj(~rr,t) ð9Þ

Substituting Eq. 8 and 9 into Eq. 2 one gets:

dtG~{YdtTz
X

i

midtCiz
X

j

X
k

lWj,k mj,k

� �
dt lX

j Wj

� �
ð10Þ

If we assume that the generalized transport coefficient lX
j is

independent of the flux Wj we can write:

dtG~{YdtTz
X

i

midtCiz
X

j

X
k

lWj,k mj,k

� �
lX

j dtWj ð11Þ

Or in terms of the transcription regulation chemical potentials mj,k

dtG~{YdtTz
X

i

midtCiz

X
j

X
k

lWj,k mj,k

� �
lX

j lWj,kdtmj,kzmj,kdtl
W
j,k

� � ð12Þ

In the constant transport coefficient approximation, Eq. 12 reads:

dtG~{YdtTz
X

i

midtCiz
X

j

X
k

(lWj,k)2lX
j mj,k dtmj,k ð13Þ

Defining generalized transport coefficients Lj,k~
(lWj,k)2lX

j

2
.

If we change variables in equation 2 from concentration to gene

expression intensity (by using equation 3) and introduce the fluxes,

forces and generalized transport coefficients, we could rephrase it

as follows:

dtG~{Y dtTz
X

i

C i dtQiz
X

j

X
k

Lj,k dtm
2
j,k ð14Þ

The resulting affinity of transcription i.e. the thermodynamic conjugate

variable to the probe intensity Qi is given by:

Ci~
Ai

bQi Ai{Qið Þ ð15Þ

The quantity Ci plays the role of a chemical affinity for the gene

expression process. As gene expression is a process that follows

thermal activation kinetics, Ci is a temperature dependent

variable. This dependency shows up both explicitly (by the value

b) and also due to indirect temperature dependency given by the

saturation constants Ai. Lj,k are coefficients related to gene cross-

Figure 6. Inferred gene regulatory network [10,16]. Links colored
in red represent interactions associated (in the literature, from data
mining) with breast cancer, yellow links are interactions associated with
other types of cancer, turquoise links are interactions associated with
metabolic disorders and navy blue links are otherwise. We could notice
that some genes are regulated by more than one of these transcription
factors as is the case with RAD52, ADH1C, OIP5, ELK4, PEX10, GAA,
FTHP1 and ADAP1 which are co-regulated by MEF2C and SMAD3; of
STMN1, STAU1 and the c10ORF10 transcript which are co-regulated by
SMAD3 and MNDA; of CSH1, FANCI, FHIT, CDKN2A, PRC1, CENPF,
MAP3K1, BNIP3, HCLS1, TAF15, PCBP2, SPAI7, SLC38A1, PASK,
HIST1H2BD, POLR2I, UPK3B, EHD1, PRICKLE3, LOC91316, ANAPC2,
LST1, RRP12, c9ORF6, BRP44, CLEC4A, TMEM194A, TPO3B, HIST1H2AM
and ZFP37 which are co-regulated by MEF2C and MNDA; and by
c14ORF1, DOK5, AFF1, and CADM4 which are co-regulated by MEF2C
and POU2AF1. In the case of these double-regulatory interactions there
are some cases in which both regulatory interactions are associated
with a certain phenotype and other cases in which different (or no)
phenotype is associated for each link.
doi:10.1371/journal.pone.0042678.g006
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regulation and mj,k are the chemical potentials associated with

transcriptional regulation [19,20].

The related chemical potential of transcription [20] is given by:

mi~
RT (Ai{Qi) e{bDGi

Qi

ð16Þ

Since we have reliable experimental data for the expression levels

Qi from 1191 whole-genome gene expression experiments, it is

possible to calculate the gene transcriptional affinities and

chemical potentials for the set of genes of interest from equations

15 and 16 (we also have good values for the constants Ai taken

from spike-in experimental data provided by the gene-chip

manufacturer). Since these experiments have been made without

the use of any knock-out or knock-down techniques (i.e. all genes are

subject to their corresponding regulatory interactions), the gene

expression levels Qi used to calculate the chemical potentials and

transcriptional affinities have already incorporated (although in an

implicit way) the effect of transcriptional regulation as given by the

gene regulatory mechanisms depicted in the third term at the r.h.s.

of equation 14.

Non-linear correlation inference of regulatory networks
To deconvolute a Gene Regulatory Network (GRN) related to

primary breast cancer we applied a methodology based on a local

pattern-sharing measure as surrogate to actual gene-gene interac-

tions to our dataset(see Materials and Methods - } Experimental

datasets). The goal of deconvolution methods is inferring GRNs

based on statistical dependencies within the joint probability

distribution of gene expression for all genes within a given gene set.

Typical means to reach this goal consist in the quantification of the

new information content that arise when we look at the full joint

probability distribution when compared to a series of successive

independence approximations. According with the method given

in reference [10], we calculated measures of non-linear correlation

between the normalized expression values (22238 probesets) and

the core set of 4 genes. Threshold-analysis was made on such

measures to look up for statistical significance in the inference and

based on their IBS index value we selected a set of 712 genes. The

optimal network (within the given approximations) was found by a

Maximum Entropy Method as is shown elsewhere [10] and was

validated by several (mostly in silico and database-mining) methods

[16].

Biochemical pathway statistical enrichment analysis
Reactome [28] biological/biochemical pathway over-represen-

tation analysis was performed to determine the Reactome

pathways in which gene IDs in our list were strongly enriched.

Reactome is a an open-source, open access, manually curated and

peer-reviewed pathway database that may help to understand the

biological context of genomic data. Significance assessment was

also made by means of ‘urn model’ hypergeometric distribution

tests.

Materials and Methods

Experimental datasets
A curated set of 1191 whole genome gene expression profiles

was generated [16] from datasets for several publicly available

Figure 7. Cancer related deregulated pathways. Statistical enrichment of deregulated pathways within our differential gene-sets include
canonical cancer pathways such as DNA damage repair, AMPK and RAS. Molecules marked with a red star correspond to differentially expressed
genes in the cancer/control contrast.
doi:10.1371/journal.pone.0042678.g007
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experiments deposited in the GEO database [29]. These

experiments were performed in total mRNA extracted under the

GPL96 protocol [30] which is based on the Affymetrix HGU133A

microarray GeneChip platform. In the case of experiments

including some kind of treatment or cell modification we only

took the unaltered samples to include them in our analyses. Details

are given in Table 1. Further information is available in the

corresponding GEO entries and/or may be available upon

request. In the case of human mRNA samples taken directly

from organ tissue (by a biopsy) and not from cultured cell-lines, it

is extremely difficult to design time-course experiments. Thus, in

order to study a surrogate model of transcriptional de-regulation,

we proposed the following alternative to look for correlations:

After quality control pre-processing, background correction and

normalization of the microarrays, the samples were prioritized

(ordered) according to their BNIP3 (Affymetrix-probe ID

201848_s_at) expression level. BNIP3 is a well known marker of

progression and malignancy in primary breast cancer that

correlates both with lab tests and clinical trials [31]. By ordering

the independent, steady-state samples in this manner it is now

possible to look up for correlation patterns of gene expression.

Figure 8. Metabolism related deregulated pathways. Statistical enrichment of deregulated pathways within our differential gene-sets include
metabolic pathways. For instance, both branches of the cholesterol biosynthesis pathway are affected. Molecules marked with a red star correspond
to differentially expressed genes in the cancer/control contrast.
doi:10.1371/journal.pone.0042678.g008

Table 1. GEO [29] identifier and references for the Microarray
experiments used here, first column is GEO key ID, second and
third columns are the corresponding number of samples
cases/controls resp.

GEO ID Series Tumors Controls Reference

GSE1456 159 [68]

GSE4922 249 [69]

GSE7390 198 [70]

GSE2603 99 [71]

GSE2990 125 [72]

GSE3494 251 [73]

GSE1561 49 [74]

GSE15852 43 [75]

GSE9574 15 [76]

GSE6883 3 [77]

Fourth column is the reference entry.
doi:10.1371/journal.pone.0042678.t001
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Statistical and Computational tools
Microarray pre-processing of the data was performed by using

the affy library in BioConductor running under [R] on a 128 Gb

RAM 8-Power5+ dual core-processor, symmetric multiprocessing

(SMP) unit by IBM. Whereas all statistical tests were performed on

a Dell Precision Series 8 Gb RAM QuadCore Workstation by

using limma package in [R]/BioConductor. Information theoret-

ical measures (Information Based Similarity) were calculated with

the ibs program. Such information theoretical measures were used

to infer regulatory interactions between TFs and target genes, i.e.

to deconvolute the associated gene regulatory network [10,16]. As

is thoroughly discussed in reference [10], genes highly correlated

in their expression patterns are likely to be transcriptional

partners. Since dynamic correlations between genes and their

TFs are of a nonlinear character, we have used mutual-

information related measures instead of linear measures such as

Pearson’s correlations and covariances. Graphical depiction and

network analyses were performed with Cytoscape. Non-equilibri-

um thermodynamics calculations and other analyses were

performed with custom [R] and shell scripts. Pathway enrichment

analysis was made by means of hypergeometric testing of

databases by Reactome [28]. Gene Set Enrichment Analyses

were performed with the GSEA Java library [32].

Results

Core regulation genes
From the set of differentially expressed genes, data mining

techniques were implemented to determine a set of genes that at

the same time were involved in metabolic activity at the cell level

and/or in cancer; and possess experimental data to accurately

determine the parameters involved in our non-equilibrium

thermodynamic model. We have then come to investigate cell

energetics in relation with mRNA expression of the following TFs:

MNDA, POU2AF1, MEF2C and SMAD3.

MNDA acts as a transcriptional activator/repressor in the

myeloid lineage [33]. Also plays a role in the granulocyte/

monocyte cell-specific response to interferon and stimulates the

DNA binding of the transcriptional repressor protein YY1 [34]. It

belongs to a family of P200 proteins that inhibit cell cycle

progression and modulates cell survival. POU2AF1 is a transcrip-

tional coactivator [35–37] that specifically associates with either

OCT1 or OCT2. It is located in a so-call Tumor suppressor region in

11q22-23 and it is suspected to modify non-coding effects on gene

expression [35]. POU2AF1 amplification has been detected in

multiple myeloma cells and this copy number variation also

reflected in over-expression at both the mRNA and protein levels

[37]. MEF2C is a transcription activator which binds specifically to

the MEF2 element present in the regulatory regions of many

muscle-specific genes. In fact, p38, ERK5, and MEF2C itself have

been recently described as novel downstream Brk (PTK6) effector

pathways [38] supposedly playing a role in primary breast cancer.

The actual mechanism seems to be related with ERK5 being an

input to cyclin D1 transcriptional up-regulation, maybe following

MEF2C-dependent up-regulation and recruitment of c-JUN to the

cyclin D1 promoter [38]. MEF2C is a transcriptional enhancer

whose biological function in human breast cancer is still unknown.

However, it has been shown that its chromosomal localization is

assigned to the so-called mammary cancer susceptibility 1 locus (Mcs1)

on chromosome 2q1 segregating with the sensitivity to mammary

cancer development in a murine model [39]. SMAD3 is a

transcriptional modulator activated by TGF-b (transforming

growth factor) and activin type 1 receptor kinase. TGF-b induces

a cytostatic response in most normal cell types, but in cancer cells

promotes metastasis, and its high expression is correlated with

poor prognosis [40]. Knocking-off experiments have showed that

the TGF-b-induced SMAD3-mediated transcriptional response,

was mitigated and enhanced by SMAD3 and SMAD2 knockdown,

respectively, and this could be directly correlated with divergence

in the regulation of tumor angiogenesis in vivo [41].

In view of the importance of these genes in the onset and

development of breast cancer, we have decided to investigate both

the energetics and connectivity of their functions in both normal

and neoplastic cells. We will discuss the role of TF activity,

activation energies and chemical potentials of transcription as

outlined and we will suggest some routes to follow to further

understand the role of metabolic changes (both at energetics and

pathways level) in breast malignancy.

Thermodynamic analysis of MNDA, POU2AF1, MEF2C and
SMAD3 transcription factors

The role of integrative analysis in modern (high throughput)

genomics is to present a basis for hypotheses generation that may

be tested in more specific and detailed studies. In this sense our

non-equilibrium thermodynamics calculations (plus some assump-

tions regarding energy release within the cell) supply a means to

try to unveil causal structure of the regulatory interactions from

correlation analysis (such as the network study presented here),

thus providing a more appropriate frame for study.

The parameters needed to calculate the intensity-dependent

concentration, the expression affinity and the chemical potential of

transcription for MNDA, POU2AF1, MEF2C and SMAD3 are

shown in Table 2 and the explicit calculations are in Table 3. If we

look at the gene expression profiles in the surrogate model

(Figure 2), we notice the presence of stochastic components with a

high variance. In the mRNA concentration representation

(Figure 3) although we retain stochastic evolution, it is easier to

notice differences between the concentrations for the considered

transcripts. Lowest concentration values of MEF2C are present in

almost all stages of tumor progression. This gene also showed the

lowest variance between sampling points as it could be seen in

figure 3. Even if POU2AF1 expression levels were almost as low as

those of MEF2C, its variance was much greater and in some

instances mRNA concentrations doubling its baseline level are

present. SMAD3 was in general found to present medium

expression levels and medium variance. MNDA showed the highest

concentrations (about 3.5 times that of MEF2C in some instances)

and also showed the greater variability. With regards to

transcriptional affinities (Figure 4) similar comments can be made

as with expression levels (these are after all thermodynamic conjugate

variables). We can however notice higher variability around the

mean behavior which points out to the possible presence of

activation processes taking place. If we consider that transcriptional

affinity and transcription level are conjugate (i.e. its product is an

energy term), the fact that affinities (for example in the case of

MNDA) present a pattern of variance different from that of the

expression levels, imply the existence of energy fluctuations that may

be due to activation processes. This assertion becomes clearer

when we consider the time evolution of the chemical potential

(Figure 5). The chemical potential associated with MNDA

transcription presents the lowest values (thus it is easier to

synthesize because of its lower activation energy barrier) as well as

the higher variance. SMAD3 also presented relatively low chemical

potentials and medium values of variance. In accordance with

mRNA concentration profiles, POU2AF1 showed medium chem-

ical potentials but large variance and MEF2C showed the largest

mean values of chemical potentials but a lower variability.
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Non-linear correlation networks
The results of the inferred non-linear correlation network

centered in the transcriptional regulation partners for the core

regulation genes could be seen in Figure 6. Indirect correlations

between these 4 genes were not pruned (e.g. by using the Data

Processing Inequality [42]) since it is precisely through these links

(and their corresponding regulatory and signalling pathways) that

the interconnection between metabolism and transcriptional

regulation is more clear, as it may be evident later. Referring to

Figure 6, it may be noticed that genes participating in the

interactions represented by links colored in red have been related

in the literature with breast cancer, whereas yellow links are

associated with other types of cancer-related genes; turquoise links

are interactions associated with genes in metabolic disorders and

navy blue links are otherwise (complete list of references available

upon request). Some genes are transcriptionally correlated with

more than one of these transcription factors, as is it can be seen in

the network and noticed in the caption of Figure 6. Hence, close to

a half (about 45% indeed) of the regulatory interactions found in

this network analysis have been reported to play a role either in

cancer, metabolic deregulation or both.

The structure of the GRN (Figure 6) resembles a dual-control

loop centered in core genes MEF2C and MNDA (and its targets-

interactors) that may be fine-tuned by the action of POU2AF1,

SMAD3 and its associated genes. The pathway analysis performed

(see the following subsection) presents also indirect evidence

pointing in this direction. However, conclusive assertions could

only be made after more detailed and specific studies in regulatory

dynamics are performed by means of actual time-course exper-

iments.

The somewhat special role of MEF2C related interactions is

worth-mentioning, in particular with regards to the regulatory

effects of its MADS-box structure. It was previously shown that

MADS-box gene transcription factor is a common regulator

extremely conserved across plant and animal kingdoms. This is

particularly the case in either H. Sapiens and A. Thaliana. In

particular, from our core genes, human MEF2C belongs to the

MADS-box genes family [43]. A representative short aminoacid

sequence (60 aa) from MEF2C human protein (MEF2C_Hs) was

taken from reference [43] and used for searching conserved

domain sequences within A. Thaliana’s MADs family members,

by using NCBI Blast protein tool [44]. Protein conserved domains

from Putative MADS-box family transcription and Mef2 myocyte

enhancer factor 2 families sharing domain-architecture were

found, 50 and 101 respectively (E-value v1E-07).

From the inferred gene regulatory network, MEF2C target

genes: TAF12 and POLR2I correspond to be Arabidopsis homolog

genes with TAF12 and NRPB9A/B. The one-to-one gene

interaction in human between MEF2C and POLR2I founded in

the present work corresponds to 25 MEF2C-MADS-box con-

served domain genes and NRPB9A interactions as results from a

search in the Arabidopsis thaliana root transcriptional interactions database

[45].

Pathway analysis
In order to sketch the role of specific biochemical sets of

reactions related to energetic and transcriptional deregulation

processes in the regulatory networks just referred, we performed

pathway-related analyses in the list of 712 genes obtained from the

IBS calculations. In particular, we made a pathway enrichment

analysis for the statistical over-representation of pathways in this

gene set.

Significantly enriched pathways include cancer related path-

ways such as Activation of ATR in response to replication stress, Association

of RAD51 with RAD52:DNA double-strand break ends, as well as

metabolic activity related pathways like Cholesterol biosynthesis and

Addition of galactose by beta 4-galactosyltransferases. With regards to the

activation of ATR in response to replication stress [46]; ATR

belongs the PI3/PI4-kinase family, and is most closely related to

ATM sharing similarity with rad3, a cell cycle checkpoint gene

required for cell cycle arrest and DNA damage repair in response

to DNA damage [47]. This kinase has been shown to phosphor-

ylate checkpoint kinase CHK1, checkpoint proteins RAD17, and

RAD9, as well as tumor suppressor protein BRCA1 [48].

Deregulation of the ATR signaling pathway has been related

with various instances of breast cancer development [49–51].

Figure 7 shows some prototypical cancer pathways that are

deregulated (abnormally expressed genes are marked with a red

star) in the 1191 whole-genome gene expression experiments

analyzed. Those genes are transcriptionally correlated with one or

more of the genes in our core set as it could be verified in a closer

analysis of the network depicted in Figure 6 (Cytoscape .cys file for

Figure 6 available upon request). We can see that mRNA levels for

CDC25A, CDC25C, BRCA1, PRKAB2, S6K, ROCK1 and

RASGRP2 are highly correlated with MEF2C expression;

whereas levels of RAD51, PRKAA2, HRASLS2 correlate with

MNDA. ROCK2 is correlated with SMAD3. Finally expression of

RAD52 is associated both with those of MEF2C and SMAD3.

Transcriptional deregulation also occurred in genes participat-

ing in metabolic pathways, for instance, Figure 8 depicts the

cholesterol biosynthesis pathway, again genes marked with a red

star are abnormally expressed. Cholesterol biosynthesis and in

particular the so-called Mevalonate pathway is a central process in

the metabolic functioning: the starting point is Acetyl CoA which

is a product of the metabolism of namely any source of energy -

being carbohydrates, fats or proteins-. In the mevalonate branch of

the cholesterol biosynthesis pathway (depicted in Figure 8),

Table 2. Thermodynamic parameters needed for the
calculations of Ci(Qi), Ci(Qi) and mi(Qi) at physiological
temperature (T~37oC or, 310.15 K).

Gene DGi (kcal/mol) Ai b (mol/kcal)

MNDA 433.97 3105 1:622507 | 10{6

POU2AF1 473.5 4684 1:622507 | 10{6

MEF2C 472.81 5110 1:622507 | 10{6

SMAD3 465.08 4497 1:622507 | 10{6

doi:10.1371/journal.pone.0042678.t002

Table 3. Thermodynamic calculations of Ci(Qi), Ci(Qi) and
mi(Qi) at physiological temperature (T~37oC or, 310.15 K).

Gene Ci (Qi ) Ci(Qi ) mi(Qi )

MNDA 1:00070437 Qi

3105{Qi

1:91370515|109

Qi (3105{Qi )
615896:344 (3105{Qi )

Qi

POU2AF1 1:00076855 Qi

4684{Qi

2:88689047|109

Qi (4684{Qi )
615856:843 (4684{Qi )

Qi

MEF2C 1:00076743 Qi

5110{Qi

3:14944712|109

Qi (5110{Qi )
615857:532 (5110{Qi )

Qi

SMAD3 1:00075488 Qi

4497{Qi

2:77163673|109

Qi (4497{Qi )
615865:256 (4497{Qi )

Qi

Qi is the corresponding gene expression intensity value, concentration [ = ]

picomolar, chemical potentials [ = ] | 10{6 kcal/mol.
doi:10.1371/journal.pone.0042678.t003

The Role of Master Regulators in Breast Carcinomas

PLOS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e42678



HMGCS1 and HMGCR proteins are enzymatically involved in

the synthesis of mevalonate. Our analysis has shown that both

genes HMGCS1 and HMGCR are abnormally regulated at the

transcriptional level. Also in the reaction from D-isopentyl 5

pyrophosphate to trans-trans farnesyl pyrophosphate an auxiliary

enzyme GGPS1 is abnormally expressed. In the Lathosterol

synthesis both TM7SF2 and NSDHL present affected mRNA

expression levels. Expression levels of HMGCS1, HMGCR,

GGPS1, NSDHL, TM7SF2 are all correlated with MEF2C

expression in our analysis. It is noticeable that deregulation of the

mevalonate pathway -and in particular of HMGCR - has been

recently correlated with primary breast carcinoma [52]. Hypoth-

eses relating metabolic dysfunction of the mevalonate pathway

with primary breast cancer is also supported by the effect that

cholesterol-controlling drugs have in patients with breast cancer

[53,54].

Further insight in the mechanisms that connect transcriptional

deregulation in cancer and metabolic abnormalities could be

found if we bring to attention a set of genes, consisting in

PRKAA2, PRKAB2, CREB1, MAP3K1, DUSP4, TLR3, JUN,

UBE2V1, TLR2 and MEF2C. All these genes turned out to be

involved in the enrichment analyses both in the case of cancer-

related pathways as well as metabolism-related pathways.

PRKAA2 and PRKAB2 are AMPK subunits, CREB1 is a MAP

kinase target and the rest are related with Toll-like receptor

activity. Hence, kinase activity and signalling dysfunction seem

likely to play a central role in cancer development, well beyond the

Table 4. Main REACTOME [28] pathways enriched in differentially expressed genes.

Un-adjusted probability REACTOME Pathways Gene ID

1.13E-03 Activation of ATR in response to replication stress RFC2, RAD17, CDC25A,

ORC5L, CDC6, CDC25C,

MCM4

2.53E-03 Cholesterol biosynthesis HMGCR, HMGCS1, TM7SF2,

NSDHL, GGPS1

2.81E-03 G2/M Checkpoints RFC2, RAD17, CDC25A,

ORC5L, CDC6, CDC25C,

MCM4

5.92E-03 Phospholipase C-gamma1 binds to the activated EGF receptor PLCG1, EGFR

5.92E-03 EGFR activates PLC-gamma1 by phosphorylation PLCG1, EGFR

5.92E-03 Active PLC-gamma1 dissociates from EGFR PLCG1, EGFR

5.92E-03 EGFR interacts with phospholipase C-gamma PLCG1, EGFR

1.48E-02 Myosin regulatory light chain phosphorylation by ROCK ROCK1, ROCK2, MYH10

1.86E-02 PLC-gamma binds to the active receptor PDGFRB, PLCG1

1.86E-02 PLC-gamma hydrolyses PIP2 PDGFRB, PLCG1

1.86E-02 ROCK activation by Rho ROCK1, ROCK2

1.86E-02 CREB phosphorylation through the activation of Adenylate Cyclase ADCY8, CREB1

2.07E-02 DNA Repair POLB, APEX1, RFC2,

POLR2F, POLR2I, BRCA1,

FANCI, RAD51,RAD52,

POLR2C

2.43E-02 MAPK targets/Nuclear events mediated by MAP kinases DUSP4, JUN, CREB1,

MEF2C

2.70E-02 Crk binds to the active PDGF receptor PDGFRB, CRK

2.70E-02 LIM kinase phosphorylation by ROCK ROCK1, ROCK2

2.77E-02 CREB phosphorylation through the activation of CaMKII NEFL, GRIN1, CREB1

2.78E-02 Cell Cycle, Mitotic BUB1B, RFC2, CEP250,

AURKA, CDKN2A, ANAPC2,

ORC5L, CENPF, TYMS,

MCM4, PSMD14,CKS1B,

DNA2, GMNN, CCNE2,

CDC25C, CDC6, ODF2,

CDC25A, ERCC6L, GORASP1

3.15E-02 E2F mediated regulation of DNA replication CDC25A, ORC5L, CDC6,

TYMS

3.67E-02 Interaction of MyoD-E protein with MEF2 MYOD1, MEF2C

doi:10.1371/journal.pone.0042678.t004
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usual RAS-ERK pathway. For more information, please refer to

Table 4.

Gene Set Enrichment Analysis
Previous analysis in this work were mostly derived from the list

of differentially expressed genes i.e. single-gene analysis. In order

to include the collective behavior of genes within pathways and

functional modules, we performed Gene Set Enrichment Analysis

(GSEA) to determine whether members of gene sets S tend to

occur at the top or bottom within a ranked list L (genes showing

largest difference between phenotypes) [55,56]. GSEA was then

applied to our expression data set (1191 samples) considering two

sub-collections: Canonical Pathways (CP) and Cancer Modules

(CM). Relevant parameters used for both sub-collections were the

following: permutations - 1000, scoring scheme - weighted and metric -

Signal2Noise.

Among the resulting statistically significant enriched gene sets

(Nominal p-value v0:05 and FDR q-value v0:25), we obtain 77

pathways and 38 modules from CP and CM respectively. Table 5

shows some selected modules and pathways up-regulated in cancer

that also involve genes with metabolic activity. These selected

over-represented gene sets support our results from previous

section in which we found deregulation of other genes beyond

oncogenes and tumor suppressor genes (i.e. metabolic genes)

promoting changes at the transcriptional level.

Enrichment plots for selected cancer modules, in particular

modules 159 (Nom. p-value = 0.002 and FDR = 0.148) and 273

(Nom. p-value = 0.002 and FDR = 0.158) are shown in Figure 9-A,

B. Additionally, Figure 9-C, D show enrichment plots for cancer-

metabolism related pathways i.e. mTOR (Nom. p-value^0.0 and

FDR = 0.191) and integration of energy metabolism (Nom. p-

value = 0.008 and FDR = 0.219) pathways. Within module 159,

isoforms members from the RAS oncogene family (RAB10,

RAB11A, RAB13, RAN, etc.) were found, additionally, genes

CDC42 (not shown) and RHOA including in DNA damage (ATP

dependent), Rho pathway and cell cycle progression (see Figure 7).

Module 273 includes genes from the ATP synthase family, related

to metabolic pathways, oxidative phosphorylation, CBFB and

FOXO4 genes that participate in the regulation of nuclear

SMAD2/3 signaling, MEF2C and POLR2 isoforms in the DNA

repair pathway dependent on ATM. In module 346, ARSA,

ASAH1, B4GALNT1 genes involved in metabolism of lipids and

lipoproteins, B4GALNT1, phospholipase members of families A2,

C and D (participates in mTOR pathway) were found.

Core Gene Validation
Since the present work is a theoretical-computational analysis

based on several sources for experimental data, no wet-lab

validation on biological samples could be done, due to lack of sample-

availability. However, an indirect validation procedure is per-

formed by means of data mining for experimental results in the

literature supporting our findings. For instance, MEF2C was

identified as a candidate gene/molecular marker for the transition

from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma

(IDC) and evaluated by RT-PCR. In reference [57], patient-

matched DCIS/IDC samples were used to test expression profiling

in Affymetrix oligonucleotide microarrays (GeneChip HG U133A

and HG U133 plus 2.0). MEF2C was shown to be up-regulated in

IDC compared with DCIS (p-valuev0.01 and FDR v0.01). The

average fold change for MEF2C in IDC vs DCIS was 2.03+1.41

(see Table 6). In order to validate the previously mentioned result,

real time PCR was performed in tumor specimens T796, T661,

T787 and T808 showing also up-regulation of MEF2C and in situ

hybridization was done to confirm its cellular specificity. in situ

hybridization showed that MEF2C is present in the cytoplasm of

DCIS and IDC, indicating its expression in epithelial tumor cells

[57].

Additionally, in ref. [58], protein expression of MEF2C in breast

cancer cell lines was examined. Cellular lysates from exponentially

growing MCF-10A, HMEC, MCF-7, T47D, ZR-75-1, and

SKBR3 cells were analyzed by Western blot with antibodies

specific to MEF2C. MEF2C expression in normal mammary

epithelial cells and all breast cancer cell lines examined was

observed. Results from this work suggest that Brk inputs to p38

MAPK-dependent activation of MEF2 transcription factors in

breast cancer cells.

In a study of differential expression in human breast epithelial

cell lines irradiated with low doses of high linear energy transfer

radiation, and treated with estrogen assessed with cDNA

expression arrays, activity of MNDA was analyzed. MNDA showed

a high level of altered expression (see table 6) and it was confirmed

by gene-specific semiquantitative reverse transcription polymerase

chain reaction, followed by Northern blot analysis. The results

showed that the mRNA expression patterns for MNDA was

consistent with the expression pattern seen on the array. MNDA

Table 5. Gene sets from the Molecular Signatures Database (MSigDB) corresponding to 2 of the 5 major collections [56].

Collection No. gene Enriched sets Nominal FDR NES

sets p-value q-value

C2 Curated 3272

Canonical Pathways 880 mTOR pathway 0.0 0.191 1.72

Rho pathway 0.004 0.197 1.74

Integration of energy
metabolism

0.008 0.219 1.783

Metabolism of proteins 0.0 0.188 1.809

C4 Computational 881

Cancer Modules 454 module 159 0.002 0.148 1.61

module 273 0.002 0.158 1.62

module 346 0.013 0.177 1.67

Summary of the the GSEA results: some of the enriched gene sets involved in cancer and metabolism are shown (Nom. pval v0:05 and FDR v0:25).
doi:10.1371/journal.pone.0042678.t005
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Figure 9. Enrichment score behavior. Show the distribution of four gene sets from the: A,B) Cancer Modules and C,D) Canonical Pathways; all of
them were found up-regulated in cancer samples. Statistical significance of the shown plots can be found in Table 5.
doi:10.1371/journal.pone.0042678.g009

Table 6. Gene expression validation for MEF2C and MNDA in breast cancer samples.

Gene symbol Fold change from microarray data Fold change from real-time PCR Experiment(reference)

MEF2C 2.03 T796 (1.69); T661 (1.79) [57]

T787 (2.89); T808 (1.38)

MNDA S1 (1.74); S2 (1.93) [59]

S3 (2.67); S4 (3.12) *NB

S1–S4 refer to different samples in microarray analysis, T796, T661, T787 and T808 refer to different tumor samples in RT-PCR.
*NB refers to experimental determination by Northern blot instead of RT-PCR.
doi:10.1371/journal.pone.0042678.t006
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showed upregulation in the transformed and tumorigenic cell lines

compared a control (MCF-10F cell line) [59].

Expression of MEF2C, SMAD3 and POU2AF1 can be found as

deregulated within two different platforms (HGU133A &

HGU133plus2) in the BarCode database [60] for breast epithe-

lium, stroma and lobular tissues. As can be seen in Table 7,

MEF2C was differentially expressed in more than 60% of breast

epithelium tumors samples (HGU133A) and more than 95% of

breast stroma tumors samples (HGU133plus2). MNDA expression

in breast carcinomas was examined on the EMBL-EBI database.

Results from two experiments are shown in Table 8; MNDA was

reported up-regulated in both studies.

Discussion

We have found an interesting trend in the transcriptional

activity coefficients for and other well characterized gene probes. It

could be seen [19] that the values of the chemical potentials of

transcription mi are in general lower for genes that act as

transcription factors (such as MNDA, POU2AF1, MEF2C and

SMAD3) and high for genes with no-known TF-activity (such as,

for example, IL2RB, CD69, TNFRSF1B and TNFRSF14). One

possible exception in the group of genes studied is GLDC which

codes for a glycine-dehydrogenase enzyme that is anchored to the

mitochondrion and has no reported evidence of transcription

factor activity yet is grouped with the TF genes in the set of low

chemical potential. This fact supports the TF?low mi hypothesis.

The physicochemical meaning of this finding seem to point-out to

transcription factors as genes whose expression is regulated by

lower activation-energy barriers. Since TF’s are involved in the

transcriptional activation of other genes, it is expected that they

are synthesized first when energy is started to being released by

metabolic processes in the cell. Transcriptional targets should, in

general be synthesized later and with higher activation energies.

Even between transcription factors, we hypothesize that genes

upstream in the transcriptional cascade must in general present

lower chemical potentials of transcription. This mechanism would

function thus as a lock-in-the-trigger for transcriptional cascading. It

is important to stress that the chemical potentials mi for spontaneous

transcription do not show a big difference between TFs and Target

Genes (TGs) at low gene expression intensity levels (Qi) but show a

significant difference at high values of Qi (recall that the values of

Qi at which the chemical potential becomes negative are the

saturation constants Ai and these show statistical significant

differences between TFs and TGs). Thus, higher saturation limits

for the chemical potentials of TFs suggest both stability and

spontaneity in the expression of these as compared to TGs.

Pathway analysis also make evident the fact that transcriptional

deregulation occurs not only at the single-gene level, since in some

cases several genes in the same pathway are affected.

With regards to more particular findings, we have already

discussed that deregulation seem to be present at the pathway

level. Specifically we have found two related sets of pathways

affected by deregulation in several of their genes. These two sets

correspond grossly with cancer-related pathways (cell cycle, DNA

repair, apoptosis) and metabolic control pathways (cholesterol

synthesis, AMPK release, etc.). Some affected genes are actually

part of both kinds of pathways. These genes are correlated with

MEF2C expression (Figure 6). As we mentioned, the network

structure in Figure 6 suggest some kind of control between

MEF2C and MNDA, however since our inference method is

based in (nonlinear) correlations, causality (i.e. directionality of the

transcriptional regulation interactions) could not be ascribed to

either of the genes. Bayesian and other inference approaches could

be useful for that means, but they would require actual time-course

experiments in many, many samples to attain statistical signifi-

cance. In the case of human samples, for logistic and financial

reasons, this does not seem at hand in the near future. A

thermodynamic analysis -additional to the correlation network

study- such as the one we presented, supplies us with an

alternative, that although it involves some assumptions, could

give us some hints on the causal structure. It should be stressed

however, that these clues should be considered hypotheses to be

experimentally verified or disregarded, either on the light of more

detailed experiments or more specific thermodynamic assumptions

and not conclusive results nor proven facts.

Let us recall the results of the thermodynamic analysis and the

correlation network analyses. In Figure 3 we observed that

whereas MEF2C presents comparatively low mRNA concentra-

tions and low concentration variances, along with a very high

connectivity (degree), MNDA presents both a high concentration

and high variability in the sample-set, as well as the second highest

degree. In the other hand, SMAD3 and POU2AF1 present

medium-to-low concentrations, and much smaller connectivities.

However, POU2AF1 presents a high variability, while SMAD3

has a medium-to-small variance. If we assume that, in effect, there is

a kind of control loop between MNDA and MEF2C somehow

fine-tuned by the action of POU2AF1 and SMAD3 (and their

Table 7. Barcode validation results for differential over-
expression of MEF2C, SMAD3 and POU2AF1 within two
platforms for several gene-probes in different breast cancer
tissues [60,78].

Gene symbol/Affy ID Array Tissue % samples

MEF2C/209200_at HGU133A breast epithelium
tumor

60%

MEF2C/209199_s_at HGU133plus2 breast stroma
tumor

95%

MEF2C/209199_s_at HGU133plus2 breast tumor 60%

MEF2C/209200_at HGU133plus2 breast tumor 60%

SMAD3/218284_at HGU133plus2 breast lobular
tumor

60%

POU2AF1/205267_at HGU133A breast epithelium
tumor

60%

doi:10.1371/journal.pone.0042678.t007

Table 8. MNDA expression status in two different microarray experiments also validate our finding [81].

Gene symbol/Affy ID Experimental factor Expression status p-value Experiment (reference)

MNDA/204959_at breast carcinoma up 3:27 |10{5 [79]

MNDA/204959_at breast carcinoma up 5:80 |10{4 [80]

doi:10.1371/journal.pone.0042678.t008
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interactors); then we may sketch a possible causal scenario if we

consider that energy is been released gradually within the cells.

MNDA is present at high concentrations (Figure 3) almost always

because its associated chemical potential (i.e. free energy of

formation) is low (Figure 5) and hence it is easier to synthesize, in

the other hand MEF2C is present in small amounts (Figure 3)

because its chemical potential is high (Figure 5) so it is more

difficult to synthesize. This seem to suggest that we have a balance

between the concentrations of MNDA and MEF2C. If energy

release within the tumor cells occurs as a consequence of gradual

activated processes, then MNDA should be transcribed first and

MEF2C expression may be regulated by MNDA and its

interactors. Once MEF2C is being produced, then activation of

its many transcription targets should cause abnormal regulation in

the already mentioned cancer and metabolic related pathways,

thus causing diseased cellular states and, ultimately, carcinogen-

esis.

With regards to the design of possible experimental protocols to

verify some of these findings, we must notice that experimental

techniques in genomics are rapidly evolving, in such a way that

probing the cell in real time under almost in vivo conditions is now

becoming possible. In particular with regards to experimental

verification of our findings, there have been several instances in

which related work has been done. One approach to provide real-

time semi-quantitative analysis of transcription is the imaging of

reporter gene expression, for example, using firefly luciferase

[61,62]. There is also the need for protein production/degradation

rates to experimentally assess gene expression dynamics [63].

Nevertheless, in the most successful cases it has been even possible

to account for fluctuations and stochastic components in the

dynamics of gene expression [64]. Other modern techniques to

monitor the dynamics of gene expression are based in quantitative

measurements of polymerase chain reaction (q-PCR) often used in

conjunction with immunoprecipitation [65,66]. In the near future

it is also very likely that techniques such as microcalorimetry at a

single cell level, and especially Isothermal Titration Calorimetry

(ITC) could be applied on a real-time basis to monitor changes in

local thermodynamics within the cell [67]. These experiments will

also shed light in the thermal component of messenger RNA

dynamics, and thus will serve to fine-tune the predictions of the

model presented here.

Conclusions
In this paper, we have analyzed the role that thermodynamic

fluctuations in energy at the cell-level play in the synthesis of

transcription factors MNDA, POU2AF1, MEF2C and SMAD3 and

how can this energetic constrains be related with the presence of

primary breast carcinomas. In doing so we studied systematically

mRNA levels for high throughput, whole-genome gene expression

profiling. A set of 1191 publicly available microarrays was first

studied by inferring gene regulatory networks based in a non-

linear correlation measure between gene expression vectors

arranged in a surrogate dynamic model of tumor progression. In

the other hand, a non-equilibrium thermodynamic formalism was

used to calculate the concentration-dependent gene expression

intensity, the chemical potentials of transcription and their

associated affinities in order to establish energetic constraints that

help us to evaluate the biological hypotheses. Hence, a connection

was established between mRNA concentration patterns -as given

by experimental gene expression profiles- and local cell energetics -

by means of these irreversible thermodynamical quantities. By

analyzing the different patterns of gene expression for the selected

genes, the corresponding non-equilibrium energetics, as well as

their correlation structure as given by network analysis, an

integrative model for the action of a core set of master regulator

genes was developed. We analyzed in the surrogate dynamic model

already mentioned to look up for transcriptional regulation paths.

All these analyses suggest a novel potential role of transcription

factor energetics in tumor development.

In particular, by using a data integration approach that

combines experimental evidence for high throughput genome

wide gene expression, a non-equilibrium thermodynamics analysis,

nonlinear correlation networks as well as database mining, we

were able to hypothesize about the role that transcription factors

MEF2C and MNDA may have as master regulators in primary breast

cancer phenomenology, as well as the possible interrelationship

between malignancy and metabolic dysfunction. Nevertheless, we

can never emphasize enough that these findings should be

regarded as hypothesis generators rather than as conclusive

results. However, we believe that systematic studies relying in

data integration guided by well-founded physical principles rather

than intuition may become mandatory in time. This work intends

to point-out in such direction. However, further, deeper investi-

gations are needed in this direction in order that our understand-

ing of these extremely complex phenomena will be substantially

increased.
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