
Visualization of Genomic Changes by Segmented
Smoothing Using an L0 Penalty
Ralph C. A. Rippe1*, Jacqueline J. Meulman2, Paul H. C. Eilers3

1 Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands, 2 Institute of Mathematics, Leiden University, Leiden, The Netherlands,

3 Department of Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands

Abstract

Copy number variations (CNV) and allelic imbalance in tumor tissue can show strong segmentation. Their graphical
presentation can be enhanced by appropriate smoothing. Existing signal and scatterplot smoothers do not respect
segmentation well. We present novel algorithms that use a penalty on the L0 norm of differences of neighboring values.
Visualization is our main goal, but we compare classification performance to that of VEGA.
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Introduction

Copy number variations (CNV) and allelic imbalance are

common in tumor tissue, reflecting local deviations from diploidy

and heterozygosity. When they occur, they typically form

segments of widely varying length. As a first step in their analysis,

many researchers prefer to have a graphical presentation of

genomic changes, as a kind of map along positions on

chromosomes. Modern high-density SNP arrays make this possible

for hundreds of thousands of positions on the (human) genome.

An array delivers two fluorescence signals for each SNP, one,

say a, proportional to the dose of one allele, indicated by A, the

other, say b, proportional to the dose of the other allele, indicated

by B. This is only true in principle, because noise and differences

between fluorophores of different color can distort the picture to a

certain amount. If we ignore these facts for the moment, and

consider normal DNA, then the sum of the doses, the copy

number, is 2, for any of the genotypes AA, AB or BB. Hence the

sum azb should be almost constant. Similarly the ratio b=(azb)
is either 0, 1 or 2; it is called the B allele frequency (BAF). Because

in tumor DNA many types of changes can occur, leading to any

number of A or B alleles from zero to many, a variety of deviations

in CNV and BAF can be found.

We prefer to work with somewhat different combinations of the

fluorescence signal. One is the log (to base 10) of their sum,

log (azb), which we abbreviate as LAS (log allelic sum). The

reason for working with the logarithm is that usually a quite large

range of values of azb is observed. The other combination is the

logarithm of the allelic ratio, log (b=a), which we will abbreviate as

LAR (log allelic ratio). Compared to BAF, LAR strongly expands

the scale near 0 and 1, which is crucial when fitting (mixtures of)

normal distributions, as we will do in one stage of our data

analysis. Figure 1 shows examples of maps of the proposed

quantities along chromosome 9 of a normal and a tumor sample.

Copy number analysis has received attention from many

investigators; a short overview will follow later in this

Introduction. In most cases the aim is to determine, with a

solid statistical basis, segment boundaries and copy numbers and

allelic doses within the segments. A variety of free and

commercial products is available. Yet we believe that there is

room for enhanced visualization tools, that allow us to inspect

data in some depth before embarking on more formal models.

Visualization tools for CNV are widely known, while such tools

for allelic imbalance are rare. Therefore, we feel that it is most

effective to introduce our new idea in the well-explored field of

CNV (LAS) and assess its behavior in depth. Once we have

obtained an understanding of its performance, we extend its

application to a new setting (LAR), for which there are no

‘‘gold standard’’ comparisons available.

In this paper we present a new approach to copy number

smoothing, extending the work of [1]. The main modification is

to use a roughness penalty on the number of jumps, instead of

on the sum of absolute values of jumps (the L1 norm). We

implement it with an L0 norm, the sum of absolute values of

differences raised to the power zero. The result is much sharper

segmentation.

Copy number smoothing is relatively simple, because, as the top

panels of Figure 1 show, we can interpret the data as one

(segmented) trend plus noise. For the allelic ratio the situation is

more complicated, because, as the bottom panels show, we can

have one, two or three noisy parallel bands. Our solution is to

adapt the scatterplot smoother of [2]. In its standard form it

computes a histogram on a large two-dimensional grid and applies

a smoother on both axes, thus smearing out the counts in both

directions. The smoother is based on a penalty on the sum of

squares (the L2 norm) of differences. We apply the same idea, but

replace the penalty in the direction along the chromosome with

one using the L0 norm. After segmentation with the modified

scatterplot smoother, we present the distribution of LAR,

separately for each segment, using histograms and Gaussian

mixtures.
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The literature on segmentation of copy number variations is

large. It is a fascinating subject for statistical analysis and it has led

to a variety of modeling strategies. We present a short overview of

recent work, without claiming completeness.

The hidden Markov model (HMM) is a natural candidate. [3]

propose a model with many hidden states, covering copy numbers

from zero to seven. They claim improvements compared to older

candidates like PennCNV [4] and QuantiSNP [5].

Other models have explicit parameters for the positions of

jumps and the levels of the segments between them. VEGA [6]

uses dynamic programming, while [7] fit a piecewise linear model

by maximum likelihood.

Non-parametric smoothing goes in the opposite direction, by

modifying smoothing algorithms in such a way that they favor a

piece-wise constant fit. MSMAD [8] is an improvement on the

work of [1]. The fused LASSO works in a similar way [9].

Systematic comparisons of a number of models for CNV are

available. We mention [10–14]. Large-scale assessments over

platforms, lab sites and algorithms were made in [15]. The rest of

the paper is organized as follows: in Section 2 we present the

algorithms, using real data to illustrate them. In Section 3 we

compare our segmentation, obtained after automatic selection of

the smoothing parameter, with the segmentation from VEGA. In

Section 3 we also present applications to clinical samples,

including a comparison with segment calls from external software,

CNAG [16].

As an acronym for our smoother we use ZEN, derived from

Zero Exponent Norm, because the L0 norm in the penalty is

crucial to its success.

Materials and Methods

In this section we first discuss LAS smoothing with penalized

least squares, based on several types of norms in the difference

penalty. We present a procedure to automatically find a good

value for the penalty parameter, using cross-validation. Then we

extend the discussion to segmented scatterplot smoothing of LAR.

In contrast to smoothing methods that use the sum of squares of

absolute values in the norm of the penalty, the objective function

of the ZEN smoother is not convex. There is no guarantee that a

(unique) global minimum will be reached. Yet in practice we see

excellent performance. To increase the confidence of potential

users of our methods, we present a short study of convergence

behavior.

Segmented CNV Smoothing
Let the data be m data pairs (xi, yi), where xi gives the position

of SNP i (xivxiz1 for all i) and yi is the copy number signal LAS,

log (azb), for which we are going to compute a smooth series z.

Our starting point is a variant of the Whittaker smoother [17].

The objective function is

S2~
Xm

i~1

(yi{zi)
2zl

Xm

i~2

(zi{zi{1)2: ð1Þ

The first term measures fidelity of z to y, while the second term

is a penalty on roughness of z. The balance between the two is

set by the parameter l; the larger l is chosen, the smoother z

will be. This smoother rounds off edges as is illustrated in the

top panel in Figure 2. This is fine in many applications, but not

here.

Quantile smoothing replaces the sum of squares (the L2 norm)

by sums of absolute values (the L1 norm). The objective function is

S1~
Xm

i~1

Dyi{zi Dzl
Xm

i~2

Dzi{zi{1D: ð2Þ

+ +

Figure 1. Illustrations of copy numbers and allelic ratio, expressed as logarithms, for healthy and tumor tissue. Left panels: healthy
tissue. Right panels: tumor tissue. Top row: copy numbers. Bottom row: allelic imbalance.
doi:10.1371/journal.pone.0038230.g001

Zero Exponent Norm Segmented Smoothing
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Notice that now fidelity to the data is measured by the sum of the

absolute values of y{z (median smoothing), not by their squares.

This modification is necessary because a linear programming

algorithm is used to compute ẑz. This increases robustness, but

decreases sensitivity to the data, compared to the L2 norm.

Robustness is hardly an issue in CNV studies.

As can be seen from the middle panel of Figure 2, this

modification goes in the right direction. Segments become more

clearly visible, but a number of undesirable small jumps occur. We

propose the following modification:

Sq~
Xm

i~1

(yi{zi)
2zl

Xm

i~2

Dzi{zi{1Dq ð3Þ

where q is a number between 0 and 1. Actually we will concentrate

on q~0, the L0 norm. Essentially this is a penalty on the number

of non-zero differences between neighboring elements of z. Any

positive number raised to the power 0 gives 1, while by convention

00~0. So only non-zero differences add to the penalty, and all by

the same amount, independent of their size. Our numerical

λ

λ

λ

+

λ

λ

λ

+

λ

λ

λ

+

Figure 2. Illustration of smoothing with different norms (2,1,0) in the roughness penalty. Top panel: L2 norm, the Whittaker smoother.
Middle panel: L1 norm. Bottom panel: L0 norm. Thinner lines drawn with positive and negative offsets illustrate the effect non-optimal l. Top line: l
too large. Bottom line: l too small.
doi:10.1371/journal.pone.0038230.g002

Zero Exponent Norm Segmented Smoothing
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algorithm approximates this behavior. The lower panel of Figure 2

shows results obtained with the proposed smoother.

Computational Details
It is easy to find the solution for the Whittaker smoother, using

matrix-vector operations. If D is a matrix that forms first

differences, so that if u~Dz~Dz, ui~zi{zi{1, the objective

function can be written as S2~DDy{zDD2zlDDDzDD2, with an explicit

solution that follows from the linear system (IzlD’D)ẑz~y. The

system is very sparse, which can be exploited in Matlab or R (we

use the package spam), leading to computation times that increase

linearly with the length of the data series.

We propose a simple, but effective, algorithm to minimize Sq,

using iterated weights in an adapted Whittaker smoother,

borrowing from [18]. It is clear that DaDq~a2DaDq{2, for any

number a. If we do not know a itself, but an approximation ~aa, then

DaDq&a2D~aaDq{2. Using this relation, we approximate Dzi{zi{1Dq by

vi(zi{zi{1)2, with vi~D~zzi{~zzi{1Dq{2. If V~diag(v), the system to

be solved becomes (IzlD’VD)ẑz~y. This gives a new approx-

imation to the solution from which new weights are computed.

These steps are iterated until convergence.

The function we try to optimize is non-convex, but with decent

starting values optimization is effective. However, to improve

numerical stability and reduce the number of iterations, we modify

the weights somewhat: vi~½(~zzi{~zzi{1)2zb2�(q{2)=2
, where b is a

small number, of the order of 1/10000th of the expected size of

the jumps. If b is set not small enough, rounding will occur near

the jumps.

Figure 3. Odd-even cross-validation for finding an optimal l. The selected l is indicated in the top panel by the vertical broken line. The
bottom panel shows data using (double) the selected l against the raw data. The doubling is needed to compensate for leaving out half of the data.
doi:10.1371/journal.pone.0038230.g003

Zero Exponent Norm Segmented Smoothing
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Cross-validation for a Good l
A useful property of the smoother is that it automatically

interpolates values for missing observations if we introduce proper

weights. The objective function is modified to

Sq~
Xm

i~1

wi(yi{zi)
2zl

Xm

i~2

Dzi{zi{1Dq ð4Þ

For a missing, or left-out, observation we set wi~0; all other

weights are set to 1. Smoothly interpolated values for z will be

computed automatically. The system to be solved in each iteration

becomes

(WzlD’VD)ẑz~Wy,

Figure 4. Illustration of convergence behavior in zero-norm smoothing with little noise. The data are simulated (VEGA package) and
contain relatively little noise. All panels, except the lower-right one, show intermediate solutions, at the iteration numbers as indicated in the titles of
the panels. The lower right panel shows the largest absolute change in the solution at each iteration. The smoothing parameter is set to l~0:2.
doi:10.1371/journal.pone.0038230.g004

Zero Exponent Norm Segmented Smoothing
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with W~diag(w).

We exploit this property in cross-validation (CV) to find the

optimal smoothing parameter l. We leave out the even

observations, by setting their weights to zero. We then compute

CV ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

(1{wi)(yi{ẑzi)
2

r

for a series of values of l (a linear sequence for log l) and search

for the minimum of CV. This simple cross-validation scheme

works well in practice.

Notice that the value of l that minimizes CV should be doubled

when smoothing the complete data. The value ofPm
i~1 wi(yi{zi)

2 is close to half that of
Pm

i~1 (yi{zi)
2, while

the penalty contains all elements of z and so will have

approximately the same value, whatever the weights.

Figure 5. Illustration of convergence behavior in zero-norm smoothing with moderate noise. Illustration of convergence behavior. The
data are simulated (VEGA package) and contain relatively much noise. All panels, except the lower-right one show intermediate solutions, at the
iteration numbers as indicated in the titles of the panels. The lower right panel shows the largest absolute change in the solution at each iteration.
The smoothing parameter is set to l~0:5.
doi:10.1371/journal.pone.0038230.g005

Zero Exponent Norm Segmented Smoothing

PLoS ONE | www.plosone.org 6 June 2012 | Volume 7 | Issue 6 | e38230



Applying odd/even cross-validation is effective, as is illustrated

in Figure 3. For the cross-validated fit values we observe a clear

minimum (top panel), while the smoothed result (bottom panel)

looks adequate too, when judged visually.

We don’t want to overstate the importance of cross-validation

and optimal smoothing in the present application. Our primary goal

is visualization and we expect that the user will play with l when

exploring data. The ‘‘optimal’’ value of l should only be considered

an advice. Because the necessary computations take little time on a

modern PC, interactive use is possible with attractive speed.

In Section 3 we compare the classification performance of our

smoother with that of VEGA, using cross-validation to select l.

Convergence Behavior
The objective function of the smoother is non-convex, because

of the L0 norm in the penalty. Hence there is no guarantee that

Figure 6. Comparing normal and segmented scatterplot smoothing. Top panel shows the raw observations. Middle panel shows
straightforward smoothing: no segmentation. Bottom panel shows segmented smoothing: clear segments.
doi:10.1371/journal.pone.0038230.g006

Zero Exponent Norm Segmented Smoothing
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local minima do not exist, nor that we will always reach a global

minimum. Yet in our experience the results make a lot of sense

when inspected visually. So even if a solution might not be optimal

– and we have no practical means to decide on that – it can be

very useful. In this section we present some details on convergence

behavior, following the iterations of smoothing with the adaptive

weights in the penalty.

Figure 4 presents results for a data set with relatively little noise.

They were obtained from the VEGA website [6]. We smooth with

l~0:2 and show the current estimate of the solution z at five

iteration steps. In the first iteration, all weights, v, in the penalty

are equal to 1. So effectively we have a light Whittaker smoother.

After the first iteration the adaptive weights take effect. As can be

seen, after five iterations the final result has almost been reached.

The (logarithms) of the change in the solution from one iteration to

the next are shown in the lower right panel. The changes are

computed as the maximum of the absolute values of the

differences.

In this example sufficient convergence was reached quickly,

certainly for visualization purposes. In our experience 20 to 40

iterations is typical. Figure 5 shows a noisier data set (also from

VEGA), where l~0:5. Convergence is slower there.

Segmented Scatterplot Smoothing
A fast smoother for scatterplots was introduced in [2]. The

principle is to first compute a two-dimensional histogram on a

large grid (say 100 by 100 bins) and to smooth first the columns

and then the rows with a Whittaker smoother, having a slightly

changed roughness penalty. In order to ensure positive values in

the histogram, a combination of a first and second-order penalty is

used. If y represents one column of the histogram, that will be

smoothed to get z, the objective function is:

Q~Dy{zD2zl2DD2zD2z2lDD1zD2: ð5Þ

Notice the combination of first (D1) and second order (D2)
difference penalties. A (banded) linear system of equations results:

(Izl2D’2D2z2lD1’D1)ẑz~y: ð6Þ

The lower panel of Figure 6 shows results obtained with this

smoother, when applied to a scatterplot of (log) allelic ratio against

chromosomal position. The raw observations are shown in the top

panel. This would be a useful display if it showed sharp segment

edges like those we obtained for copy numbers, while maintaining

smoothness in the other direction.

For the segmented scatterplot smoother, we keep the original

penalty for the allelic ratio, but for the position we use a penalty

based on the L0 norm of first differences. It will not work to just

use that penalty for each row of the histogram: we get segments,

but they will generally be in different places for different rows. To

avoid it we use the same weight matrix V in the penalty lDD1’VD1D,
but now compute it as the summary of all rows:

1=vj~
X

i

(zij{zi,j{1)2=mzb2,

with m the number of rows and b again a small number to increase

stability and speed of convergence. Figure 6 (bottom panel) shows

a result obtained in this way. Now we get sharp segment

boundaries.

A typical vector v consists mostly of large numbers and a few

small ones. The latter indicate the segment boundaries and these

values have been used to enhance the figure with vertical broken

lines at the boundaries.

Once the segment boundaries have been found, it makes sense

to plot histograms of the (log) allelic ratio for each segment

separately. In addition we fit gaussian mixtures using the package

mclust [19]. The centers of the mixture components and the

difference between them can be used to summarize results and to

help the user in interpreting the observed genomic changes. We do

not discuss that here, because we feel that that would stray us to far

away from our primary goal, visualization.

Like the scatterplot smoother of [2], we see the segmented

scatterplot smoother only as a visual aid. We did not try to develop

an algorithm for automatic choice of the amount of smoothing,

nor did we try to simulate realistic allelic imbalance scenarios to

evaluate performance.

Results

Simulations
A method for visual segmentation is less useful when it remains

unclear whether a correct segmentation is found. In this section we

compare performance of our smoother with that of VEGA on

CNV segment detection.

We use again the simulated data that are provided by [6]. It

contains simulated CNV data for 22 chromosomes, for each of

which there are 1000 data points generated. For each

chromosome random mutations were generated with a segment

length varying between 11 and 25 points. Gain or loss

properties for each segment were also randomly selected.

Additionally, these data are provided with 10 levels of noise

(s[f0:0,0:1, . . . ,0:9,1:0g), where s~0 indicates perfect data.

We will use these as a reference for segment recovery.

Comparisons between the VEGA method and the proposed

L0 norm smoother are made in terms of precision, recall and

associated F-scores. All of these require True Positive Rate

(TPR), False Positive Rate (FPR), True Negative Rate (TNR)

and the False Negative Rate (FNR). Hits compared to the noise

-free data are assessed per individual data point. We define a

deviation as at least 1% of the largest difference between the

smoothed signal and the baseline normal signal (here: 0). A

Table 1. Comparing ZEN (L0) and VEGA on (P)recision,
(R)ecall and (F)-value, using simulated data.

ZEN VEGA

s P R F P R F

0.0 1.000 1.000 1.000 1.000 1.000 1.000

0.1 1.000 1.000 1.000 1.000 1.000 1.000

0.2 0.999 1.000 0.999 1.000 1.000 1.000

0.3 0.976 0.992 0.984 0.989 0.993 0.991

0.4 0.808 0.938 0.864 0.911 0.953 0.931

0.5 0.797 0.912 0.848 0.867 0.916 0.888

0.6 0.635 0.821 0.709 0.675 0.770 0.706

0.7 0.619 0.797 0.687 0.669 0.794 0.721

0.8 0.601 0.818 0.687 0.630 0.785 0.685

0.9 0.530 0.614 0.536 0.469 0.741 0.565

1.0 0.485 0.593 0.514 0.465 0.752 0.559

doi:10.1371/journal.pone.0038230.t001

Zero Exponent Norm Segmented Smoothing
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match is defined as a single observation for which such a

deviation from zero (0) was found in both VEGA and ZEN.

Precision (positive predictive value) is defined as

P~
TPR

TPRzFPR
:

Recall (sensitivity) is defined as

R~
TPR

TPRzFNR
:

F-scores (harmonic mean, interpreted as a weighted average of

precision and recall) are given by the combination of P and R:

F~2
P|R

PzR
:

We present results for method comparison on the simulation data,

cross-validation effectiveness and convergence. They are summa-

rized in Table 1. Note that for the F-scores, 1 = best performance

and 0 = worst performance. The best performing method is

indicated in bold font. It can be seen that for no and very little

amount of noise (0.1), performance for the L0 norm and VEGA

are equivalent. Increasing the noise levels VEGA seems to perform

slightly better. For noise level 0.6, VEGA wins for precision, but

not for Recall and F-score. For even higher levels of noise, there is

no clear winner. However, these levels of noise are not very

Figure 7. ZEN smoothing of CNV in tumor data (sample GBM139.CEL). Top panel: cross-validation profile and location of minimum (at
broken vertical line). Bottom panel: data and fit, using l~0:08 (double the value indicated by cross-validation, to correct for leaving out half of the
data).
doi:10.1371/journal.pone.0038230.g007

Zero Exponent Norm Segmented Smoothing
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interesting, since real-life data of this quality would not be

analyzed.

Applications
In this section we discuss two applications: smoothing of CNV

signals (as in the above study) and scatterplot smoothing combined

with segmented mixture estimation. The data were obtained in the

Erasmus University Medical Center and concern several types of

brain tumors [20]. In the examples below, we use tumor samples

named GBM 139.CEL, GBM 180.CEL, GBM 203-2.CEL and

GBM 254.CEL. Since this research focuses largely on chromo-

some 9, we only use signals on this chromosome in our

illustrations.

Figure 7 shows smoothing of copy number variations in GBM

139.CEL, using odd-even cross-validation to select a good l.

There is not much to say about this result: the segmentation

conforms to our visual impression of what the data tell us.

Remarkable is the rather narrow segment at 28 MB that is

detected.

ZEN smoothing of the allelic ratio in GBM 139.CEL is shown

in Figure 8. Most segment boundaries, but not all, correspond to

those found in the copy number signal.

Although ZEN performance was already addressed, we also

compared our copy number results to results from dedicated copy

number software, CNAG [16]. In Figure 9 we show copy number

maps for selected interesting regions on chromosome 9, and we

show the corresponding segmented allelic imbalance map for the

four samples mentioned above. In Figure 10 it shows that CNAG

provides equivalent results on the same selected regions, but with

less noise in the ZEN smoother. Therefore, we argue that ZEN

outperforms VEGA and CNAG.

The adaptive weights in the penalty are small where jumps

occur, and so they indicate segment boundaries. This was done to

produce Figure 11, where histograms and estimated normal

mixtures are shown. The package mclust was used to estimate the

mixtures. It chooses the number of components (which we limited

to maximally four) based on BIC. Apparently the two components

of the mixture in the top-right panel have longer tails than a

normal distribution, and mclust uses the sum of a narrow and a

wide normal distribution to approximate them.

Discussion

Smoothing algorithms generally have two components: one to

measure the fidelity to the data, the other a penalty on roughness

Figure 8. ZEN smoothing of log allelic ratio (sample GBM 139.CEL). The vertical broken lines indicate the segment boundaries, as computed
from the adaptive weights in the penalty. The smoothing parameters (l) are 0.01 for position and 0.5 for log allelic ratio.
doi:10.1371/journal.pone.0038230.g008

Zero Exponent Norm Segmented Smoothing
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of the result. For the first term typically a sum of squares or of

absolute values of residuals (i.e. data minus fit) is being used. To

measure roughness, the size of the differences between adjacent

fitted values is an effective and attractive choice. The way these

differences are being expressed has a large influence on the shape

of the fitted curve. [1] showed that a variant of the Whittaker

smoother, using the L1 norm in the penalty on differences, is

attractive for copy number smoothing, because it can deliver

constant segments with relatively sharp jumps in between.

We propose to use the L0 norm, essentially the count of the

number of jumps. To make computation practical, we also present

an algorithm based on iteratively re-computed weights in a sum-

of-squares penalty. This turns out to be effective: very sharp jumps

between segments are obtained.

Figure 9. Examples of smoothed CNV and allelic imbance in clinical samples, using ZEN. First and third row show CNV profiles, second
and fourth rows show the matching segmented allelic imbalance plots.
doi:10.1371/journal.pone.0038230.g009

Zero Exponent Norm Segmented Smoothing
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Because our algorithm can automatically interpolate missing

data, it is possible to use a simple odd-even scheme for cross-

validation, to automatically choose the amount of smoothing.

However, we propose cross-validation only as a guide to find a

good ball park for the penalty parameter, because fast and easy

visualization is our main goal.

We use cross-validation-based smoothing to compare classifica-

tion performance in a little contest with VEGA, using the

simulated data that come with that software. The performance of

our smoother is quite close to that of VEGA. This should give

users the confidence that the segments they get are realistic ones.

The objective function of the proposed smoother is non-convex.

In principle this is a cause for worries: we can never be sure that

the global minimum was found. In practice we have seen that we

always get very good results, as judged by visual inspection. To

give some insight, we presented a few illustrations of how

intermediate results converge towards the final solution.

A plot of copy numbers along a chromosome contains only one

‘‘curve’’ as a noisy band with jumps. A plot of allelic imbalance is

different: at any position from one to three bands can be present.

Jumps are present too and there the number of bands as well as

their positions can change. The smoothing algorithm for copy

numbers will not work on such data. Instead we modified the

scatterplot smoother of [2], which is based on smoothing rows and

columns of a two-dimensional histogram by penalized least

squares. One of the penalties was changed, to accept iteratively

recomputed weights, like in the copy number smoother. The

weights are based on summaries of the columns of the histogram,

to have the same segment boundaries in all rows. The approach is

rather ad-hoc, as there is no explicit objective function to

Figure 10. Examples of smoothed CNV in clinical samples, using CNAG software. Panels show CNV profiles for the samples mentioned in
the panel titles. The smoothed signals show unexepected jumps (GBM180) and unclear level overestimations (GBM203-2).
doi:10.1371/journal.pone.0038230.g010
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minimize, but the results look attractive and computation is fast,

allowing interactive use.

Segmented smoothing of allelic imbalance can indicate bound-

aries that are not visible in copy numbers. An example is copy

number-neutral loss of heterozygosity. It makes sense to study

histograms of the (log of the) allelic ratio for each separate segment

in the plot. In addition to histograms we also propose fitting of

mixtures of normal distributions. The package mclust gives good

results.

In summary, we believe that we have extended the toolbox for

exploration of copy number variation and allelic imbalance with

+
+

+
+

Figure 11. Histograms and estimated normal mixtures for the log allelic ratio. Estimations are separate for each of the five segments that
were derived from the scatterplot smoother in Figure 8.
doi:10.1371/journal.pone.0038230.g011
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attractive new instruments. All computation was done in R [21]

and the programs are available from the first author on request.
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