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Abstract

Considering the issue of noise reduction associated with Laser Doppler Interference (LDI)

signal, the paper presented a correlation coefficient local capping robust empirical mode

decomposition (REMD) filter algorithm for LDI laser sensor that enables more robust recon-

struction of the displacement information from an LDI signal. The performance of the algo-

rithm is studied, and it is shown that the algorithm is capable of removing high-frequency

noise. Useful information can be extracted more easily by this method, and the Hilbert

phase unwrapping displacement reconstructions method based on this algorithm has been

experimentally validated. The experimental results show that the proposed method can

improve the frequency separation performance in experiments, and is robust against noise

interference.

1. Introduction

Empirical mode decomposition (EMD) is a useful tool for decomposing signals into intrinsic

mode functions (IMF). EMD, as the first portion of the Hilbert-Huang transform (HHT)

introduced by Huang et al. in 1998, is used in analyzing non-linear and non-stationary time

series data [1]. These IMF represent the data using oscillating waves with local zero mean. In

some sense, the decomposition can be compared with a time-varying filter [2]. Signals are

decomposed using band-limited filters with bandwidths that vary in time. The main advantage

of EMD compared to other time-frequency tools is that it does not use any predetermined fil-

ters or transforms [3]. Hence, the analysis is adaptive in contrast to traditional methods such

as wavelets where the basic functions are fixed and Low-pass filtering, which require a priori

information of a signal’s frequency characteristics to choose appropriate cutoff frequency [4,

5]. It is therefore a self-contained method that preserves the physical properties in the separate

IMFs, explaining why it has been successfully applied in many engineering fields [6–16].

This method has many advantages, but it also has disadvantages From the signal decompo-

sition side, end effects and mode mixing happen and are very common in EMD, and it is very

difficult to avoid them [17]. From the signal demodulation side, it has negative frequency

problem [18]. The sifting iterations number is directly determined by sifting stopping criterion
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(SSC), and it is crucial to the EMD performance. A number of criteria have been proposed.

Flandrin et al. proposed the predefined value criterion for the EMD [19]. Another criterion is

Cauchy type standard deviation (SD) criteria proposed by Huang et al. [1998]. The criterion

can be implemented by limiting the size of the SD by twice sifting the results as defined below:

SD ¼
XT

t¼0

½hk� 1ðtÞ � hkðtÞ�
2

h2
k� 1ðtÞ

ð1Þ

A typical value is between 0.2 and 0.3. When the computed SD value lies in the specified

range, the sifting process is automatically stopped. These kinds of methods are termed as hard

SSC in [20]. The hard criteria requires prior knowledge of the threshold, thus, cannot adapt to

signals. A soft sifting stopping criterion is proposed, and it can select the optimal iteration

number. This method use mean square (RMS) to define the overall energy of this target signal

and Excess Kurtosis (EK) indicator which is the Kurtosis value minus 3 to evaluate the peaked-

ness of one signal. The soft SSC can suppress its mode mixing problem [21]. This adaptive

mechanism could stop the sifting process based on the value of the objective function and bet-

ter performance can be achieved. We will use this robust soft sifting stopping criterion

(REMD).

EMD methods combined with correlation coefficient consideration have been studied.

EMD based Time Dependent Intrinsic Correlation (TDIC) analysis is applied to consider the

correlation between two nonstationary time series [22]. The correlation coefficient between

these IMFs was estimated. Rodo and Rodriguez-Aria developed the scale-dependent correla-

tion technique [23]. Although these methods detect the correlation between two nonstationary

signals by computing the correlation coefficient in a local sliding window, the main problem is

to determine the size of this window. An integrated EMD adaptive threshold denoising

method was proposed, and it was showed that a larger correlation coefficient can be offered

[24]. A method called center frequency statistical analysis (CFSA) was proposed to determine

the number of intrinsic mode function [25]. Compared with maximum center frequency

observation (MCFO), correlation coefficient (CC), and normalized mutual information

(NMI) methods, CFSA is more robust and accurate. Signal detection based on complete

ensemble empirical mode decomposition with adaptive noise and approximate entropy was

proposed [26], real IMFs similar to the original signal were selected as final parts through a

certain threshold. The problem is that some high-frequency noise signal still has a certain CC

value. It is not easy to get focal and informative data, which is happened to be the challenging

part of denoising data processing.

Considering these challenges, this paper proposes correlation coefficient local capping with

intrinsic mode function (IMF) of empirical mode decomposition (EMD), which over advan-

tage fixed correlation coefficient threshold methods. In this way, it enables reconstructing the

signal with more physical relationships. Extensive experiments are conducted to validate the

proposed method.

In this paper, we combine REMD with adaptive signal selection by correlation coefficient

local capping. The contributions of this paper are summarized as follows:

1. we exploit the characteristics of the correlation coefficient between the empirical modes

from the EMD and the original signal to study a new approach to denoising signals.

2. This paper adopts a robust implementation of the soft SSC into sifting process of EMD, and

this idea can realize the adaptivity of a sifting process.

3. This paper explores a potential application of REMD to laser interference signal, and dis-

placement is demodulated from the reconstructing signal.
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The rest of this paper is organized as follows. A flowchart for the correlation coefficient

local capping REMD denoising is provided in section 2. In Section 3, validation of the pro-

posed method is carried out on laser interference signal, and shows a potential ability to

demodulation of the laser Doppler interference signal. Finally, Section 4 provides the conclu-

sions of this study.

2. Proposed method local capping REMD

Correlation coefficient local capping REMD is implemented as following steps:

1. For any given data x(n), Initialize the algorithm: j = 1, initialize residue r0(t) = x(n).

2. Identify all the local maxima and minima of rj−1(n).

3. Compute the upper envelope Uj(n) and lower envelope Lj(n) by cubic spline interpolation

of local maxima and minima, respectively.

4. Compute the mean of the envelope as mj nð Þ ¼
ðUjðnÞþLjðnÞÞ

2
.

5. Take the difference between the data and the mean as the proto-IMF: compute the jth com-

ponent hj(n) = rj−1(n)−mj(n).

6. hj(n) is processed as rj−1(t). Let hj0 = hj(n) and mj,k(n), k = 0,1. . . be the mean envelope of

hjk(n), then compute hjk(n) = hjk−1(n)−mjk−1(n) until the soft stop criterion is satisfied. The

stop criterion used here is described as below:

Define the objective function

fjk ¼ RMSjk þ jEKjkj ð2Þ

RMSjk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ns

PNs
n¼1
ðmjk½n�Þ

2

s

ð3Þ

EKjk ¼

1

Ns

PNs
n¼1
ðmjk½n� � mjÞ

4

ð 1

Ns

PNs
n¼1
ðmjk½n� � mj ; Þ

2
Þ

2
� 3 ð4Þ

Where mj is the mean of mjk[n]. If it meets that: (1) the number of zero points (Nzp) and extre-

mal points (Nep) is equal, or the difference between them is less than one; and (2) fk−2 < fk−1

and fk−1 < fk the sifting process stops and returns the (k−2)th decomposition results. If not, the

sifting process does not stop until the number of iterations reaches the maximum iteration

number.

7. Compute the jth IMF as IMFj(t) = hj,k(n).

8. Update the residue rj(n) = rj−1(n)−IMFj(n).

9. Increase the sifting index j and repeat steps 2 to 8. The signal reconstruction process x(n),

which involves combining the IMFs formed from the EMD and the residual

xðnÞ ¼
PN

j¼1
IMFjðnÞ þ rNðnÞ ð5Þ
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10. Compute the correlation coefficients between the input simulation signal and the gener-

ated intrinsic mode Correlation(x(n), IMFj), j = 1,2,. . .N, N is the number of IMFs. The

operator Correlation() is defined as:

CorrelationðX;YÞ ¼ rXY ¼
CovXY
SXSY

¼

X
ðX � XÞðY� Y Þ
ðN� 1Þ

SXSY
ð6Þ

Where

SX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðX � XÞ2

N � 1

s

ð7Þ

SY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðY � Y Þ2

N � 1

s

ð8Þ

and based on selected maximum correlation coefficients, we determine the useful IMFs and

discard the noisy mode functions (IMFs). Here we reconstruct the signal as

x̂ðnÞ ¼
Pm� 1

j¼kþ1
IMFjðnÞ ð9Þ

Here, k and m are index numbers of local minimum and maximum of correlation coeffi-

cient respectively centered on the extreme value of the correlation coefficient, and this is just

like capping on the extreme. We consider that the maximum correlation coefficient has the

maximum correlation with the original signal, and the surrounding adjacent decompositions

have a higher dependence on the original signal.

11. Demodulate displacement from the denoising signal.

Displacement ¼ unwrap Arctan yðnÞð Þð Þ
l

4p
ð10Þ

yðnÞ ¼ arctan
YðnÞ
x̂ðnÞ

ð11Þ

YðnÞ ¼ Hilbert½x̂ðnÞ� ¼
1

p

R þ1
� 1

x̂ðtÞ
n� tdt ð12Þ

Where λ is the wavelength of the laser diode. Unwrap is the function for unwrapping the

phase angle. This function corrects the radian phase angles by adding multiples of ±2π when

absolute jumps between consecutive phase angle are greater than or equal to the jump toler-

ance of π radians. Arctan is the inverse tangent.

As shown in the flowchart in Fig 1, the displacement is calculated as follows: target signal

! REMD! local capping! reconstruction noise-free signal!Hilbert signal! Arctan sig-

nal! unwrapping transform! get displacement.

3. Experiment

The validation experiment is carried out according to the following steps. Firstly, the grating is

placed on the guide rail driven by the stepping motor. Place a laser interferometer next to it,

and scheme of the experimental setup is in the Fig 2. The signal measured by the
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interferometer is the input signal. Because the laser of the interferometer has non single-mode

characteristics, there will be high-frequency interference signals in the measured signals. The

motion of the stepper motor has low-frequency characteristics, resulting in the Doppler effect

and Doppler frequency shift.

The method mentioned above is applied to this signal as seen in Fig 3 to extract the dis-

placement signal. Remove the noise signal, and then further demodulate the displacement.

Firstly, the continuous wavelet transform (CWT) based on Morse wavelet is used to analyze

signals jointly in time and frequency. It can localize these transients in addition to characteriz-

ing oscillatory components in the signal. A signal about 1000-Hz occurs from 14 milliseconds

to 16 milliseconds with the maxima magnitude from the global views, as seen in Fig 4. Addi-

tionally, there are two transients at 3.5 and 8 milliseconds, and the whole signal is corrupted by

noise.

Fig 1. Flowchart of local capping REMD filter.

https://doi.org/10.1371/journal.pone.0261875.g001

Fig 2. Scheme of the experimental setup.

https://doi.org/10.1371/journal.pone.0261875.g002
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Then we REMD decompose the input signal, as seen in Fig 5. Through REMD decomposi-

tion, nine components and one residue can be obtained. It can be seen that the components of

the first five groups are all composed of high-frequency signals. The last four components are

composed of low frequencies, and the seventh group has the highest shape similarity with the

original signal. In the following calculation, we will use the correlation coefficient to calculate

the correlation coefficient between each group and the original signal. It can be seen that the

similarity of the shape is also reflected in the size of the correlation coefficient.

In Fig 6 we put all the components into one picture, which can more clearly compare the

differences in frequency and amplitude between them. You can see that the seventh group of

signals is highlighted in many components

Fig 3. Waveforms of the laser interference signal.

https://doi.org/10.1371/journal.pone.0261875.g003

Fig 4. CWT of the input signal.

https://doi.org/10.1371/journal.pone.0261875.g004
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Fig 5. REMD of the input signal.

https://doi.org/10.1371/journal.pone.0261875.g005

Fig 6. Comparison of IMFs and residual of REMD.

https://doi.org/10.1371/journal.pone.0261875.g006
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The maximum correlation coefficient corresponds to the optimal value of the shape param-

eter, and here the maximum correlation coefficient is finally taken as the similarity score

between IMFs and the original signal. Fig 7 below shows that the correlation coefficient

between IMFs and the original signal. The IMF7 has the maximum correlation coefficient. It is

a useful signal extraction for reconstruction. Take the IMF7 decomposition as the center and

recombine the surrounding adjacent decompositions IMF6 and IMF8, which have a higher

dependence on the original signal.

Hilbert spectrum is a time spectrum, which can be compared with the spectrum of continu-

ous wavelet transform and short-time Fourier transform, which are also time-frequency analy-

sis methods. This spectrum reflects the change of signal frequency components over time and

is an important means to make non-stationary signals. Hilbert spectrum is made for IMF7,

and the following results are obtained. With the gradual intensification, the amplitude of the

Hilbert spectrum increases in the range of 800 ~ 1200Hz. The hilbert spectrum of IMF7 is

shown in Fig 8.

The corresponding decomposition and reconstruction processes are shown in Fig 9. Firstly,

REMD decomposition is carried out. The REMD decomposition signal is composed of high-

frequency signal and low-frequency signal. High-frequency signals are mostly noise signals

deviate from the maximum correlation coefficient. And how to judge which part is a useful sig-

nal. It can be done by the correlation coefficient local capping between the obtained decom-

posed signal and the original signal. The position with the largest correlation coefficient is the

most useful information. Due to the continuity of Doppler signal, the component adjacent to

the maximum correlation coefficient is more important. By recombining these signals

together, useful information with a high correlation with the doppler signal will can be

obtained.

The denoised signal and the original signal are shown in Fig 10. It can be seen that the

high-frequency burring signal has been separated from the original signal. The denoised signal

can better extract the relevant information in the original signal. Discrete wavelet decomposi-

tion could be used in this case, and the main difference is that there is no need to choose which

wavelet to use in this method.

The displacement signal can be obtained by solving the interference signal. The specific

solution method is as follows. Firstly, the analytical signal of the signal is obtained by the

Hilbert transform. The corresponding signal orthogonal to the original signal is obtained.

This pair of signals is solved orthogonally. That is, arctangent transformation is used. The

corresponding phase is extracted by arctangent transformation. Unwrap this phase item.

Thus, the corresponding displacement is obtained. The displacement results are shown in

Fig 7. The correlation coefficient of IMFs and residual.

https://doi.org/10.1371/journal.pone.0261875.g007
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Fig 11. The running speed of the guide rail carried by the stepper motor is set to 2.5 milli-

meter in per second, and the calculated data shown that the whole displacement is 50

micrometers within 20 milliseconds running time, and this result is in good agreement

with the experimental setting.

4. Conclusion

The noise reduction process is completed using the correlation coefficient local capping

REMD adaptive filter technique. There are three advantages:

1. IMFs decomposed by REMD contain high-frequency signals. These high-frequency signals

which are deviate from the maximum correlation coefficients are discarded from the origi-

nal signal.

2. With the highest correlation coefficient IMF and its local capping adjacent IMFs can be

superimposed as reconstructed useful signals, which will get better analysis results, and

extracts the low-frequency interference components in the signal.

This method is similar to the EWT method. The EWT method is divided into different fre-

quency bands in the frequency domain. This method selects the point with the highest correla-

tion coefficient as the center point of the useful signal according to the maxima distribution of

the correlation coefficient, and expands it in a certain related field to obtain the useful combi-

nation of signals. Separate and remove the noise signal with high frequency. A correlation

coefficient criterion for extraction useful intrinsic mode function (IMF) is proposed. This

Fig 8. Hilbert spectrum of IMF7.

https://doi.org/10.1371/journal.pone.0261875.g008

PLOS ONE Correlation coefficient local capping REMD adaptive filter

PLOS ONE | https://doi.org/10.1371/journal.pone.0261875 January 21, 2022 9 / 12

https://doi.org/10.1371/journal.pone.0261875.g008
https://doi.org/10.1371/journal.pone.0261875


method is fully adaptive and suitable for the analysis of laser interference signals, and the code

is freely available as open source on GitHub (https://github.com/awublack/local-capping-

REMD).

Fig 9. Decomposition and reconstruction process.

https://doi.org/10.1371/journal.pone.0261875.g009

Fig 10. Comparison of denoised signal and the original signal.

https://doi.org/10.1371/journal.pone.0261875.g010
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