
© 2008 Isozaki et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article 
which permits unrestricted noncommercial use, provided the original work is properly cited.

Journal of Infl ammation Research 2008:1 19–28 19

O R I G I N A L  R E S E A R C H

Synergistic induction of CX3CL1 by TNF alpha 
and IFN gamma in osteoblasts from rheumatoid 
arthritis: involvement of NF-kappa B and STAT-1 
signaling pathways

Takeo Isozaki
Tsuyoshi Kasama
Ryo Takahashi
Tsuyoshi Odai
Kuninobu Wakabayashi
Hirohito Kanemitsu
Kyoko Nohtomi
Hiroko T Takeuchi
Satoshi Matsukura
Masakazu Tezuka

Division of Rheumatology, 
Department of Internal Medicine, 
Showa University School of Medicine, 
Tokyo, Japan, and the Department 
of Orthopedics, Denencyofu Central 
Hospital, Tokyo, Japan

Correspondence: Tsuyoshi Kasama
Division of Rheumatology, Department 
of Internal Medicine, Showa University 
School of Medicine, 1-5-8 Hatanodai, 
Shinagawa-ku, Tokyo 142-8666, Japan
Fax +81 33784 8742
Email tkasama@med.showa-u.ac.jp

Abstract: To explore the regulation of CX3CL1 in infl ammatory bone diseases, CX3CL1 

expression by osteoblasts (OB) was examined. Human OB isolated from rheumatoid arthritis 

(RA) patients, osteoarthritis patients, and normal individuals were incubated in the presence of 

cytokines. Soluble CX3CL1 levels were determined with an enzyme-linked immunosorbent 

assay. Expression of CX3CL1 mRNA was examined using quantitative real-time polymerase 

chain reaction. Although tumor necrosis factor (TNF)-α or interferon (IFN)-γ alone RA OB 

induced negligible CX3CL1 secretion, the combination of TNF-α and IFN-γ induced dramatic 

increases in both soluble CX3CL1 protein and mRNA transcripts. This synergistic effect was 

more pronounced in OB from RA than in OB from either osteoarthritis or normal individuals. 

The expression of CX3CL1 was markedly reduced by specifi c inhibitors of the nuclear factor-κB 

(NF-κB) or STAT-1 transcription factor. These fi ndings suggest that osteoblasts are an important 

cellular source of CX3CL1 and may play roles in infl ammatory bone/joint diseases.
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Introduction
The pathology of rheumatoid arthritis (RA) is characterized by the infi ltration of 

several infl ammatory cell types into the pannus and the joint fl uid, followed by tissue 

destruction. Chemokines and other infl ammatory mediators appear to play key roles in 

the pathogenesis of RA, and the coordinated production of chemokines and proinfl am-

matory cytokines is likely important in the orchestration of the infl ammatory response 

(Kunkel et al 1996; Choy and Panayi 2001). Several cellular components of the joint 

contribute to the cytokine/chemokine network. Although autoreactive T cells, B cells, 

and synovial cells (including synovial fi broblasts and macrophages) have crucial roles 

in pannus formation and arthritis formation, bone-derived cells such as osteoblasts 

(OBs), osteocytes, and osteoclasts also are recognized as important cellular mediators 

of bone erosion and destruction in RA (Udagawa et al 2002). Several chemokines are 

highly expressed in bone erosive lesions (Lisignoli et al 2002). Cells involved in bone 

formation (eg, OBs) express a variety of chemokines, and OBs appear to be major 

regulators of bone remolding in both normal and pathological conditions.

During infl ammatory processes, OBs exhibit prominent induction of cytokines 

and chemokines including TNF-α, IL-6, IL-8, GRO-alpha, MCP-1, CXCL9, 

CXCL10, CXCL11, CCL2, ICAM-1, VCAM-1, and angiopoietin-1 (Zhu et al 1994; 

Takeshita et al 1995; Kurokouchi et al 1998; Lisignoli et al 1999; Kasama et al 2007). 

Several proinfl ammatory cytokines such as TNF-α, IFN-γ, IL-6, and transforming 

growth factor-β have been shown to up-regulate the expression of these molecules in 
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osteoblasts. Nevertheless, the exact profi le of OB-derived 

chemokine expression remains unclear.

A member of the chemokine family, CX3CL1 (also 

known as fractalkine) is synthesized mainly by endo-

thelial cells (ECs) (Bazan et al 1997). The soluble form 

of  CX3CL1 (sCX3CL1) reportedly exerts a chemotac-

tic effect on monocytes, NK cells, and T lymphocytes. 

sCX3CL1 acts via its receptor, CX3CR1, as an adhesion 

molecule to promote the fi rm adhesion of a subset of 

leukocytes to ECs under conditions of physiological fl ow 

(Imai et al 1997; Umehara et al 2001). Thus, CX3CL1 

appears to possess immunoregulatory properties that affect 

infl ammatory/immune cell-EC interactions and infl amma-

tory responses. Indeed, numerous studies have implicated 

CX3CL1 in a variety of infl ammatory disorders including 

glomerulonephritis, systemic sclerosis, and systemic lupus 

erythematosus (Chen et al 1998; Blaschke et al 2003; 

Hasegawa et al 2005; Yajima et al 2005). In particular, 

CX3CL1 may play important roles in RA and rheumatoid 

vasculitis (Ruth et al 2001; Volin et al 2001; Nanki et al 

2002; Matsunawa et al 2006). Although expression of 

CX3CL1 by OBs was demonstrated recently (Shulby et al 

2004), regulatory mechanisms of CX3CL1 in OBs have not 

yet been elucidated. To further understand the expression 

and regulation of CX3CL1 in infl ammatory bone diseases 

as well as in physiological conditions, the expression of 

CX3CL1 by osteoblasts was examined in detail.

Materials and methods
Reagents
Complete medium consisted of  DMEM (Nissui Pharmaceutical 

Co., Tokyo, Japan) supplemented with 2 mM L-glutamine, 

100 U/mL penicillin, 100 μg/mL streptomycin, and 10% 

heat-inactivated FBS (Gibco Laboratories, Grand Island, NY). 

TNF-α and IFN-γ were purchased from Genzyme/Techne 

(Cambridge, MA). The NF-κB p65 small interfering (si)RNA 

(Silencer NF-κBp65 siRNA), signal transducer and activa-

tor of transcription 1 (STAT-1) siRNA (Silencer STAT-1 

siRNA), and nonsilencing siRNA (Silencer Negative Con-

trol siRNA) were obtained from Ambion (Austin, TX). The 

NF-κB inhibitor pyrrolidine dithiocarbamate was purchased 

from Sigma-Aldrich (St. Louis MO). GM-6001, a broad-

spectrum hydroxamic acid inhibitor of metalloproteases, 

was purchased from Calbiochem (Darmstadt, Germany). The 

following inhibitors were all obtained from Sigma Aldrich: 

PD98059, a mitogen-activated ERK-activated kinase (MEK) 

1/2 inhibitor; U73122, a phospholipase C (PLC) inhibitor; 

wortmannin, a phosphatidylinositol 3’-kinase (PI 3’-kinase) 

inhibitor; and N,N-dimethylsphingosine, a sphingosine 

kinase inhibitor.

Preparation of human osteoblasts
Human OBs were purifi ed from metaphyseal trabecular 

bones in the proximal femora of RA patients (n = 3), 

osteoarthritis (OA) patients (n = 2), and post-traumatic 

patients (control OBs, n = 2) during total hip arthroplasty, 

as described previously (Kasama et al 2007). Briefl y, after 

removing pieces of cortical bone, articular cartilage, and 

soft connective tissue, the fragments were cut into small 

pieces and incubated with DMEM containing 1% collage-

nase at 37 °C for 30 min, followed by extensive washing. 

The resultant bone explants were cultured in tissue culture 

plates in DMEM containing 10% FBS. When cell monolay-

ers were confl uent (after 3–5 weeks of culture), the explants 

were removed, and the cells were replated at a cell density 

of 1 × 105/mL. Cells were incubated for 3 days, then various 

stimulants were added. Conditioned culture media were col-

lected at selected times thereafter. In some experiments, cell 

lysates were obtained by the addition of an equal volume of 

0.1% Tween 20 in PBS, followed by incubation for 30 min 

on ice. The obtained cells exhibited a fl attened polygonal 

shape with multiple spindlelegs and possessed characteristics 

of the osteoblast-like phenotype such as osteocalcin expres-

sion, bone alkaline phosphatase expression, and mineraliza-

tion as determined by von Kossa staining (data not shown). 

Also human osteosarcoma cell line MG63 (from American 

Type Culture Collection, Manassas, VA) was plated at a 

cell density of 4.5 × 105/cm2 in DMEM complete medium, 

and incubated for 24 h with the indicated doses of TNF-α 

(0.2–20 ng/mL) and/or IFN-γ (1–1000 U/mL).

This study was carried out in accordance with protocols 

approved by the Human Subjects Research Committee at 

our institution, and informed consent was obtained from 

all patients.

Enzyme-linked immunosorbent assay
Soluble CX3CL1 was quantifi ed using a double ligand 

enzyme-linked immunosorbent assay (ELISA) that was 

a modifi cation of an assay described previously (Yajima 

et al 2005; Matsunawa et al 2006). Monoclonal murine 

anti-human CX3CL1 (Genzyme/Techne, 4 μg/mL) was 

used as the primary antibody (Ab), and the second-

ary Ab was biotinylated polyclonal goat anti-CX3CL1 

(Genzyme/Techne, 0.25 μg/mL). This assay detects the 

chemokine domain of human CX3CL1, and the sensitivity 

limit is ∼150 pg/mL.
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Immunohistochemistry
Cell-associated CX3CL1 was visualized immunohistochemically 

by modifi cation of a previously published assay (Kasama 

et al 2001; Matsunawa et al 2006). Briefl y, OBs were grown 

to near-confl uence in an 8-well LabTech chamber slide and 

then stimulated with cytokines for 24 h. The slides were 

incubated with polyclonal goat anti-CX3CL1 Ab (R and D 

systems, Minneapolis, MN) or with pre-immune goat IgG. 

Biotinylated anti-goat IgG (Nichirei, Japan) and peroxidase-

conjugated streptavidin served as second and third reagents, 

respectively. The optimal color was developed by using 

a 3,3-diaminobenzidine tetrahydrochloride detection kit 

(Nichirei, Japan). After rinsing with distilled water, the slides 

were counterstained with Mayer's hematoxylin.

Flow cytometry
Flow cytometric analyses of CX3CL1 expression on OBs 

were carried out as described previously (Yajima et al 2005). 

OBs were labeled with monoclonal mouse PE-conjugated 

anti-CX3CL1 Ab (R and D Systems). The fl uorescence inten-

sity was measured by a three-color FACScan fl ow cytometer 

(Becton Dickinson, Mountain View, CA).

Isolation of total RNA and real-time 
polymerase chain reaction (PCR)
Total RNA was extracted from human OBs using TRIzol 

reagent (Invitrogen, Carlsbad, CA). One-microgram samples 

of total RNA were reverse transcribed into cDNA by incuba-

tion with TaqMan RT reagents (Applied Biosystems, Foster 

City, CA), fi rst for 120 min at 37  °C and then for 10 min at 

25 °C. Real-time PCR was conducted with an ABI Prism® 

7900 sequence detection system (Applied Biosystems). 

The reaction mixture included 40 ng cDNA, which was 

amplifi ed by AmpliTaq Gold DNA polymerase (Applied 

Biosystems) as described previously (Kasama et al 2007). 

For detection of CX3CL1, NF-κB, STAT-1, and ribosomal 

RNA (rRNA) expression, appropriate Assays-on-Demand™ 

primers and probes (Applied Biosystems) were used in the 

PCR. For quantifi cation, the number of target mRNA copies 

per rRNA copy was calculated, and values were expressed 

as -fold increases over control (culture medium alone). In 

some experiments, the DNA fragments amplifi ed by PCR 

were subjected to 2% agarose gel electrophoresis as described 

previously (Lu et al 2000).

siRNA transfection
Cells were seeded in 6-well plates at a density of 1.5 × 105 

cells per well. Cells were then incubated in complete medium 

without antibiotics for 24 h prior to experimentation, at 

which time they were 60% to 70% confl uent. Fifty nano-

molar siRNA against NF-κB or STAT-1 or nonsilencing 

siRNA and 10 μg/mL Lipofectamine 2000 (Invitrogen) 

in 500 μL Opti-MEM (Invitrogen) were mixed gently at 

room temperature for 20 min to allow complexes to form. 

Thereafter, 1500 μL complete medium without antibiotics 

was added, and the resultant solution was mixed and over-

laid on the cells. Cells were incubated with the siRNA/

Lipofectamine 2000 complexes for 24 h at 37 °C prior to 

the isolation of total RNA.

Statistical analysis
Data are expressed as means ± SEM and were compared by 

analysis of variance. The means of groups whose variances 

were determined to signifi cantly differ were compared using 

Student’s t-test for comparison of the means of multiple 

groups. Values of p � 0.05 were considered signifi cant.

Results
Secretion and expression of OB-derived 
CX3CL1 and regulation by TNF-α 
and IFN-γ
We hypothesized that cellular interactions and infi ltration are 

important for the remodeling of bone tissues during patho-

logical as well as physiological conditions and that OBs are 

an important cellular source of chemotactic factors. To test 

this hypothesis, we fi rst determined whether OBs isolated 

from RA patients (RA OBs) could be induced to secrete the 

chemotactic factor CX3CL1. The effects of the infl ammatory 

cytokine TNF-α and the immunoregulatory cytokine IFN-γ 

on CX3CL1 secretion were examined.

Neither TNF-α (20 ng/mL) nor IFN-γ (1000 units/mL) 

signifi cantly affected CX3CL1 secretion from RA OBs as 

compared with medium alone (Figure 1a). On the other hand, 

when applied together, graded doses of either TNF-α or IFN-γ 

with IFN-γ or TNF-α, respectively, induced signifi cant dose-

dependent secretion of CX3CL1 from RA OBs (medium, 

375.4 pg/mL; TNF-α + IFN-γ, 5681.7 pg/mL; Figure 1a). 

A similar pattern of CX3CL1 secretion was observed in the 

human osteosarcoma cell line MG63 (Figure 1b).

CX3CL1 from RA OBs stimulated with both cyto-

kines was detectable in culture supernatants at 8 h, and 

levels were increased sharply at 24 h. Levels of cell-

associated CX3CL1 were greater than levels of CX3CL1 

in the supernatants until after 8 h (Figure 1c). Because 

membrane-bound CX3CL1 is cleaved to the soluble form 
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by metalloproteases such as ADAM17 and ADAM10 

(Garton et al 2001, Hundhausen et al 2003), the involve-

ment of proteases in the generation of sCX3CL1 was 

examined in this in vitro culture system. GM-6001, a 

broad-spectrum inhibitor of metalloproteases, was added 

to OB cultures, and CX3CL1 in culture supernatants and 

cell lysates was assessed by ELISA. As shown in Figure 

1d, GM-6001 signifi cantly inhibited CX3CL1 levels in 

supernatants of OBs stimulated with both cytokines in 

combination. While, a modest increase in cell-associated 

CX3CL1 was observed by treatment with GM-6001 on 

cytokine-stimulated OBs compared with no compounds, 

but this was not statistically signifi cant. Therefore, GM-

6001-sensitive metalloproteases may be, in part, involved 

in CX3CL1 cleavage in cytokine-stimulated OBs.

The cell-surface expression of CX3CL1 was also examined 

immunohistochemically (Figure 2a). Although small amounts 

of CX3CL1 antigen were detected in unstimulated RA 

OBs and in OBs stimulated with each cytokine alone (data 

not shown), substantially increased amounts of CX3CL1 

were observed in OBs stimulated with the combination 

of cytokines (Figure 2a). Furthermore, membrane-bound 

CX3CL1 protein in RA OBs was examined using fl ow 

cytometric analysis. As observed by ELISA and immu-

nohistochemistry, combined stimulation with TNF-α and 

IFN-γ induced enhanced expression of membrane-bound 

CX3CL1 on RA OBs (Figure 2b). To determine whether 

increased CX3CL1 antigen levels are accompanied by 

similarly increased CX3CL1 mRNA transcript levels, we 

examined the expression of OB-derived CX3CL1 mRNA 

with real-time PCR. As shown in Figure 2c, the expression 

of CX3CL1 mRNA in OBs was signifi cantly enhanced by 

both TNF-α and IFN-γ compared with culture medium or 

with either cytokine alone. This augmented expression of 
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Figure 1 Secretion of CX3CL1 from OBs and the effects of TNF-α and IFN-γ. Cultured OBs from RA patients (A) or MG63 cells (B) were incubated for 24 h with the 
indicated doses of TNF-α and/or IFN-γ. (C) RA OBs stimulated with cytokines were collected after 2, 4, 8, and 24 h of stimulation. (D) RA OBs stimulated with cytokines 
were treated with either GM-6001 or negative control compound for 24 h. CX3CL1 levels in culture supernatants and cell lysates were assayed using specifi c ELISAs. Data 
are expressed as the means ± SEM of 5 independent experiments. *p � 0.01 vs control medium; **p � 0.05 vs control medium.
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CX3CL1 mRNA was confi rmed by agarose-gel analysis of 

PCR products (Figure 2d).

Next, the levels of CX3CL1 secretion were compared 

among OBs from patients with an infl ammatory disease 

(RA), patients with a non-infl ammatory disease (OA), and 

normal individuals. In response to the combination of TNF-α 

and IFN-γ, a signifi cantly increased amount of CX3CL1 was 

secreted into the supernatant by RA and OA OBs compared 

with normal OBs (Figure 3a). Although there appeared to 

be an obvious difference in CX3CL1 secretion between 

RA OBs and OA OBs (4629.3 pg/ml vs 3263.5 pg/mL), 

the result did not reach statistical signifi cance. However, 

enhanced CX3CL1 mRNA expression was observed in RA 

OBs stimulated with the combination of cytokines compared 

with both normal and OA OBs (p � 0.05) (Figure 3b). In 

addition, receptor expression for either TNF-α or IFN-γ was 

examined on OBs from either RA patients or OA patients, 

controls, because these results demonstrated that CX3CL1 

expression from RA, OA or controls was differentially regu-

lated by TNF-α/IFN-γ. However, there were no signifi cant 

differences in their expression between RA, OA patients and 

controls by fl ow cytometry and RT-PCR.

NF-κB expression and its role 
in the cytokine-mediated induction 
of CX3CL1in OBs
To further examine the mechanisms of CX3CL1 induction in 

OBs, the expression of NF-κB mRNA in OBs was examined. 

Although the expression of NF-κB mRNA was induced by 

stimulation with either TNF-α or IFN-γ, together the two 

cytokines elicited an 8.4-fold increase in NF-κB levels within 

4 h (Figure 4a). The potential role of NF-κB in the induction 

of CX3CL1 expression was investigated by evaluating the 

capacity of anti-NF-κB siRNA to inhibit CX3CL1 expression 
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in OBs. Whereas addition of control siRNA had no specifi c 

effect on the induction of CX3CL1 expression by costimula-

tion with TNF-α and IFN-γ, the addition of siRNA targeted to 

NF-κB signifi cantly reduced the synergistic effect of TNF-α 

and IFN-γ on CX3CL1 expression at both the protein (38.5% 

suppression compared with control siRNA; Figure 4b) and 

mRNA (61.7% suppression; Figure 4c) levels.

In addition, the effect of pyrrolidine, an NF-κB inhibi-

tor, on CX3CL1 expression by OBs was examined. Consis-

tent with the siRNA inhibition, both the secretion (Figure 

5a) and mRNA expression (Figure 5b) of CX3CL1 by 

cytokine-stimulated RA OBs were signifi cantly inhibited 

by pyrrolidine. To investigate other second messengers 

involved in the induction of CX3CL1 expression by cyto-

kines, different kinase and transcription factor inhibitors 

were added to OB cultures. In contrast to pyrrolidine, 

inhibitors of MEK1/2 (PD98059; 50 μmol/L), PLC (U73122; 

1 μmol/L), PI 3’-kinase (wortmannin; 30 nmol/L), and sphin-

gosine kinase (N,N-dimethylsphingosine; 5 μmol/L) did not 

affect CXCL1 expression (data not shown).

STAT-1 expression in OBs 
and its involvement in CX3CL1 expression
The present results indicate the importance of IFN-γ and 

TNF-α in CX3CL1 expression by OBs. To further explore the 

regulatory mechanisms underlying CX3CL1 expression, we 

examined the role of STAT-1 in this induction. Although the 

expression of STAT-1 in RA OBs was not induced by TNF-α 

alone, mRNA expression of STAT-1 was up-regulated by the 

combination of IFN-γ with TNF-α and, to a lesser extent, by 

IFN-γ alone (Figure 6a). Next, siRNA against STAT-1 was 

transfected into RA OBs, and the mRNA expression and 

secretion of CX3CL-1 were examined. The up-regulated 

mRNA expression and secretion of CX3CL1 in OBs stimu-

lated by the combination of cytokines were signifi cantly 

inhibited by siRNA targeted to STAT-1, reducing the levels 

of secreted protein 69.8% (Figure 6b) and of mRNA expres-

sion 47.7% (Figure. 6c) compared with control siRNA.

Discussion
The present study clearly demonstrates that OBs from 

patients with an infl ammatory condition (RA) and even a 

non-infl ammatory condition (OA) are a prominent cellular 

source of CX3CL1 in response to the combination of  TNF-α 

and IFN-γ. Although it was demonstrated previously that 

CX3CL1 is expressed by OBs in vitro (Shulby et al 2004), 

the present report examined the regulatory mechanisms of 

CX3CL1 expression by OBs. Immunohistochemistry and 

fl ow cytometry experiments revealed increased amounts 

of intracellular CX3CL1 and membrane expression upon 

stimulation with TNF-α and IFN-γ. Furthermore, CX3CL1 

transcripts detected by real-time RT-PCR were promptly up-

regulated by cytokine stimulation. CX3CL1 protein levels in 

cell lysates reached maximal levels 8 h after co-stimulation 

with TNF-α and IFN-γ and decreased thereafter, whereas 

CX3CL1 levels in supernatants increased gradually between 
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2 and 24 h after cytokine stimulation. Also metalloproteases 

such as ADAM10 and ADAM17 (Garton et al 2001; Hundhausen 

et al 2003) appear to be important for cleaving membrane-

bound CX3CL1 into the soluble form. Consistent with 

these previous reports, GM-6001-sensitive metalloproteases 

may be, in part, involved in CX3CL1 cleavage in cytokine-

stimulated OBs.

We have shown that OBs from patients with RA have an 

enhanced capacity to express CX3CL1 compared with OBs 

from patients with a non-infl ammatory condition (OA) or 

OBs from normal individuals. Previous studies have shown 

that RA OBs produce greater amounts of chemokines such 

as CXCL1 and CCL2 under unstimulated conditions or 

infl ammatory stimuli (including IFN-γ) than do OA OBs 

(Lisignoli et al 1999, 2002). It has been well documented 

that TNF-α and IFN-γ cooperate in a variety of biological 

responses and synergistically enhance the expression of genes 

involved in immune and infl ammatory responses (Paludan 

2000). Synergistic cytokine induction can be envisaged in 

chronic infl ammatory reactions such as RA, during which 

infl ammatory or immunoregulatory cytokines, including 

TNF-α and IFN-γ, are very likely to be present (van Roon 

et al 1995; Klimiuk et al 1997).

Blaschke et al have shown that CX3CL1 markedly 

induces the secretion of matrix metalloprotease-2 (MMP-2) 

from synovial fi broblasts (Blaschke et al 2003), in addition 

to its other known functions as a chemoattractant of T cells, 

NK cells, and macrophages; an adhesion molecule; and 

an inducer of angiogenesis (Bazan et al 1997; Volin et al 

2001; Ruth et al 2001; Ancuta et al 2003). Induction of the 

MMP family plays a crucial role in the bone/joint destruc-

tion observed in RA (Tak and Bresnihan 2000). In addition, 

osteoblasts not only play a central role in bone formation 

by synthesizing multiple bone matrix proteins, but regulate 
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osteoclast maturation by soluble factors and cognate inter-

action, resulting in bone resorption. To further clarify the 

function of OG-derived CX3CL1, we tried to explore the 

biological signifi cance of CX3CL1 in osteoclast formation. 

First, recombinamt CX3CL1 was added to human peripheral 

blood monocytes derived osteoclasts, which were stimulated 

to maturate by GM-CSF and RANKL (Shinoda et al 2003). 

Second, human peripheral blood monocytes were added onto 

osteogenic cells stimulated by cytokine (TNF-α plus IFN-γ), 

and then stimulated by GM-CSF and RANKL. However, 

we could not determine any signifi cant effects (inhibition 

or stimulation) of recombinant CX3CL1 or cell-bound 

CX3CL1 on osteoclast formation or maturation (unpublished 

observation). CX3CL1, especially the soluble form, may 

have important functions at infl ammatory sites, and these 

functions may depend upon the type of stimuli or upon other 

factors including the type of activated cells, damaged organ, 

or bone/joint infl ammation.

Notably, several investigations have demonstrated that 

co-stimulation by TNF-α and IFN-γ stimulates CX3CL1 

expression by various cell types (Yoshida et al 2001; Ludwig 

et al 2002). However, until now the signaling mechanisms 

by which infl ammatory stimuli induce CX3CL1 expression 

by OBs had not been elucidated. Our fi ndings revealed 

that co-stimulation by TNF-α and IFN-γ induces CX3CL1 

expression by OBs mainly through the activation of NF-κB 

and STAT-1 pathways. It is well known that TNF-α and 

NF-κB are important for the induction and expression of 

cytokines, chemokines, and growth factors (Li and Verma 

2002; Bonizzi and Karin 2004; Jimi and Ghosh 2005) and 

play crucial roles in the pathogenesis of RA (Aggarwal 

2000). Indeed, several cell types express CX3CL1 through 

the NF-κB pathway upon stimulation by TNF-α (Garcia et al 

2000; Chandrasekar et al 2003; Chen et al 2003; Ahn et al 

2004). Because CX3CL1 induction seems to be independent 

of the MEK, PLC, sphingosine kinase, and PI 3’-kinase 

pathways, TNF-α signaling through NF-κB may be crucial 

for the expression of CX3CL1 by OBs. Furthermore, the 

activity of the NF-κB pathway may vary depending on cell 

type and on the factors induced by TNF-α.

The present study also investigated the role of the tran-

scription factor STAT-1 in CX3CL1 expression by OBs. 

STAT-1 expression by OBs was up-regulated by IFN-γ 

stimulation and by the combination of TNF-α and IFN-γ, but 

not by TNF-α alone. siRNA inhibition of STAT-1 demon-

strated that STAT-1 appears to be important for up-regulating 

CX3CL1 in OBs. STAT-1 plays crucial roles in several 

infl ammatory conditions including RA (Wang et al 1995; 

Kasperkovitz et al 2004), as well as in bone remodeling 

(Kim et al 2003; Takayanagi et al 2005). The present results 

suggest that STAT-1 regulation of CX3CL1 expression by 

OBs may be important in these situations.

In conclusion, OBs appear to be an important cellular 

source of CX3CL1. A more complete understanding of the 

functions of OB-derived CX3CL1 in pathological condi-

tions such as RA should provide insights into infl ammatory 

disease pathogenesis and suggest new strategies for clinical 

intervention.
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