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Abstract

Multidrug-resistant (MDR) Enterococcus faecalis are major causes of hospital-acquired

infections. Numerous clinical strains of E. faecalis harbor a large pathogenicity island that

encodes enterococcal surface protein (Esp), which is suggested to promote biofilm produc-

tion and virulence, but this remains controversial. To resolve this issue, we characterized

the Esp N-terminal region, the portion implicated in biofilm production. Small angle X-ray

scattering indicated that the N-terminal region had a globular head, which consisted of two

DEv-Ig domains as visualized by X-ray crystallography, followed by an extended tail. The N-

terminal region was not required for biofilm production but instead significantly strengthened

biofilms against mechanical or degradative disruption, greatly increasing retention of

Enterococcus within biofilms. Biofilm strengthening required low pH, which resulted in Esp

unfolding, aggregating, and forming amyloid-like structures. The pH threshold for biofilm

strengthening depended on protein stability. A truncated fragment of the first DEv-Ig

domain, plausibly generated by a host protease, was the least stable and sufficient to

strengthen biofilms at pH� 5.0, while the entire N-terminal region and intact Esp on the

enterococcal surface was more stable and required a pH� 4.3. These results suggested a

virulence role of Esp in strengthening enterococcal biofilms in acidic abiotic or host

environments.

Author summary

The bacterium Enterococcus faecalis is part of the normal microbiome but can also cause

serious hospital-acquired infections. Enterococcus strains isolated from hospitals tend to

have certain proteins not found in microbiome strains. Such proteins are therefore likely

to be important in infection. We sought to understand the function of one such protein,
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Esp, through biochemical, biophysical, and microbiological techniques. We found that

Esp, which is on the bacterial surface, formed amyloid-like fibrils that prevented removal

of biofilms. Biofilms are bacterial communities enmeshed within a matrix, and form

within the body or on inert objects like catheters. They promote infection by increasing

resistance to antibiotics and interfering with clearance by the immune system. We

observed that biofilms that lacked Esp could be disrupted much more easily than those

that had Esp. We also found that Esp acted only at low pH (i.e., acidic conditions). Exactly

how low a pH depended on whether Esp remained on the bacterial surface or was liber-

ated from the surface by a protease, with a human intestinal protease being a likely cause

of liberation. In summary, we found that Esp acts at acidic conditions and likely contrib-

utes to virulence by preventing the dispersal of biofilms.

Introduction

Multidrug-resistant (MDR) Enterococcus faecalis and E. faecium are major causes of life-

threatening hospital-acquired infections [1]. A number of virulent strains of these gram-posi-

tive bacteria harbor a large pathogenicity island that encodes enterococcal surface protein

(Esp). Examples include MDR E. faecalisMMH594 and vancomycin-resistant V586, and

MDR patient isolates of the E. faecium CC17 clonal lineage [2–5]. Esp belongs to the “peri-

scope” family of proteins [6], which are characterized by having a variable number of tandemly

arranged C-terminal repeats that serve to structurally project a functional N-terminal non-

repeat region outwards from the bacterial surface (Fig 1A) [2]. The C-terminal repeats consti-

tute the majority of this ~200 kDa protein, while the N-terminal non-repeat region is ~75 kDa.

Esp is covalently attached to the bacterial cell wall through an LPXTG-like motif at its C-termi-

nus [2].

Esp is suggested to promote biofilm production [5, 7, 8]. Evidence for this function comes

from experiments in which esp was deleted in a clinical E. faecium strain [5], or expressed

from a plasmid in E. faecalis strains lacking esp (i.e., FA2-2 and OGR1F) [8]. In these experi-

ments, the presence of esp resulted in greater biofilm mass, as measured by staining biofilms

with crystal violet (CV), a non-specific dye. The Enterococcus biofilm matrix is composed of

polysaccharides, proteins, and DNA [9], and enhances resistance to antibiotics and immune

clearance [10]. Biofilms have roles not only in host niches but also on abiotic surfaces, such as

catheters [11]. The Esp N-terminal non-repeat region, when expressed from a plasmid in the

esp−strain E. faecalis FA2-2, is sufficient for increased biofilm production [12]. A similar effect

on biofilm production, albeit evaluated only qualitatively, is seen when a portion of the Esp N-

terminal region is heterologously expressed from a plasmid in Staphylococcus aureus [13]. At

low pH (4.2), this same portion of the Esp N-terminal domain forms an amyloid-like structure

[13], which is not uncommon in bacterial biofilms [14, 15]. Amyloid-like fibrils are produced

by numerous types of proteins and arise from unfolding of the native protein conformation

and misfolding into a β-strand-rich structure.

However, other results suggest that Esp is not required for biofilm production. For example,

a number of E. faecalis strains that lack esp, such as OGR1F, are fully capable of forming bio-

films [16]. Not all strains that express esp produce biofilms [7, 17, 18], and expression of E. fae-
calis esp in an E. faecium strain lacking esp did not promote biofilm production [12]. In

addition, Esp is seen to promote biofilm production only under the limited condition of glu-

cose being present in the growth medium [5, 7, 8, 12, 13]. Indeed, whether esp contributes to
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biofilm production by MMH594, the strain in which it was first identified [2], has not been

reported.

The existence of Esp on a pathogenicity island and the high sequence conservation of its N-

terminal non-repeat region among E. faecalis strains suggest a functional role for Esp. To gain

further insight into Esp function, we pursued biochemical and structural studies of its ~75 kDa

N-terminal region. We found that the N-terminal region was not required for biofilm produc-

tion, but had a significant effect in strengthening enterococcal biofilms against mechanical or

degradative disruption. Biofilm strengthening was dependent on low pH, which was brought

about by fermentative catabolism of glucose in the medium. Low pH (� 4.3) promoted the

unfolding of the Esp N-terminal region from its native conformation, resulting in aggregation

and formation of an amyloid-like structure. Intact Esp on the enterococcal surface also

required this low of a pH to strengthen biofilms. A ~20 kDa fragment, EspDDDK, from the very

N-terminus of the mature form of Esp (i.e., after removal of its signal sequence), which could

conceivably be produced by the host protease enteropeptidase, was sufficient for biofilm

strengthening. This fragment was less stable than the intact N-terminal region, and strength-

ened biofilms at pH� 5.0. Our results suggest that Esp functions to strengthen enterococcal

biofilms in acidic abiotic or host environments.

Fig 1. Esp domains. A. Schematic of Esp domains. The N-terminal non-repeat region, encompassed by Esp743 (and

composed of Esp1, Esp2, and Esp453-743 regions), is followed by A, B, C repeats and a C-terminal domain (“C”). The

extent of the EspDDDK and Esp452 fragments is indicated, and “S” denotes the signal sequence. B. Structure of Esp452

in ribbon representation with Esp1 and Esp2 domains in pink and blue, respectively. The loop connecting the two

domains is in cyan. Amino acids 407–419 lacked electron density and were not modeled (dashed line).

https://doi.org/10.1371/journal.ppat.1010829.g001
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Materials & methods

Ethics statement

Animal experiments were approved by the UC San Diego Institutional Animal Care and Use

Committee (IACUC) under protocol number S00227M, and conducted under accepted veteri-

nary standards.

Protein expression constructs

The coding sequences of Esp452 (aa 1–452, i.e., including the putative signal sequence) and

Esp743 (aa 48–743) were amplified by PCR from E. faecalisMMH594 and inserted through

restriction digestion and ligation into pET28a vector (Novagen) that was modified to encode a

C-terminal PreScission protease cleavage site followed by a His6-tag. The coding sequence of

Esp453-743 was amplified by PCR from the pET28a-Esp743 vector and inserted through restric-

tion digestion and ligation into the modified pET28a vector. Expression constructs for Esp1

(aa 1–241) and EspDDDK (aa 1–226) were generated by inverse PCR from the pET28a-Esp452

vector using the Agilent QuikChange II kit. The integrity of DNA constructs was confirmed

by sequencing (Genewiz). Esp743 differed from other constructs in having Ala (encoded by

the PCR primer) rather than Val at position 57. Esp isolates have Ala, Val, or Ile at this posi-

tion, which occurs on a disordered portion of the protein (see below). Sequences of primers

are in S1 Table.

Expression and purification

Plasmids encoding various Esp regions were transformed into Escherichia coli BL21 (DE3)

Gold. Transformed bacteria were grown with shaking at 37˚C in LB broth containing 50 μg/

mL kanamycin to OD600 0.6–0.8, and then induced with 1 mM isopropyl β-d-1-thiogalacto-

pyranoside (IPTG). Thereupon bacteria were grown overnight with shaking at 16˚C. For

expression of selenomethionine (SeMet)-labeled Esp452, bacteria were grown and SeMet

incorporated as previously described [19]. Bacteria were harvested by centrifugation (1,700 x

g, 20 min, 4˚C), resuspended, and incubated for 15 min in lysis buffer (300 mM NaCl, 20 mM

Tris, pH 8.0) supplemented with 1 mg/mL lysozyme and 1 mM PMSF. In the case of Esp743,

the lysis buffer also included 20 units/μL DNase (Thermo EN0521), 2.5 mM MgCl2, and 1 mM

CaCl2. Resuspended bacteria were lysed by sonication. The lysate was centrifuged (16,000 x g,
20 min, 4˚C) and the supernatant clarified through a 0.8 μm filter using a syringe. The filtered

lysate was applied to a Ni2+-NTA column that had been equilibrated with lysis buffer. In the

case of Esp743, the lysate was incubated on the column for 20 min. The column was washed

with five column volumes of lysis buffer, followed by five column volumes of wash buffer (lysis

buffer + 0 mM imidazole for Esp452, and + 5 mM imidazole for all other fragments). Samples

were then eluted with lysis buffer supplemented with 100 mM imidazole. After confirmation

of purity by SDS-PAGE, eluted fractions were placed in dialysis tubing (6–8 kDa cutoff), with

or without 25 μg/mL His6-tagged PreScission protease in lysis buffer containing 2 mM DTT,

and dialyzed overnight in the same buffer. When applicable, PreScission protease was removed

by reverse-nickel chromatography. Esp constructs were then concentrated by ultrafiltration to

10–40 mg/mL (ε280calc 54,780 M-1cm-1 for Esp452; 69,220 for Esp743; 14,440 for Esp453-743;

22,920 for EspDDDK; 24,410 for Esp1), filtered by syringe through a 0.8 μm filter, and applied to

a Superdex 200 column (GE Healthcare) for size-exclusion chromatography in 150 mM NaCl,

20 mM Tris, pH 8.0. Fractions from the column were pooled and dialyzed into either 10 mM

NaCl, 10 mM Tris, pH 8.0 for crystallization or phosphate buffered saline (PBS), pH 7.4 for all

other experiments.
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Crystallization

Crystals of Esp452 were grown by the sitting drop diffusion method at 20˚C with drops composed

of 1.0 μL Esp452 (7.5 mg/mL) and 1.0 μL precipitant solution containing 16% PEG 3350, 200 mM

ammonium acetate, pH 7.0. For hydrogel polymer stabilization [20], crystals were soaked in the

precipitant solution supplemented with 100 mM CaCl2, and then soaked in a drop of precipitant

solution containing 8.625% (w/v) sodium acrylate, 2.5% (w/v) acrylamide, and 0.2% (w/v) bis-

acrylamide for 48 h. Crystals were transferred to a fresh drop of precipitant solution containing

1% ammonium persulfate and 1% TEMED for 10 min, and flash-cooled in liquid N2.

Crystals of SeMet-labeled Esp452 and some crystals of native Esp452 were not stabilized in

the hydrogel polymer. These particular crystals were grown at 20˚C with drops composed of

0.75 μL native or SeMet-labeled Esp452 (8 mg/mL) and 1.0 μL precipitant solution containing

20% PEG 3350, 200 mM ammonium citrate, pH 7.0. In the case of native Esp452, the drops

also contained 12.5 mM CaCl2, or in the case of SeMet-labeled Esp452, 3.75% sucrose. These

crystals were cryoprotected by soaking in precipitant solution supplemented with 20%

2-methyl-2,4-pentanediol, and flash-cooled in liquid N2.

Structure determination

Anomalous dispersion data were collected from SeMet-labeled crystals of Esp452 to 2.3 Å reso-

lution limit (Advanced Light Source beamline 12.3.1), and indexed, integrated, and scaled

using HKL2000 (S2 Table, Esp–SeMet) [21]. Phases were determined with Autosol [22], which

identified four anomalous scatterers per asymmetric unit. These corresponded to four of the

six methionines of Esp452, with a single molecule of Esp452 occupying the asymmetric unit.

The initial model was generated by automated building in Autosol and refined with phenix.

refine using default parameters [22]. Amino acids and other molecules were modeled into elec-

tron density manually in Coot, as guided by inspection of σA weighted 2mFo-DFc and mFo-

DFc maps, The model was then further refined against diffraction data of higher resolution

limit, 2.1 Å (Advanced Photon Source beamline 24-ID-E), collected from crystals of native

Esp452 that had been soaked in CaCl2 (S2 Table, Esp + Ca2+). Data were processed as

described above, and phases were determined by molecular replacement using Phenix

(MR-Phaser) with the model of Esp452 that had been refined against the Esp—SeMet data set.

This model of Esp452 was further refined against the Esp + Ca2+ data set.

This further refined model served as the molecular replacement phasing model for diffrac-

tion data collected from hydrogel polymer-stabilized Esp452 crystals, which diffracted to 1.4 Å
resolution limit (Advanced Light Source beamline 5.0.2). These high-resolution data were

scaled using Aimless [23], and phases determined by molecular replacement using MOLREP

(S2 Table, Esp). Model building, refinement, and inspection of maps was carried out as

described above. Electron density for the main chain in the final model was visible throughout,

except for amino acids (aa) 50–58, 408–418, and 449–452. Waters were modeled using Coot

and verified by manual inspection of difference maps. The final model contained a Ca2+ ion

and 433 waters. Reflections that were unique to the 1.4 Å resolution limit dataset constituted

69.3% of total reflections, and the Rwork and Rfree of these were 15.4% and 18.9%, respectively.

The structure was deposited in the RCSB PDB (6ORI).

Pymol (The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC) was

used for generating molecular figures.

Fibrinogen binding

Human fibrinogen (Millipore Sigma) was resuspended in PBS at 1 ng/μL, and 100 μL was used

to coat wells of a 96-well plate (Corning, #3603). The plate was incubated overnight at 4˚C.

PLOS PATHOGENS Biofilm strengthening

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010829 September 14, 2022 5 / 26

https://doi.org/10.1371/journal.ppat.1010829


Wells were washed 3X with TBST (150 mM NaCl, 20 mM Tris, pH 8.0, 0.1% Tween), then

blocked with TBST + 0.1% bovine serum albumin (BSA) for 1 h at RT. The wells were washed

3X with TBST. Esp452-His6 (3 μg), M1-His6 (1 μg), or PBS was added to the plate, and the

plate was nutated for 1.5 h at RT. The wells were then washed 3X with TBST. Anti-His HRP-

conjugated monoclonal antibody was added at 1:500 dilution for 1 h at RT. The wells were

washed 3X with TBST, and then TMB substrate was added as recommended by the manufac-

turer (BD Biosciences). The OD450 was measured by plate reader (TECAN).

Glycan screen

Binding of Esp452-His6 to human glycans was assessed by the National Center for Functional

Glycomics at Harvard University (https://ncfg.hms.harvard.edu/). These data are listed in

S3 Table.

UTI model

E. faecalisMMH594 and MMH594b (Δesp) were grown overnight in BHI media to approxi-

mately 109 CFU/mL. Urine was voided from ten week-old C57bl6 mice (Jackson Laboratory)

and 50 μL containing ~2 x 108 CFU were injected through the urethra under anesthesia as

described previously [24]. At 1 day after inoculation, urine from each mouse was collected,

diluted, and plated on BHI agar containing 20 μg/mL Erm. Five mice were sacrificed, and their

kidneys and bladders homogenized and plated. This procedure was repeated on days 3 (two

experiments) and 5 (one experiment). The experiment was performed twice independently

and results combined for a total of ten mice/group on days 1 and 3 and five mice/group on

day 5.

Biofilms

E. faecalis was grown on plates containing Brain Heart Infusion (BHI) agar supplemented with

antibiotics: MMH594, 20 μg/mL erythromycin (Erm); MMH594b (Δesp), 20 μg/mL Erm and

20 μg/mL chloramphenicol (Cm); FA2-2 and OG1RF, 25 μg/mL rifampicin. Strains trans-

formed with pEsp [8] were grown with 500 μg/mL spectinomycin in addition to the aforemen-

tioned antibiotics. Single colonies were picked from plates and grown in 5 mL shaking

cultures in BHI containing antibiotics for 16 h, and diluted to an OD600 of 2.7. Cm was omitted

at this stage for MMH594b (Δesp) because it slowed bacterial growth. This culture was inocu-

lated 1:100 into 1.0 mL tryptic soy broth (TSB) containing 0.5% w/v glucose (TSBG) in a

12-well plate and grown at 37˚C, with varying concentrations of Esp fragments or an equiva-

lent volume of PBS for 19–20 h. The planktonic fraction of the culture was removed by pipette.

The biofilms were washed twice with 500 μL TSB, and then resuspended in 500 μL 1.5 M

NaCl. The resuspensions were centrifuged (4500 x g, 5 min, 4˚C) and the supernatants dis-

carded. Bacterial pellets were resuspended in 1.0 mL TSB, and 100 μL of each sample added to

a well of a black, clear-bottom 96-well plate (Corning, #3603). Reconstituted CellTiter-Glo

reagent, which contained lysis buffer and luciferase, was added to each well and samples were

measured according to manufacturer’s recommendations with a TECAN well-plate reader.

For DNase experiments, biofilms were grown as described above. At 19 h after inoculation,

DNase II (Sigma) was added to a final concentration of 750 μg/mL. Biofilms were incubated

for an additional 3 h at 37˚C, and then washed and harvested as described above.

For measurements with crystal violet, biofilms were grown as described above but in a

96-well plate (Corning, #3603) with 100 μL media per well. Culture supernatants were

removed and biofilms were washed 2X with 100 μL PBS. Biofilms were dried inverted for 1 h

at RT, and then stained with 100 μL of 0.2% crystal violet for 20 min. The crystal violet solution

PLOS PATHOGENS Biofilm strengthening

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010829 September 14, 2022 6 / 26

https://ncfg.hms.harvard.edu/
https://doi.org/10.1371/journal.ppat.1010829


was removed, and the wells were washed 2X with 120 μL water. The stain was solubilized with

100 μL of 4:1 ethanol:acetone and vigorous pipetting. OD595 of the ethanol:acetone mixture

was measured with a TECAN plate reader.

Thioflavin T

For in vitro experiments, 25 μg of Esp constructs were incubated in a 96-well plate in 100 mM

sodium citrate buffer at pH’s ranging from 4.2 to 6.0 and containing 20 μM Thioflavin T

(Sigma). The plate was incubated at 37˚C for 24 h, then shaken for 60 sec in a well-plate reader

and fluorescence at 454 nm was measured. The optical density at 400 nm was measured imme-

diately afterwards.

For biofilm experiments, Esp constructs were serially diluted in TSBG in wells of a 96-well

plate (Corning, #3603). MMH594b (Δesp) biofilms were grown in these wells as described

above. The culture supernatant was aspirated, and biofilms were washed twice with 50 μL TSB.

Thioflavin T was added to each well in sodium citrate, pH 4.5 and incubated for 10 min with-

out shaking. Fluorescence was measured with a TECAN well plate reader.

Confocal microscopy

Esp452 and Esp743 were covalently labeled with Alexa Fluor 647 (AF647) using Alexa Fluor

647 NHS Ester (Invitrogen), according to the manufacturer’s recommendations. Biofilms were

grown, as described above, in an 8-well chamber slide (NuncR Lab-Tek II, Thermo Scientific)

containing 250 μL TSB with 0.5% glucose, 2.5 μL E. faecalisMMH594b (Δesp) overnight cul-

ture (OD600 0.027), and Esp-AF647 labeled proteins. The biofilms were washed with 500 μL

TSB, incubated with 250 μL Syto 13 (1 μM) at 37˚C for 15 min in the dark, and washed twice

with PBS. Slides were prepared by removal of the chambers, followed by addition of 1 drop of

ProlongGold antifade mounting solution and a coverslip. Slides were cured for 2 h at RT in

the dark.

Biofilms were imaged using a Leica TCS-SPE confocal system with coded DMI4000B-CS

inverted microscope (Leica, Wetzlar, Germany) using a 10x/0.30 NA HC PL Fluotar dry objec-

tive. Confocal images were obtained from each sample in two independent experiments with

an average of 35 Z slices scanned with a 1.2 μm step size at a resolution of 512 x 512 pixels.

Simultaneous dual-channel imaging was used to display Syto 13 (green) and AF647 (far red)

fluorescence. Emission wavelengths for green fluorescence ranged between 495–553 nm and

for red fluorescence between 650–670 nm. The excitation wavelength and laser power were

488 nm and 55% for the FITC (green) emission filter and 635 nm and 30% for the Cy5 (red)

emission filter. The pinhole aperture was 488 nm-128.6 μm, 1.36 AU (frame average 1) and

635 nm-94.3 um 0.99 AU (frame average 4). The PMT detector gains and offsets used were

670 and -5 for the 488 nm laser line and 600 and -5 for the 635 laser line. Z-stack images were

taken for each sample; the upper and lower stacks were set by cycling through the axial range,

in both directions, until no fluorescence was observed (or the image was out of focus). LAS AF

software was used for image acquisition and to export the data into individual image files

(JPEG/TIFF). The Manders coefficient [25], which reports the ratio of the summed intensities

from pixels in the red channel (protein) for which the intensity in the green channel (biofilm)

was above zero to the total intensity in the red channel, was calculated for the entire stack with

the ImageJ plug-in JACoP [26].

SEC-MALS-SAX

Size exclusion chromatography (SEC) coupled multi-angle light scattering (MALS) and small-

angle x-ray scattering (SAXS) was carried out at the SIBYLS beamline 12.3.1 at the Advanced
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Light Source [27]. Esp fragments (80 μL, S4 Table) were loaded onto a Shodex KW803 SEC

column, equilibrated in 100 mM NaCl, 100 mM Tris, pH 7.2 with a flow rate of 0.5 mL/min at

20˚C. SEC eluant was split 3:1 between a SAXS flow cell and MALS cell. Three second SAXS

exposures were collected continuously at a wavelength of 1.127 Å, and with a sample-to-detec-

tor distance of 2.1 m. Buffer after the peak was averaged and used for subtraction. SAXS frames

with consistent Rg were merged for further analysis. MALS was measured on an 18-angle

DAWN HELEOS II light scattering detector connected in tandem to an Optilab refractive

index concentration detector (Wyatt Technology), and was calibrated with BSA (45 μL, 10

mg/mL) in the same run. Data were processed with ASTRA Version 6.1.6.5 (Wyatt Technol-

ogy) with dn/dc set at 0.19. SEC-SAXS data were analyzed on SCÅTTER (https://bl1231.als.lbl.

gov/scatter/); GNOM (ATSAS package) [28], and FoXS/FoXSDock [29]. Ab initio shape

reconstructions were calculated using GASBOR in the ATSAS suite [30]. ColabFold models

[31] were conformationally modified in ALLOSMOD-FOXS [32, 33] to fit the experimental

data.

Esp452 antibodies

Purified Esp452 was used as an antigen to generate rabbit polyclonal antibodies commercially

(Cocalico Biologicals). The rabbit was boosted three times on days 14, 21, and 49 after initial

inoculation, and the bleed collected on day 56 was used for experiments.

Flow cytometry

Biofilms were dissolved with 1.5 M NaCl and E. faecalis pelleted from solution by centrifuga-

tion, as described above. Bacterial pellets were resuspended to an OD600 of 1.0. Three

hundred μL of the resuspension was blocked with PBS supplemented with 1% BSA (PBS

+BSA) on ice for 30 min. Rabbit anti-Esp polyclonal antibody was added at a 1:500 dilution,

and the sample was incubated for 1 h on ice. The sample was centrifuged (4,500 x g, 5 min,

4˚C), and the pellet was washed 3X with PBS. The pellet was resuspended in PBS+BSA with

1:200 donkey anti-rabbit IgG conjugated to Alexa Fluor 488 (Invitrogen), and incubated 30

min at RT. The sample was centrifuged (4,500 x g, 5 min, 4˚ C), and the pellet was washed with

PBS. The sample was resuspended in 1 mL PBS+BSA and diluted 1:10 in PBS for analysis by

flow cytometry (BD Accuri).

Western blot

Samples were resolved on a 12% acrylamide SDS-PAGE gel and transferred to a nitrocellulose

membrane (100 V, 45 min). The membrane was blocked in 0.1% TBST containing 1% w/v

milk powder for 1 h at RT, then incubated in 0.1% TBST + milk containing 1:500 dilution of

rabbit anti-Esp452 polyclonal antibodies at 4˚C overnight. The membrane was washed 3X

with 0.1% TBST, then incubated in 0.1% TBST containing 1:4000 goat anti-rabbit antibody

conjugated to HRP for 1 h at RT (SouthernBiotech).

Enteropeptidase digestion of Esp743

Eight units of enteropeptidase light chain (New England Biolabs, 16 units per μL) and 25 μg of

Esp743 (50 μg/μL) were added to 39 μL 50 mM NaCl, 2 mM CaCl2, 20 mM Tris, pH 7.5 for 3 h

at 37˚C. The reaction was stopped by incubation for 30 min at RT with 1.1 μL 200 mM PMSF,

1.1 μL 400 mM EGTA, and 2.8 μL 4 M NaCl, for final concentrations of 5 mM,10 mM, and

250 mM, respectively. SDS-PAGE loading dye was then added to samples, which were resolved

by SDS-PAGE and visualized by InstantBlue staining.
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Mass spectrometry

Mass spectrometry measurements were conducted by the Molecular Mass Spectrometry Facil-

ity of the UC San Diego Chemistry and Biochemistry Department, using an Agilent 6230

LC-ESI-TOFMS or a Bruker Autoflex Max MALDI-TOFMS.

Results

Structure of Esp452

A portion of the N-terminal region of Esp encompassing aa 50–452, Esp452, was crystallized.

This shorter portion of the N-terminal non-repeat region of Esp (Fig 1A) was chosen since

potential additional repeat regions were identified downstream of aa 453 using RADAR [34].

Esp452 was recombinantly expressed in E. coli with its putative signal sequence retained at its

N-terminus, as only a moderate probability of signal sequence cleavage (between 49 and 50)

was predicted by SignalP [35]. Mass spectrometry (ESI) of Esp452, which was purified using a

His6-tag that had been added to its C-terminus, demonstrated that the predominant fraction

started at aa 50 due to processing in E. coli (S1 Fig). The structure of Esp452 was determined to

1.4 Å resolution limit by single anomalous dispersion (SAD) from selenomethionine-labeled

protein (S2 Table).

The structure revealed that Esp452 is composed of two globular domains (Esp1, aa 58–236;

and Esp2, aa 257–447), each having a DE-variant immunoglobulin (DEv-Ig)-fold, in which

two additional β-strands (D’ and D”) occur within the Ig-fold (Figs 1B, S2A and S2B). The two

domains are similar but not identical (rmsd 3.3 Å, 183 Cα). Esp1 and Esp2 pack together, with

a number of waters at the interface, and form a continuous surface, which is positively charged

on one side and negatively charged on the other (S2C Fig). A 20-amino acid long loop, which

appears to be flexible due to its high relative B-factor, connects the two domains (S2D Fig).

A structural similarity search [36] carried out soon after the structure was determined

showed that Esp452 resembled proteins belonging to two large families of bacterial adhesins,

namely the Microbial Surface Components Recognizing Adhesive Matrix Molecules

(MSCRAMMs) and the Streptococcus Antigen I/II protein families (S2E and S2F Fig).

MSCRAMMS have been identified in Staphylococcus, Streptococcus, and Enterococcus, and are

typically involved in adhesion to host extracellular matrix proteins [37]. Eight MSCRAMMs

that are structurally similar to Esp452 bind fibrinogen (Fg) [37–41], and thus Fg-binding by

Esp452 was probed by ELISA. While binding between Fg and S. pyogenesM1 protein was

detected (as a positive control), no binding between Fg and Esp452 was evident (S3 Fig). Anti-

gen I/II proteins are virulence factors that mediate glycan-dependent attachment of Streptococ-
cus to mucins or tissues [42]. The glycan-binding sites of Antigen I/II proteins are variable, but

are typically characterized by a stabilizing isopeptide bond and a BAR motif. While Esp452

possessed neither of these structural features, it remained possible that Esp452 targeted gly-

cans. Glycan-binding of Esp452 was tested using a human glycan microarray screen, but

Esp452 did not bind glycans in the screen at a significant level or dose-dependent manner (S3

Table); these included sialic acid, lactose, and GalNAc, each of which bind Antigen I/II pro-

teins [42, 43].

E. faecalis Esp is ascribed to have a role in urinary tract infections. This is based on compar-

ison of parental MMH594 and MMH594b (Δesp) strains in a murine model of infection [44].

This study reported that MMH594 was cleared less well in the urine and bladder compared to

MMH594b (Δesp), although no difference in histopathology was evident. Thus, with the possi-

bility that a potential host target was in the urinary tract, we sought to verify this result. How-

ever, no difference was seen in bacterial counts between MMH594 and MMH594b (Δesp) in
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urine, bladder, or kidney (S4 Fig). Additionally, there were no differences between rates of bac-

terial presence or absence across tissues or time points. Together, these results indicated that

Esp was unlikely to be an adhesin that targeted the urinary tract.

Esp452 strengthens enterococcal biofilms

As Esp is implicated in biofilm production, the effect of Esp452 on enterococcal biofilms was

evaluated. Log-phase cultures of MMH594b (Δesp) were inoculated into media containing

0.5% glucose, as no effect of Esp is seen without glucose [5, 7, 8, 12, 13], and the resulting cul-

ture was placed into polystyrene wells. Esp452 or a fragment corresponding to the remaining

portion of the N-terminal region, aa 453–743 (Fig 1A, Esp453-743), was added to the wells at the

time of inoculation. As a negative control, PBS was added instead of protein. After 19–20 h of

growth to stationary phase, biofilms were evident in all wells (Fig 2A). Culture supernatants,

which contained planktonic bacteria, were removed from biofilms, and the biofilms were

washed twice. Biofilms that had Esp452 added were more resistant to washing than those that

had either PBS or Esp453-743 added (Fig 2A). Biofilms were then solubilized in 1.5 M NaCl [45],

and bacteria were harvested from this biofilm fraction. Bacteria in the biofilm fraction along

with those in the planktonic and two wash fractions were enumerated based on ATP content,

as determined by luciferase-generated luminescence (Fig 2B). This measure was verified to be

linearly related to the number of colony forming units and optical density (S5A–S5C Fig). Bac-

terial counts were enumerated rather than the more conventional approach of evaluating bio-

films by CV staining, as the latter is non-specific and would detect protein added to biofilms,

as in our experiments. The total luminescence of biofilms grown in the presence of PBS,

Esp452, or Esp453-743 was equivalent (S6 Fig), indicating that the addition of the Esp fragments

had no effect on bacterial numbers.

While no difference in luminescence for planktonic fractions was observed, a statistically

significant difference was observed for the two wash fractions, in which fewer bacteria were

washed away from the biofilm grown with Esp452 as compared to the biofilms grown with

Esp453-743 or PBS (Fig 2B). Consistent with this result, significantly more bacteria were recov-

ered from the biofilm grown with Esp452 as compared to those grown with Esp453-743 or PBS

(Fig 2B). These results indicated that Esp452 strengthened biofilms against mechanical disrup-

tion (i.e., washing).

The effect of Esp452 on biofilm strengthening was dose-dependent. The results described

above were carried out with 4.0 μM Esp452 or Esp453-743. We found that 4.0 μM Esp452 was

saturating and that the EC50 was approximately 740 nM (Fig 2C). In comparison, the addition

of Esp453-743 at the highest concentration of 8 μM continued to have no effect on biofilms as

compared to the addition of PBS. For experiments described below, unless stated otherwise,

Esp452 and other Esp fragments were used at the saturating concentration of 4.0 μM.

We next asked if Esp452 possessed the capacity to strengthen biofilms against other types of

perturbations, such as enzymatic degradation by DNase. Enterococcal biofilms contain extra-

cellular DNA and can be degraded by DNase [46, 47], and we confirmed that enterococcal bio-

films were weakened by DNase, with the bacterial count decreased to 57.8% of an untreated

biofilm (Fig 2D). By comparison, the bacterial count in biofilms grown with Esp452 and

treated with DNase were reduced to only 77.0% (Fig 2D). Biofilms grown with Esp453-743 were

not significantly different from biofilms grown with PBS. These data indicated that Esp452

strengthened enterococcal biofilms from disruption caused by DNase.

Biofilm formation occurs in stages, beginning with attachment and initiation of biofilm

matrix production [10]. We wondered if the strengthening provided by Esp452 was contingent

upon its presence during the attachment and initiation phases. To test this, MMH594b (Δesp)
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Fig 2. Strengthening of enterococcal biofilms by Esp452. A. MMH594b (Δesp) biofilms grown with PBS, Esp453-743,

or Esp452 before (top) and after (bottom) washing. B. Proportion of total luminescence from luciferase generated by

the planktonic fraction, wash fractions, or biofilm fraction of E. faecalisMMH594b biofilms grown with PBS, Esp453-

743, or Esp452. Samples were collected in triplicate for each of three independent experiments. Each luminescence

measurement was divided by the total luminescence of the corresponding well. The standard error of the mean (SEM)

is indicated with error bars. Esp453-743 and Esp452 fractions were compared to the corresponding PBS fraction by

2-Way ANOVA and Tukey’s post hoc test. All significant results are indicated on the graph. � p< 0.01, ��� p< 0.0001,
���� p< 0.00001. C. Luminescence of biofilm fraction for MMH594b (Δesp) biofilms grown with Esp452 (red circles)

at varying concentrations or with Esp453-743 (blue circle) at 8 μM, divided by the average luminescence of biofilm

fractions for biofilms grown with PBS. Samples were collected in duplicate for each of three independent experiments.

The SEM is indicated with error bars. The 95% confidence interval (CI) of the dose-response curve is indicated in

dashed lines. The EC50 is indicated with the dotted line. D. Luminescence of biofilm extract of MMH594b biofilms
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biofilms were first grown for 19–20 h without the addition of Esp fragments, and then Esp452,

Esp453-743, or PBS was added to the pre-formed biofilms. Esp452 had a strengthening effect on

pre-formed biofilms, which was evident after 60 min of incubation and required more than 15

minutes (Fig 2E). As before, no strengthening occurred with Esp453-743 or PBS. These results

indicated that Esp452 was not required during biofilm attachment or initiation for its strength-

ening action, and that Esp452 could strengthen pre-existing biofilms.

Esp452 requires low pH for biofilm strengthening

The effect of glucose on biofilm strengthening by Esp452 was investigated. We found that

reduction of the glucose concentration in the biofilm growth media from 0.50% to 0.18% had

a dramatic effect. At 0.18% glucose, Esp452 failed to strengthen the biofilm (Fig 3A). Entero-
coccus is known to acidify growth media containing glucose through fermentation [48], and in

line with this, the pH of the media overlying biofilms grown in 0.50% glucose was pH

4.56 ± 0.07, and pH 5.60 ± 0.06 for those grown in 0.18% glucose (Fig 3B). Esp truncation frag-

ments had no effect on the pH of the overlying media (Fig 3B). These results raised the possi-

bility that pH was a determinative factor in biofilm strengthening by Esp452.

To assess this possibility, Esp452 was placed in buffer solutions of varying pH. At pH 4.5

and lower, Esp452 aggregated with visible precipitation as monitored by OD400, while Esp453-

743 did not aggregate even at the lowest pH tested, 4.2 (Fig 3C). Aggregation of Esp and the

sequence-related S. aureus protein Bap is associated with the formation of β-rich amyloid-like

structures [13, 49]. Thioflavin T (ThT), a fluorescent dye that exhibits an emission shift when

bound to β-rich protein aggregates, was used to evaluate the formation of amyloid-like struc-

tures by Esp. Esp452 bound ThT at pH 4.5 and lower (Fig 3D), while Esp453-743 bound little

ThT between pH 4.2–6.0. These results suggested that the acidic pH brought about by fermen-

tation of 0.5% glucose was crucial for biofilm strengthening by Esp452, and triggered the

unfolding of Esp452 to form aggregates and precipitates, including amyloid-like structures.

Esp452 biofilm strengthening inhibited within intact N-terminal region

The entire N-terminal region of Esp (Fig 1A), Esp743, was recombinantly expressed and puri-

fied, and assayed for biofilm strengthening. Surprisingly, even though Esp743 contained

Esp452, Esp743 provided no biofilm strengthening (Fig 4A). In line with this result, Esp743

showed no aggregation or binding to ThT at pH 4.5 (Fig 3C and 3D). In addition, Esp452

added to biofilms (grown with 0.5% glucose) bound ThT in a dose-dependent manner within

these biofilms, whereas neither Esp743 nor Esp453-743 did (Fig 4B). Fluorescence microscopy of

fluorophore-labeled Esp fragments, which were added at the time of inoculation, revealed that

Esp452, but not Esp743, colocalized with biofilms, which were detected using a nucleic acid-

sensitive fluorophore (Fig 4C and S1–S3 Files). Colocalization was confirmed quantitatively in

two independent experiments, for which the Manders coefficient [25] was calculated to be 0.44

and 0.47 for Esp452, but only 0.03 in both experiments for Esp743. Esp452 was present at and

grown with PBS, Esp453-743, or Esp452, and then incubated with DNase II for 3 hours before washing and dissolution,

divided by the average luminescence of biofilm fractions of biofilms grown with water instead of DNase. The

experiment was conducted with duplicates or triplicates in at least three independent experiments. The SEM is

indicated with error bars. Samples were compared by Welch’s ANOVA with Dunnett’s T3 post-hoc test. � p< 0.05. E.

Luminescence of the biofilm fraction from pre-grown MMH594b (Δesp) biofilms to which PBS (black), Esp453-743

(white), or Esp452 (gray) was added for the indicated time before washing and dissolution. Samples were collected in

duplicate or triplicate for each of three independent experiments. Values were normalized at each time point to the

luminescence of the PBS sample. The SEM is shown with error bars. The samples were compared by Welch’s ANOVA

with Dunnett’s T3 post hoc test. �� p< 0.001, ��� p< 0.0001.

https://doi.org/10.1371/journal.ppat.1010829.g002
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near the top of the biofilm, which may have resulted from precipitation from solution when

the biofilm reached a sufficiently low pH. Together, these results suggested that in the context

of Esp743, the region corresponding to Esp453-743 inhibited the aggregation, amyloid-like

structure formation, and biofilm strengthening activities of Esp452.

SEC-MALS-SAXS analysis

To investigate Esp452 within the context of the entire N-terminal region, crystallization of

Esp743 was pursued. While crystals were obtained, no X-ray diffraction was observed and

efforts to improve the quality of the crystals were unsuccessful. Thus, size-exclusion chroma-

tography (SEC) coupled to multi-angle light scattering (MALS) and small-angle x-ray scatter-

ing (SAXS) analysis was carried out for Esp743, along with Esp452 and Esp453-743. At pH 7.2,

all three Esp fragments eluted primarily as single, monodisperse peaks, and data were linear on

a Guinier plot (S7 Fig), indicative of a lack of aggregation. The MALS and SAX molecular mas-

ses of these fragments were consistent with monomeric states (S4 Table). The Porod exponent

(PX), a protein density measure (maximum of 4.0 corresponds to a well-folded protein, and

Fig 3. Low pH promotes biofilm strengthening by Esp452. A. Luminescence of MMH594b (Δesp) biofilms grown in

either 0.18% or 0.50% glucose, and with PBS, Esp453-743, or Esp452. The experiment was conducted with triplicates.

Samples from three independent experiments were compared by 2-way ANOVA and Tukey’s test. ���� p< 0.0001. B.

The pH of biofilm cultures of MMH594b grown in TSB with 0.18 or 0.50% glucose, and with Esp452, Esp453-743, or

PBS. The experiment was conducted with triplicates. Samples from three independent experiments were combined

and compared by 2-way ANOVA and Tukey’s test. ���� p< 0.0001. C. OD400 of Esp fragments (25 μg) incubated in

sodium citrate buffer at the indicated pH for 24 h. Experiments were conducted with duplicates. Samples from three

independent experiments were combined and the SEM is indicated with error bars. D. Fluorescence of Thioflavin T

incubated for 24 h with Esp fragments (25 μg) in sodium citrate buffer at the indicated pH. Experiments were

conducted with duplicates. Samples from three independent experiments were combined and the SEM is indicated

with error bars.

https://doi.org/10.1371/journal.ppat.1010829.g003
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value of 2.0 corresponds to an unfolded protein), indicated that Esp452 and Esp743 were both

well-folded (PX = 4.0 and 3.8, respectively), whereas Esp453-743 showed significant flexibility

(PX = 2.5) (S4 Table) [50].

SAXS data for Esp452 in solution did not match that calculated from the crystal structure

(Fig 5A and 5B). In particular, the solution data were missing maxima and minima that were

present in the calculated crystal structure curve, indicating an oblong shape for Esp452 in solu-

tion as opposed to the rounded globular structure observed in the crystal structure. Rearrange-

ment of Esp1 and Esp2 domains into alternative configurations, as identified with FoXSDock,

resulted in an improvement in the χ2 fit to the data from 110 to 3.5–4 (Fig 5C). The flexibility

of the loop connecting Esp1 and Esp2 is consistent with this rearrangement (S2D Fig). SAXS

data for Esp453-743 was consistent with an extended, multidomain structure. In silico prediction

using ColabFold [31] suggested that Esp453-743 is composed of three domains, an Ig-like

domain followed by two Rib domains [51]. The fit of this in silicomodel to the data was

improved from a χ2 of 4.4 to 1.8 through molecular dynamics and an ensemble of two models

(Fig 5C, models A and B), consistent with the flexibility of Esp453-743. For Esp743, ab initio
shape reconstruction using SAXS data indicated a globular head connected to an extended tail

[30]. Most significantly, the Esp743 reconstruction was shorter than the sum of the Esp452

and Esp453-743 reconstructions. Together, these data suggested that the Esp452 and Esp453-743

Fig 4. Esp452 inhibited within intact N-terminal region. A. Luminescence of biofilm fractions of MMH594b (Δesp)

biofilms grown with PBS, Esp743, or Esp452, divided by the average luminescence of biofilm fractions from biofilms

grown with PBS. The experiment was conducted with triplicates in three independent experiments. The SEM is

indicated with error bars. Samples were compared by Welch’s ANOVA and D3 Dunnett’s post hoc test. ����

p< 0.0001. B. Fluorescence of Thioflavin T added to MMH594b (Δesp) biofilms that were grown with Esp452, Esp453-

743, or Esp743. Fluorescence measurements from three independent experiments were combined. The SEM is

indicated with error bars. The 95% CI for the dose-response curve of Esp452 is shown as dashed lines. C. Confocal

microscopy images of MMH594b (Δesp) biofilms grown with PBS, Esp743-AF647, or Esp452-AF647 (red). Biofilms

were stained with Syto-13 (green). The images represent Z-stacks with the greatest number of red pixels.

https://doi.org/10.1371/journal.ppat.1010829.g004
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portions interacted in the context of Esp743. This interaction provided a likely mechanism for

stabilization of the Esp452 domains within Esp743, resulting in the inability of the Esp452

domains when a part of Esp743 to unfold, form amyloid-like structures, and strengthen bio-

films at pH 4.5.

Release of biofilm strengthening fragments

Release of Esp452 from intact Esp would provide one mechanism of biofilm strengthening. A

number of proteases, such as several matrix metalloproteases, chymotrypsin, and granzyme B,

are predicted to cleave Esp743 within aa 445–455, based on sequence analysis [52]. Intrigu-

ingly, Esp contains the highly specific enteropeptidase cleavage sequence DDDK (aa 223–226)

within Esp1 on a loop connecting its last two β-strands (S8 Fig). This sequence is predicted

based on structure and sequence analysis [52] to be amenable to cleavage, which would result

in a fragment smaller than Esp452. To assess whether the DDDK site was accessible to entero-

peptidase, Esp743 was treated with human enteropeptidase light chain, and a fragment consis-

tent with the cleavage at this site was produced (S9A and S9B Fig). To explore the activity of

Fig 5. SAXS of Esp fragments. A. Experimental SAXS data (exp) in reciprocal space for Esp452, Esp453-743, and

Esp743 overlaid with SAXS curves calculated for the crystal structure of Esp452 (orange) or models of Esp452, Esp453-

743, or Esp743 (green, blue, purple, respectively). B. Same as A, except in real space and only experimental data and

SAXS curves predicted from models are shown. Curves were normalized for area under the curve. C. Shape

reconstructions based on SAXS data of Esp452, Esp453-743, and Esp743 overlaid with Esp452 or Esp453-743 models.

https://doi.org/10.1371/journal.ppat.1010829.g005
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this specific fragment, an Esp fragment corresponding to the enteropeptidase cleavage prod-

uct, called EspDDDK (Fig 1A), was recombinantly expressed and purified. This fragment was

processed at its N-terminus in E. coli such that it spanned aa 50–226 (S10A Fig). When added

to enterococcal biofilms, EspDDDK strengthened biofilms to nearly a similar extent as Esp452

(Fig 6A). Notably, EspDDDK aggregated and bound ThT at pH 4.8–5.0 (Fig 3C and 3D), about

half a unit higher than Esp452, suggesting that EspDDDK was more unstable than Esp452.

We hypothesized that the relative instability of EspDDDK may have been due to the fact that

this fragment was missing a part of the Esp1 domain. To test this, the entire Esp1 domain was

recombinantly expressed and purified; this fragment was processed at its N-terminus in E. coli
such that it spanned aa 50-241(S10B Fig). Consistent with this hypothesis, Esp1 did not aggre-

gate and bound very little ThT even at the lowest pH tested, 4.2 (Fig 3C and 3D), and provided

no biofilm strengthening (Fig 6B).

These results suggested that the stability of Esp fragments, based on the precise site of pro-

teolytic cleavage, determined the ability and pH threshold of such fragments to strengthen bio-

films. The key role of protein stability in biofilm strengthening was consistent with the

formation of amyloid-like structures, which require protein unfolding.

Esp743 strengthens biofilms at pH� 4.3

The experiments presented above revealed that Esp743 was capable of aggregating and binding

ThT at pH� 4.3 (Fig 3C and 3D). This suggested that Esp743 should strengthen biofilms in an

Enterococcus strain that acidified the medium to a lower pH than MMH594. The E. faecalis
strains FA2-2 and OG1RF, neither of which encode esp, were grown in the presence of 0.5%

glucose, and both were confirmed to form biofilms. The pH of media overlying the biofilms was

determined. FA2-2 acidified the media to pH 4.08 ± 0.16 and OG1RF to 4.27 ± 0.02. In agree-

ment with the predictions above, Esp743 had a statistically significant effect on strengthening

biofilms formed by FA2-2 (Fig 6C) and OG1RF (Fig 6D). As expected, Esp452 also strength-

ened FA2-2 and OG1RF biofilms whereas Esp453-743 had no effect. A further prediction was that

there should be no difference in biofilm strength between MMH594 and MMH594b (Δesp).

This was because the pH threshold for Esp743 was� 4.3 and MMH594 had been found to acid-

ify the media to pH ~4.5. Additionally, no N-terminal fragments of Esp that might have a higher

pH threshold were produced in the biofilm (S11 Fig). Consistent with these observations, there

was no difference in biofilm strength between MMH594 and MMH594b (Δesp) (Fig 6E). Sur-

face expression of Esp in MMH594 was verified by FACS (S12A Fig).

As noted above, plasmid-borne expression of esp from its native promoter has been shown

to favor biofilm production by FA2-2 [8]. This result was verified in FA2-2 using the same

plasmid, pEsp, through both CV staining and bacterial counts (S13 Fig). However, we found

that Esp was expressed on the surface of the transformed FA2-2 strain to a level ~10-fold

greater than native expression on the surface of MMH594 (S12B Fig). While the pH of the

transformed FA2-2 strain was the same as untransformed FA2-2, and no N-terminal frag-

ments of Esp were detected in biofilms of transformed FA2-2 (S14 Fig), overexpression raised

the concern that biofilm strengthening in FA2-2 may be artifactual. This conclusion was veri-

fied by transforming pEsp into MMH594. Esp was overexpressed beyond native levels in trans-

formed MMH594 (S12B Fig), and transformed MMH594 produced biofilms that were

significantly strengthened as compared to untransformed MMH594 and MMH594b (Δesp)

(S15 Fig). Thus, native expression levels of Esp did not strengthen biofilms but overexpressed

levels did, indicating that overexpression of Esp leads to artifactual strengthening of biofilms.

Lastly, we asked whether MMH594 would acidify the media further if the glucose concen-

tration were increased. Indeed, the pH of the media overlying an MMH594 biofilm grown in
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Fig 6. Biofilm Strengthening by EspDDDK and Esp743. A. Luminescence of MMH594b (Δesp) biofilms grown with

Esp453-743, Esp452, or EspDDDK. Luminescence values were divided by the average luminescence of biofilms grown

with Esp453-743. The experiment was performed in triplicate in three independent experiments. Samples were

compared by Welch’s ANOVA with D3 Dunnett’s post-hoc test. ��, p< 0.01. B. Luminescence of MMH594b (Δesp)

biofilms grown with Esp453-743, Esp452, or Esp1. All luminescence values were divided by the average luminescence of

biofilms grown with Esp453-743. The experiment was performed in duplicate or triplicate in three independent

experiments. Samples were compared by Welch’s ANOVA with D3 Dunnett’s post-hoc test. ��, p< 0.01. C.

Luminescence of FA2-2 biofilms grown overnight with PBS, Esp453-743, Esp743, or Esp452. The experiment was

conducted with duplicates or triplicates in two or more independent experiments, with n ranging from 5 to 15. The

SEM is indicated with error bars. Samples were compared by Welch’s ANOVA and D3 Dunnet’s post hoc test.

p< 0.001, ���; p< 0.0001, ����. D. Luminescence of OG1RF biofilms grown with PBS, Esp453-743, Esp452, or Esp743.

The experiment was conducted with triplicates. Samples were compared by Welch’s ANOVA with D3 Dunnett’s post-

hoc test. � p< 0.05. E. Luminescence of MMH594 and MMH594b (Δesp) biofilms grown in media supplemented with

either 0.5 or 1.0% glucose. The experiment was performed in triplicate in three independent experiments. Samples

were compared by 2-Way ANOVA with Tukey’s post-hoc test. ���, p< 0.001.

https://doi.org/10.1371/journal.ppat.1010829.g006
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1% glucose was 4.21 ± 0.03 rather than ~4.6 for one grown in 0.5% glucose. The increase in

glucose concentration from 0.5% to 1.0% resulted in a slight increase in bacterial numbers, but

there was no difference between MMH594 and MMH594b (Δesp) at either concentration (S16

Fig). Consistent with the unfolding of Esp743 at pH� 4.3, MMH594 biofilms were signifi-

cantly strengthened compared to MMH594b (Δesp) biofilms at 1% glucose (Fig 6E). These

results provided evidence that the properties observed for the soluble Esp743 fragment were

recapitulated by intact Esp attached to the enterococcal cell wall.

Discussion

The role of Esp in enterococcal disease has been a subject of debate over the last several

decades. Esp is encoded on a large pathogenicity island (~150 kilobases) in E. faecalis and fae-
cium [2–5], and is found more frequently in clinical as compared to commensal strains [53,

54]. A role for Esp in biofilm production was originally suggested due to its sequence similarity

to S. aureus Bap, a biofilm-forming protein [7]. Experimental evidence was garnered to sup-

port a role for Esp in biofilm production [7]. A deletion of esp in the clinical E. faecium E1162

strain led to decreased biofilm production, as assayed by CV staining, and this loss of function

was complemented by plasmid-borne expression of esp from a heterologous, constitutive pro-

moter [5]. Deletion of esp in certain E. faecalis strains led to decreased biofilm production,

although no complementation was carried out in these cases [7]. However, other results raised

doubts about the role of Esp in biofilm production. Notably, deletion of esp in several E. faeca-
lis strains had little or no effect on biofilm production [7], several biofilm-forming E. faecalis
strains naturally lacked esp [16], and a number of E. faecalis isolates that carried esp did not

form biofilms [7, 17, 18].

To understand the function of Esp, we took a biochemical and structural approach. The N-

terminal non-repeat region of Esp (i.e., Esp743) was identified by SAXS to be composed of a

globular head connected to an extended tail. The globular head corresponded to two DEv-Ig

domains, Esp1 and Esp2, which together constituted Esp452 and whose structure was deter-

mined to atomic resolution by X-ray crystallography. These two domains were followed in

Esp743 by three domains, an Ig-like and two Rib domains (which together formed Esp453-743),

as predicted by in silicomeans. Significantly, the SAXS shape reconstruction of Esp743 was

shorter than the sum of its two component parts, Esp452 and Esp453-743. This provided evi-

dence that the Ig-like domain (at the N-terminus of the Esp453-743 portion) interacted with the

globular head (i.e., Esp452).

DEv-Ig domains are common among bacterial adhesins, and while it remains possible that

these domains in Esp have host targets, we instead identified a function that required unfold-

ing of these domains into amyloid-like structures that strengthen biofilms. The structurally

related proteins Bap and Antigen I/II also have DEv-Ig folds and form amyloid-like structures

that localize to biofilms [49, 55–57], indicating that DEv-Ig folds can have biofilm-related

functions in addition to adhesive ones. We found that Esp743 strengthened biofilms, as did

Esp452 and the shorter EspDDDK fragment, suggesting that this capacity is resident at the very

N-terminal portion of Esp. Importantly, our biochemical approach enabled the addition of

Esp fragments prior to and following biofilm growth. Based on this, we found that Esp was not

required during biofilm initiation or growth, but instead provided strengthening, even to

mature biofilms.

Esp452 colocalized with the enterococcal biofilm and bound ThT in this location, indicat-

ing an amyloid-like structure for this Esp fragment in the biofilm. For the various Esp frag-

ments examined, biofilm strengthening correlated with protein aggregation, precipitation, and

ThT-binding. EspDDDK was the least stable with a pH threshold of ~5. EspDDDK constitutes an
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incomplete domain in that it lacks the last β-strand of the Esp1 DEv-Ig fold. By comparison,

Esp1, the complete domain, did not aggregate or precipitate, and bound very little ThT at the

lowest pH studied, 4.2. Esp452 had greater stability than EspDDDK with a pH threshold of 4.5

and Esp743 even greater stability with a pH threshold of 4.3. The difference between Esp743

and Esp452 may be explained by stabilizing interactions between the extended tail in Esp743

with the globular head (i.e., Esp452), as demonstrated by SAXS. Intact Esp on the enterococcal

surface had a low pH requirement, similar to that of Esp743, as MMH594 biofilms showed

strengthening compared to MMH594 (Δesp) biofilms at pH 4.2 but not 4.5 (grown in 1.0% vs.

0.5% glucose, respectively). The similar behaviors of Esp743 and intact Esp is consistent with

Esp being a member of the “periscope” family [6], with C-terminal repeat domains serving a

structural purpose of projection but not influencing the functional properties of the N-termi-

nal region.

These results are consistent with those of Taglialegna et al. [13], who used an Esp fragment

spanning aa 67–511. The N-terminus of this particular fragment lacks a few amino acids of the

Esp1 domain which precede the first β-strand of the DEv-Ig fold, and the C-terminus is pre-

dicted to include only a portion of the Ig-like domain of Esp453-743. However, it appears that

this portion of the Ig-like domain suffices, as Esp 67–511 aggregates and binds ThT along with

other amyloid-like indicators at pH� 4.2 [13], suggesting it is equally as stable as Esp743. Esp

67–511, when expressed from a plasmid in S. aureus, results in biofilm production, as deter-

mined qualitatively through CV staining [13].

Similarly, intact Esp or Esp743, when expressed from a plasmid in E. faecalis FA2-2, has

been reported to result in increased biofilm production, as quantitatively assayed by CV stain-

ing [12]. We verified this last result by using the same plasmid and finding that expression of

intact Esp in FA2-2 resulted in strengthened biofilms based on bacterial counts. However, we

also found by FACS that Esp was overexpressed by ~10-fold on the enterococcal surface by

transformed FA2-2. A similar effect of esp overexpression was found for MMH594. While

MMH594 and MMH594b (Δesp) did not differ in biofilm strength (grown with 0.5% glucose),

plasmid-borne overexpression of esp in MMH594 led to significant strengthening of the bio-

film compared to MMH594b (Δesp). Thus, overexpression had an artifactual effect on biofilm

strengthening. The basis for overexpressed Esp strengthening biofilms is not known, but could

be due to destabilization of Esp through molecular crowding on the surface. These results sug-

gest that prior conclusions based on plasmid-borne expression of Esp in which surface expres-

sion was not monitored, along with experiments in which pH was not monitored should be

taken with caution. At the same time, these results also suggest that natural variation in Esp

expression level could account for strain-to-strain differences observed for Esp action.

The dependence on low pH for biofilm strengthening explains why glucose was necessary

in the media to observe an effect of Esp in past reports. Fermentative metabolism of glucose

results in the acidification of the extrabacterial environment, and low pH was necessary for

biofilm strengthening by Esp fragments. It is conceivable that such low pH values would be

encountered in the absence of glucose, as Enterococcus can metabolize a large variety of carbo-

hydrates to produce lactic acid [58]. Such acidic conditions may be independent of bacterial

fermentation, and instead encountered on abiotic surfaces or in the host. For example, the

duodenum, where Enterococcus exists [59] and where enteropeptidase is found, can have a pH

4–5 following a meal [60]. Likewise, Enterococcus is a cause of dental disease, and dental lesions

such as caries reach pH’s as low as 4.4 [61]. The pH at which Esp exerts its biofilm strengthen-

ing activity may also be modulated by host proteases.

In summary, we show that Esp in acidic conditions provides significant strengthening to

biofilms, resulting in retention of Enterococcus within perturbed biofilms. As biofilms have
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properties that favor virulence, such retention is likely to favor the pathogenic potential of

Enterococcus.

Supporting information

S1 Fig. Mass Spectrometry of Esp452. ESI-TOF mass spectrum of recombinant Esp452-His6

with the His6-tag removed by PreScission protease digestion. The sequence and predicted

mass of the construct is indicated on the right. The sequence LEVLFQ at the C-terminus is

from the PreScission protease cleavage site. Esp sequence numbers are indicated.

(PDF)

S2 Fig. Structure of Esp452. A. Topology of Esp1 (top) and Esp2 (bottom) shown in rainbow

coloring, with similar coloring of the domains shown in ribbon representation at right. B. Esp1

(pink) and Esp2 (blue) superposed and depicted as Cα traces. C. Molecular surface of Esp452

viewed perpendicularly to the β-sheets. Surfaces with negative character shown in red, neutral

in white, and positive in blue, ranging from -4.0 to 4.0 kT. Shown below is the same view in

ribbon representation. D. Z-score for Cα atom B-factors, calculated with the following for-

mula: Z = (Bx-Bavg)/s, where Bx is the B-factor of a given Cα atom, Bavg is the average B-factor

of all Cα atoms in the structure, and s is the standard deviation of the Cα B-factors. Esp1 is

shown in pink, Esp2 in lavender, and the linker in black. Certain loops and helices connecting

β-strands, as well as the N- and C-termini, also have higher than average B-factors. E. Superpo-

sition of Esp2 (blue) with DEv-Ig domains of ClfA (pink) and ClfB (cyan), which bind fibrino-

gen. Rmsd of 3.8 and 3.9 Å, respectively, with Esp2 for 183 Cα. F. Superposition of Esp1 (pink)

with DEv-Ig domain (gray) of Antigen I/II. Rmsd of 3.5 Å with Esp1 for 182 Cα.

(PDF)

S3 Fig. Fibrinogen binding. Wells of an ELISA plate were coated with fibrinogen, and equiva-

lent molar amounts of Esp452-His6 or M1-His6 protein, or a PBS control was added to the

wells. Bound His6-tagged proteins were quantified by ELISA using anti-His antibodies. The

experiment was conducted one time in triplicate. Samples were compared by 1-Way ANOVA.
��� p< 0.001.

(PDF)

S4 Fig. Murine UTI model. Mice were inoculated through the urethra with either MMH594

or MMH594b (Δesp). At 1, 3, or 5 days after inoculation, urine was collected, mice were sacri-

ficed and tissues were homogenized in PBS and plated. Data are shown as CFU/g of tissue or

CFU/mL of urine. The experiment was performed with five mice per sacrifice day, and inde-

pendent experiments were performed twice for 1 and 3 days and once for 5 days. The mean is

indicated with a horizontal line. Samples were compared by Fisher’s exact test. NS, p> 0.05.

(PDF)

S5 Fig. Luminescence and bacterial counts. (A) Luminescence and (B) CFU/mL as a function

of OD600, and (C) luminescence as a function of CFU/mL were measured for serial dilutions

of MMH594. The Pearson correlation coefficient and corresponding p value are indicated on

each graph. These relationships also apply to MMH594 (Δesp), as MMH594 and MMH594b

(Δesp) were confirmed to have the same growth kinetics, as reported previously [44].

(PDF)

S6 Fig. Total luminescence of biofilm cultures. The total luminescence values of each well in

three independent experiments are shown. Samples in each experiment were compared by

Welch’s ANOVA with Dunnett T3 post hoc test. Total luminescence varied between experi-

ments due to a variety of factors, including temperature at the time of measurement and age of
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the luminescence reagent.

(PDF)

S7 Fig. Guinier Plot. Guinier plots for experimental SEC-SAXS data for Esp743, Esp452, and

Esp453-743.

(PDF)

S8 Fig. DDDK. The DDDK sequence (red) is located on a loop between the Esp1 F and G β-

strands (blue and purple, respectively).

(PDF)

S9 Fig. Enteropeptidase cleavage of Esp743. A. Products of digestion of Esp743 at 37˚C for 3

h with the light chain of human enteropeptidase (EP) resolved by SDS-PAGE and InstantBlue-

stained. At 3 h, the reaction was quenched before being applied to SDS-PAGE. The fragment

designated by the arrowhead has a size matching EspDDDK. For the input sample, Esp743 and

EP were incubated separately at 37˚C for 3 h, quench solution was added to each, and the two

were added together and immediately applied to SDS-PAGE. B. MALDI-TOF mass spectro-

gram of enteropeptidase-digested Esp743 and the theoretical sequence and weight of a hypo-

thetical enteropeptidase cleavage product. The peak corresponding to the theoretical mass is

indicated on the spectrum with an arrow.

(PDF)

S10 Fig. Mass Spectrometry of EspDDDK and Esp1. ESI-TOF spectra and sequences of (A)

EspDDDK and (B) Esp1. ESI-TOF of recombinant Esp-His6 constructs in which the His6-tag

was removed by PreScission protease digestion. The sequences and predicted masses of the

constructs are indicated on the right. The C-terminal sequence LEVLFQ is from the PreScis-

sion protease cleavage site. The peaks corresponding to EspDDDK or Esp1 are indicated on the

spectra with an arrow.

(PDF)

S11 Fig. Western blots of MMH594 biofilms. MMH594 and MMH594b (Δesp) biofilms were

grown with Esp452, Esp743, or PBS. The biofilms were dissolved with NaCl, filtered, and

assayed for the presence of Esp by western blot using anti-Esp452 polyclonal antibodies.

(PDF)

S12 Fig. FACS Analysis of Surface Expression of Esp. A. MMH594 (left) and MMH594b

(Δesp) (right) isolated from biofilms were incubated with rabbit anti-Esp452 antibodies fol-

lowed by secondary antibodies conjugated to Alexa Fluor 488 (orange). Bacteria with no anti-

bodies (red) and with secondary antibody only (blue) were measured to assess background

fluorescence. Data were graphed with FloJo. B. FA2-2 (orange), FA2-2 (pEsp) (green),

MMH594 (red), and MMH594 (pEsp) (cyan) isolated from biofilms were incubated with rab-

bit anti-Esp452 antibodies followed by secondary antibodies conjugated to Alexa Fluor 488.

Data were graphed with FloJo.

(PDF)

S13 Fig. Effect of pEsp on FA2-2 biofilms. Crystal violet (A) and luminescence (B) measure-

ments of biofilms produced by E. faecalis FA2-2 with and without pEsp. The experiments were

conducted with sextuplicates and triplicates, respectively. Samples were compared by Student’s

t-test. p< 0.05, �; p< .0001, ����.

(PDF)

S14 Fig. Western blot of FA2-2 biofilms. FA2-2 and FA2-2 (pEsp) biofilms were grown with

PBS or Esp452. The biofilms were dissolved with NaCl, filtered, and assayed for the presence
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of Esp by western blot using anti-Esp452 polyclonal antibodies.

(PDF)

S15 Fig. pEsp strengthens MMH594 biofilms. Luminescence of biofilm fractions of

MMH594b (Δesp), MMH594, and MMH594 (pEsp). Welch’s ANOVA and D3 Dunnet’s post

hoc test. p< 0.01, ��.

(PDF)

S16 Fig. Growth of MMH594 and MMH594b (Δesp) in media containing 0.5 or 1.0% glu-

cose. Luminescence of entire biofilm cultures, including the planktonic fractions, of MMH594

and MMH594b (Δesp) were measured. Samples were compared by 2-Way ANOVA and

Tukey’s posthoc test. p< 0.001, ���.

(PDF)

S1 Table. Primers.

(PDF)

S2 Table. X-ray data collection and refinement statistics.

(PDF)

S3 Table. Glycan binding by Esp452.

(PDF)

S4 Table. SEC-MALS-SAX Analysis.

(PDF)

S1 File. Confocal images of biolfilms with PBS. Individual Z-stacks of MMH594b (Δesp) bio-

films grown overnight with PBS. Bacteria were stained with Syto-13 (green) and proteins were

labeled with AF647 (red). The first image was taken at the interface of the biofilm with the

slide and each stack is 1.2 μm higher, progressing up to the top of the biofilm at the biofilm-

media interface.

(PDF)

S2 File. Confocal images of biofilms with Esp743-AF647. Individual Z-stacks of MMH594b

(Δesp) biofilms grown overnight with Esp743-AF647. Bacteria were stained with Syto-13

(green) and proteins were labeled with AF647 (red). The first image was taken at the interface

of the biofilm with the slide and each stack is 1.2 μm higher, progressing up to the top of the

biofilm at the biofilm-media interface.

(PDF)

S3 File. Confocal images of biofilms with Esp452-AF647. Individual Z-stacks of MMH594b

(Δesp) biofilms grown overnight with Esp452-AF647. Bacteria were stained with Syto-13

(green) and proteins were labeled with AF647 (red). The first image was taken at the interface

of the biofilm with the slide and each stack is 1.2 μm higher, progressing up to the top of the

biofilm at the biofilm-media interface.

(PDF)
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