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Abstract
Understanding how cells use complex transcriptional programs to alter their fate in

response to specific stimuli is an important question in biology. For the MCF-7 human breast

cancer cell line, we applied gene expression trajectory models to identify the genes involved

in driving cell fate transitions. We modified trajectory models to account for the scenario

where cells were exposed to different stimuli, in this case epidermal growth factor and here-

gulin, to arrive at different cell fates, i.e. proliferation and differentiation respectively. Using

genome-wide CAGE time series data collected from the FANTOM5 consortium, we identi-

fied the sets of promoters that were involved in the transition of MCF-7 cells to their specific

fates versus those with expression changes that were generic to both stimuli. Of the 1,552

promoters identified, 1,091 had stimulus-specific expression while 461 promoters had

generic expression profiles over the time course surveyed. Many of these stimulus-specific

promoters mapped to key regulators of the ERK (extracellular signal-regulated kinases)

signaling pathway such as FHL2 (four and a half LIM domains 2). We observed that in gen-

eral, generic promoters peaked in their expression early on in the time course, while stimu-

lus-specific promoters tended to show activation of their expression at a later stage. The

genes that mapped to stimulus-specific promoters were enriched for pathways that control
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focal adhesion, p53 signaling and MAPK signaling while generic promoters were enriched

for cell death, transcription and the cell cycle. We identified 162 genes that were controlled

by an alternative promoter during the time course where a subset of 37 genes had separate

promoters that were classified as stimulus-specific and generic. The results of our study

highlighted the degree of complexity involved in regulating a cell fate transition where multi-

ple promoters mapping to the same gene can demonstrate quite divergent expression

profiles.

Introduction
Cell fate transitions occur via the tight, temporal coordination between signaling pathways
used by a cell. While the makeup and control of these pathways are highly specific to the stimu-
lus used to induce the transition, a common theme that these pathways share is the activation
of cell surface receptors that trigger the initial early response of signaling cascades that then
lead to the expression of genes that facilitate the transition. Defining the input and output com-
ponents of the signaling cascade is feasible, however identifying the transcriptional programs
that bridge these two endpoints remains somewhat of a black box. Understanding how cells are
regulated by key genes and their corresponding networks during fate transitions may also pres-
ent opportunities to restrict or manipulate cells towards specific endpoints, an application that
has utility in the development of new cancer therapies.

Elucidation of the genes expressed during fate transitions represents a critical component to
understanding how cells use signaling pathways to change their fate. High-throughput technol-
ogies have improved our ability to refine the list of signaling components that contribute to a
cell fate transition. However even with access to the best technology available, our limitation in
understanding signaling is constrained more by the fact that pathways operate as complex,
non-linear circuits, and that their usage by cells to achieve transitions is far more complicated
than a simple input-output system [1, 2].

Despite the complex arrangement of signaling components that underlie cell fate transi-
tions, in nature, there is clearly convergence of only a finite number of possible pathways that
are used by the cell. This phenomenon is most readily understood when we consider known
cases where different stimuli can trigger cells to adopt the same phenotypic outcome. For
example, human HL-60 promyelocytic cells when exposed to dimethyl sulfoxide (DMSO) and
all-trans retinoic acid (ATRA) both lead to neutrophil differentiation [3, 4]. Examples also
exists where different stimuli lead to distinct outcomes, e.g. for the PC-12 cell line, stimulation
of the cells by nerve growth factor (NGF) induces differentiation, while stimulation by epider-
mal growth factor (EGF) induces proliferation [5]. Another example is the ErbB receptor sig-
naling pathway, where exposure of MCF-7 cells to EGF results in proliferation, whereas
exposure to heregulin (HRG) leads to differentiation [6, 7]. In those cell systems, EGF induces
transient activation of ERK (extracellular signal-regulated kinases) whereas NGF and HRG
induce sustained activation of ERK, of which the duration is thought to be critical to cell fate
determination, and therefore it may induce different gene expression trajectories.

Both EGF and HRG ligands share a common ErbB receptor signaling pathway. Upon acti-
vation of the ErbB receptors, a multi-layered signal transduction network is initiated, often
involving the activation of the ERK and the phosphatidiylinositol 3'-kinase (PI3K) pathways
[8, 9]. EGF and HRG produce qualitatively similar immediate early responsive gene (IEG) pro-
files of the genes involved in the ERK pathway, though there are large quantitative differences.
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This suggests that quantitative changes in the expression levels of IEGs, and not the predomi-
nant regulation of a few specific ones, would be followed by robust qualitative differences in
successive gene expression waves, eventually leading to the different cell fates observed that
reflect ligand specificity [6, 7, 10]. This observation points to the value of carefully considering
the relative changes in expression during the transition as a means to identify fate-specific
regulators.

Gene expression trajectory models were initially developed to identify the two major sets of
genes involved in a cell fate transition [11]. One set involves those genes driving core signaling
pathways that lead to a common endpoint, and a second set of genes that have divergent
expression profiles that are specific to the stimulus applied. The focus of our current study was
to adapt trajectory models for time courses where different stimuli cause transitions to distinct
fates. The application of trajectory models to MCF-7 cells exposed to EGF and HRG represents
an opportunity to elucidate genes that are cell fate-specific from those that are expressed in a
cell fate-generic manner.

Cap analysis of gene expression (CAGE) is a technique that was pioneered to identify the
location of transcription start sites (TSSs) in the genome and quantify their usage [12]. Two
CAGE time course data sets were collected for MCF-7 cells exposed to EGF and HRG sepa-
rately for fifteen time points spanning 0hr (non-treated) to 8hr, with three biological replicates
(see Materials and Methods). These data sets were part of the FANTOM5 time courses, which
comprehensively showed coordinated transcriptional waves in transitioning mammalian cells
[13]. Using CAGE, we are able to obtain a more accurate snapshot of transcriptional regulation
by profiling at the resolution of individual promoters than using other high-throughput meth-
ods like RNA-seq or microarrays.

Alternative promoters are defined as multiple promoter sites in the genome that control the
same gene [14], and confer robustness in the genome by ensuring that production of a tran-
script will occur by having multiple TSSs available. By adapting the trajectory models to be
applicable for usage with promoter-level data obtained from CAGE, we have added insight to
how cell fate transitions are being regulated at a deeper layer of signaling complexity by identi-
fying alternative promoter usage in the MCF-7 time courses. This work is part of the FAN-
TOM5 Phase 2 project. Data download, genomic tools and co-published manuscripts have
been summarized at http://fantom.gsc.riken.jp/5/.

Materials and Methods

Data set
The MCF-7 human breast cancer cell line was exposed to either EGF or HRG, and samples were
collected at 0h (non-treated), 15min, 30min, 45min, 60min, 80min, 100min, 2hr, 2.5hr, 3hr,
3.5hr, 4hr, 5hr, 6hr, 7hr and 8hr. These time points were selected in order to sample the early
phase of cell differentiation as well as capture mid and delayed-stages of gene expression. The
data was profiled using HeliscopeCAGE, resulting in time-course expression levels of 102,540
promoters under the two treatments (HRG and EGF). The time courses each had three biological
replicates for each time point at all 15 time points (including the time 0, non-treated sample).

Filtering steps
Promoters with expression of less than 1 tag per million for all time points were removed,
resulting in a total of 54,822 promoters. Using log2-transformed data, we fitted an ANOVA
model of the form:

Yik ¼ a0 þ timei þ εik
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to each promoter for the EGF and HRG time courses separately, where i denotes the time point
indices from 1 to 15, and k denotes the three biological replicates. A promoter was removed
from the analysis if it had no statistically significant change in expression over time for both
treatments (adjusted P-value> 0.01). The P-values from the ANOVA model were adjusted for
multiple testing using the Benjamini-Hochberg method [15]. A total of 1,552 promoters were
retained from this step.

Identifying generic and stimulus-specific promoters
An ANOVA model was constructed for each individual promoter:

Yijk ¼ b0 þ timei þ stimulusj þ εijk

A promoter that was statistically significant for the stimulus term (adjusted P-value< 0.01)
was assigned to the fate-specific set of promoters, whereas a promoter that failed to attain sig-
nificance was classified as generic. P-values were adjusted using the Benjamini-Hochberg
method [15] for multiple testing correction.

Detecting divergence in promoter expression over time
Fold change of the expression profile of HRG:EGF treatment was calculated for each promoter.
An ANOVA model was fitted to detect which promoters had significant fold change differ-
ences across time (adjusted P-values< 0.01). P-values were corrected for multiple testing using
the Benjamini-Hochberg method.

Promoter to gene mapping
Promoters were mapped to their respective gene-centric annotations using the FANTOM5
expression atlas [16] and HGNC-EntrezGene relationships downloaded from http://www.
genenames.org/cgi-bin/hgnc_downloads.cgi. In most cases, there was a one-to-one relation-
ship between a promoter and a gene. 319 out of the 461 generic promoters mapped to 306
genes with known EntrezGene IDs and 847 out of the 1,091 stimulus-specific promoters
mapped to 737 genes with known EntrezGene IDs.

Identifying transcription factors
Transcription factor sets were defined from the TFcheckpoint database [17] which represents a
comprehensive repository of putative transcription factors according to experimental evidence
based on their function as true sequence-specific DNA-binding RNA polymerase II regulators.
100 transcription factors were identified among the 1,006 different genes, 38 transcription fac-
tors mapped to generic promoters and 68 transcription factors were mapped to stimulus-spe-
cific promoters (6 of them shared, as controlled by promoters classified in both groups).

Functional enrichment analyses
We wrote R code to test for over-representation of Gene Ontology (GO) terms and KEGG
pathways in the genes that were mapped by the stimulus-specific and generic promoter sets.
Significance of enrichment was assessed using the Fisher’s exact test. Annotations were based
on GO and KEGG terms as defined by the Bioconductor packages org.Hs.eg.db (version
2.10.1) and KEGG.db (version 2.10.1). P-values were adjusted for multiple testing using the
Benjamini-Hochberg method, using a significance threshold of 0.05. Only genes with evidence
codes based on experimental validation in GO were used for this analysis, specifically evidence
codes EXP (inferred from experiment), IDA (inferred from direct assay), IPI (inferred from
physical interaction), IMP (inferred from mutant phenotype) or IGI (inferred from genetic
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interaction). We also discarded child nodes of GO terms to improve the specificity of the
results obtained. We compared our results to the DAVID (Database for Annotation, Visualiza-
tion and Integrated Discovery, version 6.7) web interface [18] as well as the GOstats Biocon-
ductor package (version 2.31.0) and observed similar results to those obtained with our
approach. Our R functions are freely available upon request.

Differential co-expression analysis
Expression profiles of the promoters mapping to the same gene were averaged to create a single
expression profile for each unique gene. Changes in gene expression correlation in the two EGF
and HRG time courses were explored using an empirical Bayesian approach for identifying differ-
entially co-expressed gene pairs implemented in the Bioconductor EBcoexpress package [19] (ver-
sion 1.10.0). Co-expression networks were visualized using the R package igraph (version 0.7.1).

Protein-protein interaction networks reconstruction
Sets of generic and stimulus-specific transcription factor interactions were derived using the
shortest.paths tools from the R package igraph (version 0.7.1), and were applied to a protein-pro-
tein interaction (PPI) network constructed from iRefIndex [20] data. The PPI network was
reconstructed using the R package iRefR (version 1.13) [21] which bridges the iRefIndex database
(version 13.0) to an R environment. This database consolidates PPI data available in multiple pri-
mary interaction databases, namely BIND [22], BioGRID [23], CORUM [24], DIP [25], HPRD
[26], IntAct [27], MINT [28], Mpact [29], MPPI [30], and OPHID [31] in a non-redundant fash-
ion. A minimal sub-network connecting the 38 transcription factors controlled by generic pro-
moters (32 controlled by generic promoters exclusively, and 6 controlled by alternative
promoters classified as either generic or stimulus-specific) was extracted from the network as a
sub-network of shortest paths between them. The same procedure was used to reconstruct an
analogous sub-network of shortest paths between the 68 transcription factors controlled by stim-
ulus-specific promoters (62 controlled by stimulus-specific promoters exclusively, and 6 con-
trolled by alternative promoters classified as either generic or stimulus-specific).

Comparison of results from the CAGE data set with other gene
expression data sets
The microarray and qPCR data sets were obtained from the authors of [10]. For the microarray
data set, the same analysis as what was applied to the CAGE data set was used to identify the
generic and stimulus-specific genes. For the qPCR data set, the design of this time course was
sparser and therefore enough data was not available to fit the same models directly as in the case
of the microarray data. Instead, we used the Pearson correlation coefficient, R, as the statistic to
determine whether a gene was generic (R> 0.5) or stimulus-specific (R� 0.5) in the qPCR data
set. A two-sided Fisher’s exact test was used to assess the significance of overlap observed between
the CAGE data sets and the two other gene expression data sets. See S1 Text for more details.

Results

Application of trajectory models to classify promoters into generic and
stimulus-specific sets identifies the differential nature of transcriptional
regulation underlying the cell fate transition
The first step to understanding how cells use transcriptional programs to transition to different
endpoints is to identify the genes whose coordinated expression during the transition is specific
to one cell fate versus another. In comparing the time course data for EGF and HRG-stimulated
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MCF-7 cells, the subsets of promoters that display either generic expression, where profiles are
preserved across stimuli, or stimulus-specific expression profiles (see Fig 1A) can be identified by
applying the following ANOVAmodel to each individual promoter:

Yijk ¼ b0 þ timei þ stimulusj þ εijk ð1Þ

where i corresponds to each time point in the experiment and ranged from 1 to 15, j represents
the stimulus applied (either EGF or HRG), and k denotes each of the three biological replicates
used in the time course data (see Fig 1B).

A promoter was classified into the stimulus-specific group if the stimulus variable in the
ANOVA model was statistically significant (adjusted P-value< 0.01) since this corresponds to
a scenario where the expression profiles deviate substantially between the EGF and HRG-stim-
ulated time courses. A promoter failing to attain statistical significance for the stimulus variable
was classified in the generic group (adjusted P-value> 0.01), which signifies coordination of

Fig 1. Outline of the trajectory models and experimental design of the data. A. Schematic view of the gene expression trajectory models for MCF-7 cells
undergoing proliferation or differentiation in response to EGF or HRG, respectively. B. Experimental design of the time course experiments where time points
were selected to cover early to late stages of the cell fate transition.

doi:10.1371/journal.pone.0144176.g001
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the expression profiles between the two stimuli. An initial filtering step was applied to all pro-
moters to exclude those with no significant change across both times courses as these promot-
ers were unlikely to be informative for understanding the transcriptional program underlying
the cell fate transition (see Materials and Methods).

Based on our classification scheme, we obtained 461 generic and 1,091 stimulus-specific
promoters (representing 30% and 70% of all promoters tested, respectively). Examples of pro-
moters with generic and stimulus-specific expression profiles are shown in Fig 2A and 2D.
Heatmaps also demonstrate how expression changes are occurring for the most highly-
expressed subset of generic and stimulus-specific promoters in the two time courses (see S1A
and S1B Fig). Amongst the list of promoters identified, we observed some promoters control
genes with an established role in determining specific cell fate decisions. The generic promoters
are associated with early expression that decreases over time and have a role in regulating cell
signaling, for example, STRAP (serine/threonine kinase receptor associated protein) [32],
ULK1 (unc-51 like autophagy activating kinase 1) [33], and SEMA3F (semaphorin 3F, see Fig
2A) [34]. One the other hand, one of the most significant stimulus-specific promoters drives
the transcription of an important regulator, FHL2 (four and a half LIM domains 2) (see Fig
2C), which can switch off upstream ERK signals and also binds to FOS (Finkel–Biskis–Jinkins
murine osteogenic sarcoma virus) and/or FRA1 (FOS-related antigen 1) (AP-1 family mem-
bers proteins [35]. Another significantly stimulus-specific gene FLNA (filamin A) (see Fig 2D),
the actin-binding and scaffolding protein, positively regulates ERK activation and cell shape
change together with β-arrestins [36]. These stimulus-specific genes cooperatively act to fine-
tune ERK activity, which is critical for signal-dependent cell fate control [2, 9]. From our results
we note that the majority of generically-regulated promoters are activated at early time points
and their expression levels tend to decrease over time, whereas many of the stimulus-specific
promoters are activated at delayed time points and their expression tends to increase over time
(Fig 3A and 3B), indicating the divergence of cellular state along the time course.

Trajectory models highlight the differences occurring in the gene
expression dynamics of generic and stimulus-specific promoters for the
EGF and HRG-stimulated MCF-7 cells
The definitions of generic and stimulus-specific promoters were used as a foundation to further
investigate the expression dynamics of genes involved in the cell fate transition. A related but
simpler model than (1) that can be fit to each individual promoter is a linear regression model
that is specified as follows:

Yijk ¼ a0 þ a � timei þ l � stimulusj þ εijk ð2Þ

where α is the regression coefficient that measures the direction and degree of impact that an
increase in time will have on the expression of a specific promoter. We can capitalize on this
property and use the direction of the estimated α from the model in (2) to infer whether pro-
moters were associated with an overall increase (α> 0) or decrease (α< 0) in expression dur-
ing the time course. The sets of generic and stimulus-specific promoters were subset further
based on the direction of the estimated α (see Table 1). In the generic promoter group, we
detected far more promoters with decreasing expression (289 promoters) compared to those
whose expression increased over the time course (172 promoters). Further inspection of the
generic promoters revealed that activation of the majority of the generic promoters occurred
early on in the time course (see Fig 3A). Activation of the stimulus-specific promoters on the
other hand showed greater divergence between the EGF and HRG time courses (see Fig 3B). In
the EGF-exposed cells the stimulus-specific promoters followed a pattern of divergence in
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expression, whereas this was in contrast to the HRG-exposed cells that showed these promoters
experienced a marked shift in expression over time. This shift was notably absent from the
EGF time course data. A greater number of stimulus-specific promoters showed increasing
expression over the time course (628 promoters) as compared to those whose expression
decreased (463 promoters).

Fig 2. Examples of promoters with generic and stimuli-specific expression profiles. A. the promoter region maps to gene SEMA3F and has a generic
expression profile across the EGF and HRG profiles.B. the promoter mapping to SULF2 also has a generic profile. C. the stimuli-specific promoter maps to
gene FHL2 andD. the stimuli-specific promoter maps to gene FLNA.

doi:10.1371/journal.pone.0144176.g002
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Key stimulus-specific promoters have significantly divergent profiles
during the cell fate transition
The stimulus-specific promoters identified by trajectory models represent promoters with
divergent expression profiles during the MCF-7 time course. ItIt is possible that the size of the
divergence in expression may be correlated with the level of importance a gene plays in regulat-
ing the cell fate transition. Within the subset of stimulus-specific promoters, we looked for pro-
moters with increasingly larger divergence in expression between the two stimuli during the
time course. Seven stimulus-specific promoters (see Table 2) were identified with significant
increments in expression at successive time points in the HRG-stimulated time course versus
the EGF one (see Fig 4A–4D, Materials and Methods). These promoters control the expression
of six unique genes KRT15 (keratin 15), TNFRSF11B (tumor necrosis factor receptor super-
family member 11b), TMEM185B (transmembrane Protein 185B), PHLDA2 (pleckstrin
homology-like domain, family A member 2), DUSP5 (dual specificity phosphatase 5), EGR1
(early growth response 1) (see Table 2). Two promoters are associated with an overall decrease
in gene expression for two genes previously mentioned (EGR1 and DUSP5). These two pro-
moters drive higher expression levels in the EGF-stimulated time course compared to the
HRG-stimulated time course at later time points. . . For both promoters, there is a cross-over
point where expression in the EGF-exposed cells is higher than the HRG-exposed cells,

Fig 3. Expression activity of the generic and stimulus-specific promoters across the time course. Heat maps showing the expression levels of
promoters in the A. generic andB. stimulus-specific groups under EGF or HRG treatments. Expression levels have been scaled by row (promoter). Generic
promoters drive predominantly immediate early expression, while stimulus-specific ones drive mid-delayed expression; expression changes are mainly
driven by the HRG treatment, being much less obvious and dramatic after EGF stimulation.

doi:10.1371/journal.pone.0144176.g003
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suggesting that they may play a role in EGF-induced cell proliferation for this phase of the time
course (Fig 4C & 4D). Two other promoters, PHLDA2 and TNFRSF11B show consistently
higher expression in the HRG time course than the EGF one (Fig 4A & 4B). The divergence
between the two time courses is initially small but grows larger at later time points. The

Table 1. The top ten most significant generic and stimulus-specific promoters.

Status of Promoter
Expression

Promoter Gene Symbol Adjusted P-
value

Regression Coefficient from the Linear
Model

Generic chr2:238395772..238395830,- NA 0.995 -0.03

chr3:124732396..124732408,- HEG1 0.989 -0.01

chr12:132379245..132379256,
+

ULK1 0.985 -0.1

chr20:46415341..46415360,- SULF2 0.985 -0.05

chr10:99185961..99185987,+ PGAM1 0.969 0.03

chr16:67515264..67515316,+ NA 0.964 0.02

chr19:48972612..48972632,+ CYTH2 0.962 -0.03

chr9:34665595..34665628,+ NA 0.961 -0.06

chr3:50192499..50192534,+ SEMA3F 0.960 -0.03

chr12:16035307..16035352,+ STRAP 0.960 0.02

Stimulus-specific chr10:54074033..54074050,+ DKK1 6.38E-022 0.04

chr6:43737939..43737956,+ VEGFA 6.23E-022 0.05

chr2:106015491..106015518,- FHL2 5.55E-022 0.06

chr14:69445991..69446029,- ACTN1 4.91E-022 0.04

chr7:143078379..143078454,+ ZYX 2.78E-022 0.09

chr1:86046433..86046453,+ CYR61 7.29E-024 -0.05

chr21:40177845..40177863,+ ETS2 (TF) 2.65E-024 -0.02

chr3:5021113..5021180,+ BHLHE40
(TF)

2.65E-024 0.03

chrX:153602991..153603011,- FLNA 2.15E-029 0.09

chr10:75757863..75757897,+ VCL 7.46E-030 -0.01

Promoters that map to known transcription factors are denoted with TF.

doi:10.1371/journal.pone.0144176.t001

Table 2. Promoters that are associated with significant fold changes of HRG-induced expression over EGF-induced expression.

Promoter Gene
Symbol

Adjusted P-value Measuring Significance of Change in Fold
Change (HRG/EGF)

Regression Coefficient from
Linear Model

chr17:39675131..39675148,- KRT15 0.0000 0.06

chr16:28835766..28835827,+ N/A 0.0002 0.09

chr8:119964115..119964132,- TNFRSF11B 0.0002 0.18

chr2:120980665..120980750,- TMEM185B 0.0008 0.04

chr11:2950642..2950658,- PHLDA2 0.0014 0.1

chr10:112257656..112257671,
+

DUSP5 0.0015 -0.02

chr5:137801160..137801176,+ EGR1 (TF) 0.0053 -0.21

(TF) after gene symbol identifies the transcription factors.

doi:10.1371/journal.pone.0144176.t002
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expression profiles of these two promoters suggest that they are important for HRG-induced
differentiation for the MCF-7 cells.

Genes mapping uniquely to the generic and stimulus-specific promoters
are enriched for different biological processes that control migration,
proliferation, apoptosis and cell cycle
Understanding the specific pathways that are used by cells during cell fate decisions can also
help shed light on how a transition is regulated. We used the genes that mapped uniquely to
promoters in the generic and stimulus-specific groups to identify biological pathways or pro-
cesses that were enriched exclusively in either group. The motivation was that if a particular
pathway was over-represented in the genes controlled in the stimulus-specific group and not
the generic group, then this may suggest an important role of this pathway for regulating dis-
tinct cell fates or a response to a specific stimuli. We used pathway definitions specified by the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [37, 38] and the Gene Ontology Biologi-
cal Processes (GO:BP) [39]. Fisher’s exact test was used to assess the significance of over-repre-
sentation of either generic or stimulus-specific promoters in a pathway or biological process.
Multiple hypothesis testing was corrected for using the Benjamini-Hochberg method [15] (see
Materials and Methods).

Fig 4. Time-course expression profiles of stimulus-specific promoters associated with significant fold changes of HRG-induced expression
versus EGF-induced expression. A. andB. show examples of promoters with an overall increase in expression. C. andD. show promoters with an overall
decrease in expression.

doi:10.1371/journal.pone.0144176.g004
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The stimulus-specific promoters control genes that were enriched for KEGG pathways
involved in focal adhesion, p53 signaling, and MAPK signaling pathways (see S2 Table). Related
themes are evident in the significant GO:BP terms where processes related to migration (“positive
regulation of cell migration”), cell cycle (“cell cycle”, “cell cycle arrest”), transcription (“positive
regulation of transcription from RNA polymerase II promoter”), and cell death (“intrinsic apo-
ptotic signaling pathway in response to DNA damage”) were observed. The genes controlled by
generic promoters were also enriched for processes that are fundamental to proper functioning
of the cell, and common themes were apparent for cell death (“positive regulation apoptotic pro-
cesses”, “regulation of apoptotic process”), transcription (“transcription, DNA-dependent”) and
the cell cycle (“regulation of cell cycle”) (see S3 Table). It is interesting to note that with respect to
proliferation, for the stimulus-specific promoters we saw enrichment of the term “negative regu-
lation of cell proliferation” whereas for the generic promoters, “positive regulation of cell prolifer-
ation” was significant (see S2A and S2B Fig). This result implies that generic and stimulus-
specific promoters may play opposite roles in regulating cell proliferation. The degree of cell pro-
liferation may be proportional to the ratio of generic versus stimulus-specific gene elements that
are being activated and this may in turn also affect cell differentiation.

Alternative promoters are found in key genes involved in the cell fate
transition and had coordinated profiles across the time course
Alternative promoters represent an inbuilt feature of the genome for generating diversity
under different cellular conditions. They also provide robustness to ensure that the proper ini-
tiation of transcription of critical genes can occur. For the MCF-7 time course, we applied the
definition of an alternative promoter as the instance where more than one promoter mapped
to the same gene. We found that the expression of 162 genes were controlled by an alternative
promoter. Of these 162 genes, 18 were controlled by more than one generic promoter, and 107
were controlled by more than one stimulus-specific promoter. A subset of 37 genes were con-
trolled by a combination of promoters that had expression profiles that were classified into
both generic and stimulus-specific groups.

Examples of transcription factors whose expression were controlled by alternative promot-
ers were EGR1 and FOS which were each controlled by seven promoters (see Table 3). For
FOS, two of the seven behaved as generic promoters and the remaining five were stimulus-spe-
cific. For EGR1, there were four generic promoters and three stimulus-specific promoters map-
ping to this gene. It is plausible that these transcription factors have dual roles to control the
expression of genes needed for both proliferation or differentiation of MCF-7 cells at immedi-
ate early times and selectively lead to the transcription of genes required for differentiation fol-
lowing a more sustained expression induced by HRG.

We investigated whether usage of alternative promoters was likely to be for specialization
through stage-specific activation or a more general strategy for robustness by having multiple
promoters available that can substitute for each other. We reasoned that if two alternative pro-
moters could substitute for each other to activate the same gene, then their expression profiles
would be highly correlated during the time course. Alternatively, low or anti-correlated expres-
sion profiles indicate that alternative promoters may have roles that differ depending on their
activation time. 72.7% of 22 genes that are controlled by more than onegeneric promoter are
highly correlated (they have on average, a correlation coefficient> 0.5), and 92.9% of 126
genes are controlled by at least one stimulus-specific promoter. These results suggest that for
both generic and stimulus-specific promoters, alternative promoters may substitute for each
other and that the multiplicity of promoters mapping to the same gene reflect an inbuilt redun-
dancy and robustness of the cellular system.
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Table 3. Genes that are mapped by alternative promoters classified into different generic or stimulus-specific groups.

Gene
Symbol

Number of
Generic

Promoters

Generic Promoters Number of
Stimulus-
specific

Promoters

Stimulus-specific Proms.

EGR1 (TF) 4 chr5:137804130..137804156,
+//chr5:137804357..137804390,
+//chr5:137804405..137804444,
+//chr5:137804484..137804498,+

3 chr5:137800878..137800898,
+//chr5:137800912..137800941,
+//chr5:137801160..137801176,+

FOS (TF) 2 chr14:75746579..75746605,
+//chr14:75746705..75746720,+

5 chr14:75745523..75745537,
+//chr14:75746722..75746777,
+//chr14:75746781..75746799,
+//chr14:75747250..75747267,
+//chr14:75747296..75747329,+

ELOVL1 2 chr1:43832006..43832027,-//
chr1:43833263..43833293,-

1 chr1:43833628..43833703,-

PLEC 2 chr8:145027973..145027992,-//
chr8:145047688..145047704,-

1 chr8:145013711..145013786,-

HIST1H2BC 1 chr6:26199709..26199720,+ 3 chr6:26124147..26124168,-//
chr6:26199737..26199754,

+//chr6:26273152..26273175,+

HIST1H2BE 1 chr6:26199709..26199720,+ 3 chr6:26124147..26124168,-//
chr6:26199737..26199754,

+//chr6:26273152..26273175,+

HIST1H2BF 1 chr6:26199709..26199720,+ 3 chr6:26124147..26124168,-//
chr6:26199737..26199754,

+//chr6:26273152..26273175,+

HIST1H2BG 1 chr6:26199709..26199720,+ 3 chr6:26124147..26124168,-//
chr6:26199737..26199754,

+//chr6:26273152..26273175,+

HIST1H2BI 1 chr6:26199709..26199720,+ 3 chr6:26124147..26124168,-//
chr6:26199737..26199754,

+//chr6:26273152..26273175,+

SMAD3 (TF) 1 chr15:67418119..67418162,+ 3 chr15:67358163..67358192,
+//chr15:67418047..67418093,
+//chr15:67418177..67418204,+

HIST1H3A 1 chr6:26197500..26197521,- 2 chr6:26020672..26020689,
+//chr6:27840112..27840133,-

HIST1H3B 1 chr6:26197500..26197521,- 2 chr6:26020672..26020689,
+//chr6:27840112..27840133,-

HIST1H3C 1 chr6:26197500..26197521,- 2 chr6:26020672..26020689,
+//chr6:27840112..27840133,-

HIST1H3D 1 chr6:26197500..26197521,- 2 chr6:26020672..26020689,
+//chr6:27840112..27840133,-

HIST1H3E 1 chr6:26197500..26197521,- 2 chr6:26020672..26020689,
+//chr6:27840112..27840133,-

HIST1H3F 1 chr6:26197500..26197521,- 2 chr6:26020672..26020689,
+//chr6:27840112..27840133,-

HIST1H3G 1 chr6:26197500..26197521,- 2 chr6:26020672..26020689,
+//chr6:27840112..27840133,-

HIST1H3H 1 chr6:26197500..26197521,- 2 chr6:26020672..26020689,
+//chr6:27840112..27840133,-

HIST1H3I 1 chr6:26197500..26197521,- 2 chr6:26020672..26020689,
+//chr6:27840112..27840133,-

HIST1H3J 1 chr6:26197500..26197521,- 2 chr6:26020672..26020689,
+//chr6:27840112..27840133,-

(Continued)
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Protein-protein interaction networks show hub activity of key genes in
generic and stimulus-specific promoters
The transcription of protein-coding genes provides a template for the production of proteins
that are the molecules responsible for carrying out fundamental functions in the cell. We recog-
nize that these genes and their corresponding proteins do not operate in isolation but instead
interact via defined combinations, and one way in which these that can be represented is
through a protein-protein interaction (PPI) network. We investigated whether PPI networks
for genes mapping to generic promoters displayed any common or distinct features compared
to the PPIs for the stimulus-specific promoters. Because overlaying gene expression data with
human protein data is always somewhat of an extrapolation, we restricted our network con-
struction to only the transcription factors that were represented in the generic and stimulus-
specific promoter groups (consisting of 38 and 68 transcription factors, respectively). One of
the most striking results observed is that the generic and stimulus-specific PPI networks
are connected through six common transcription factors that are controlled by alternative
promoters, EGR1, FOS, SMAD3 (SMAD family member 3), BRIP1 (BRCA1 unteracting
protein C-terminal helicase 1), FOXA1 (forkhead box A1), and KLF6 (Kruppel-Like Factor 6)
(Fig 5A and 5B). This resultsuggests these transcriptions factors may play an important role in
the MCF-7 time course since alternative promoters exist to control each of their expression.
We also see the diversification associated with their usage in the time course, where each tran-
scription factor has both generic and stimulus-specific promoters, suggesting that these tran-
scription factors bridge over the generic (early response) and stimulus-specific promoter (late

Table 3. (Continued)

Gene
Symbol

Number of
Generic

Promoters

Generic Promoters Number of
Stimulus-
specific

Promoters

Stimulus-specific Proms.

METTL7B 1 chr12:56075495..56075509,+ 2 chr12:56075432..56075444,
+//chr12:56075512..56075532,+

ATP1B1 1 chr1:169075919..169075940,+ 1 chr1:169075554..169075571,+

BBC3 1 chr19:47734425..47734445,- 1 chr19:47734448..47734466,-

BRIP1 (TF) 1 chr17:59940830..59940897,- 1 chr17:59940813..59940828,-

DDIT4 1 chr10:74034090..74034110,+ 1 chr10:74033672..74033688,+

FAM207A 1 chr21:46359889..46359902,+ 1 chr21:46359907..46359962,+

FAM83H 1 chr8:144815895..144815912,- 1 chr8:144815914..144815961,-

FOXA1 (TF) 1 chr14:38065203..38065215,- 1 chr14:38064495..38064506,-

GRB7 1 chr17:37894179..37894202,+ 1 chr17:37894570..37894614,+

GREB1 1 chr2:11679938..11679951,+ 1 chr2:11679963..11679986,+

IFIT5 1 chr10:91174314..91174403,+ 1 chr10:91174486..91174528,+

IRF2BPL 1 chr14:77493956..77493999,- 1 chr14:77494141..77494170,-

KLF6 1 chr10:3827371..3827386,- 1 chr10:3827389..3827408,-

MBTPS1 1 chr16:84150492..84150558,- 1 chr16:84150410..84150456,-

PRR15L 1 chr17:46035113..46035124,- 1 chr17:46035187..46035260,-

S100A16 1 chr1:153585456..153585532,- 1 chr1:153585571..153585629,-

WARS 1 chr14:100841675..100841691,- 1 chr14:100841940..100841958,-

(TF) after a gene symbol identifies transcription factors.

doi:10.1371/journal.pone.0144176.t003
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response) states in the time course. In fact, transcriptional control of FOS is highly complex
[40]. For example, the transcriptional activity of SRF (serum response factor), which activates
FOS transcription, is known to be regulated in two ways; one is mediated by TCF family cofac-
tor in ERK signal-dependent and another is mediated by the MRTF (myocardian-related tran-
scription factors) family cofactors in a Rho GTPase signal-dependent manner [41]. Alternative
FOS promoters presented heremay reflect the different ways in which regulation by SRF can
occur (see S3 Fig).

Heatmaps were constructed to highlight the expression profiles of the transcription factors
represented in these networks. We see that HRG drives more dramatic expression changes (see
S4A and S4B Fig) in both generic and stimulus-specific promoters. The generic transcription
factors are mainly expressed at immediate early times, and most stimulus-specific ones are
expressed at mid-delayed times. These observations reflected the trends that we had seen more
generally for all generic and stimulus-specific promoters. It is possible that following the more
stable HRG signals, higher levels of expression of key stimulus-specific transcription factors at

Fig 5. Protein-protein interaction networks (PPI) of genesmapped by the generic and stimulus-specific promoters. A. PPI sub-network of shortest
paths connecting the 38 transcription factors controlled by generic promoters (32 controlled by generic promoters only, and 6 controlled by alternative
promoters classified as either generic or stimulus-specific; note that ZBTB42 (Zinc Finger And BTB Domain Containing 42) does not appear, as it is not listed
in iRefIndex).B. PPI sub-network connecting the 68 transcription factors controlled by stimulus-specific promoters (62 controlled by stimulus-specific
promoters only, and 6 controlled by alternative promoters classified as either generic or stimulus-specific; note that FOXQ1 (forkhead box Q1) does not
appear, as it is not listed in iRefIndex). Larger nodes denote TFs, smaller nodes represent non-TF interactors. Green and yellow nodes represent genes
mapped by generic promoters and stimulus-specific promoters respectively. Red nodes denote genes that map to both generic and stimulus-specific
promoters. Square nodes, like EGF1, identify genes that map to at least one promoter showing significant increments in expression in the HRG over EGF
time course.

doi:10.1371/journal.pone.0144176.g005
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mid-delayed times may bring about an active and strong AP-1 complex formation that is
responsible for triggering waves of expression that lead to MCF-7 cell differentiation.

Co-expression networks of transcription factors show more coordinated
expression occurs in the HRG-stimulated MCF-7 cells
Regulatory information about the cell fate transition can also be obtained by probing co-
expression networks since genes that share similar expression profiles are thought to be regu-
lated by common upstream processes. We constructed co-expression networks for the tran-
scription factors mapping to promoters in the generic and stimulus-specific groups (see
Materials and Methods). Networks were constructed under HRG and EGF stimulation
separately by joining two genes in the network that had highly correlated expression profiles
(S5A–S5D Fig). HRG was associated with a higher degree of co-expression across the time
course than EGF and this result was observed for both generic and stimulus-specific promoters.
We saw that this effect is more pronounced for the stimulus-specific promoters where there is
stronger correlation (and anti-correlation) under HRG than EGF (S6A and S6B Fig). More-
over, for the stimulus-specific promoters that map to transcription factors, HRG is associated
with more positive correlation compared to EGF. One possible interpretation of this result is
that there is greater coherence and coordination occurring between these transcription factors
during cellular differentiation.

Validation of the main results based on the CAGE data set with two gene
expression data sets
To investigate the robustness of the results obtained from the CAGE data set, we applied our
analyses to two other gene expression data sets from a microarray experiment [10] and a qPCR
experiment [6]. Both data sets were profiled using the MCF-7 cell line that had been exposed to
EGF and HRG with data points sampled over a time course that overlapped with the design of
the CAGE experiment. Overall, we identified a statistically significant overlap in the lists of stim-
ulus-specific and generic genes between the microarray and CAGE data sets (P-value =
1.38×10−6). The overlap with the qPCR data set was not statistically significant (P-value = 0.738),
and this may have been due to the fact that only a targeted set of genes (2,352 transcription fac-
tors) were profiled in the qPCR experiment whereas the CAGE data set was at genome-wide res-
olution. The frequency at which time points were sampled was also sparser in the qPCR data set
than the CAGE data set. Despite the lack of statistical significance, we observed consistent sets of
genes between the qPCR and CAGE data sets that were classified as generic (32 genes) and stimu-
lus-specific (41 genes). Amongst these lists, we detected transcription factors that were key regu-
lators of EGF and HRG signaling such as EGR1, FOS, SP3 (Sp3 transcription factor), SMAD3,
and BRIP1 for the generic genes, and FOSL2 (FOS-like antigen 2), FOXA1, and JUN (jun proto-
oncogene) for the stimulus-specific genes. We inspected the expression activity for several genes
from both stimulus-specific and generic sets in both CAGE and microarrays data sets and found
that some profiles were qualitatively consistent. We also compared the functional enrichment
results of the stimulus-specific and generic gene lists, and found a subset of significant GO terms
and KEGG pathways that were enriched in both microarray and CAGE data sets. Our results
from this comparison are described in more detail in S1 Text. Overall, while there are some data-
specific differences, we found many consistencies in the main results observed from the CAGE
data set with the microarray and qPCR data sets.

Additionally, it is worthwhile highlighting that although different computational methods
were used to analyze the qPCR and microarray data sets in the original papers from the trajec-
tory models we have applied to the CAGE data set, similar conclusions were observed in the
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results we obtained [6, 10]. In both qPCR and microarray data sets, subsets of gene sets were
identified that followed patterns that were similar to the stimuli-specific and common, generic
definitions that we have adopted in this paper. The observation that different computational
methods applied to data sets generated under two different gene expression platforms have
identified results that are similar to the major conclusions derived from the CAGE data set
lends support to the robustness of our findings.

Discussion
It is unsurprising that the balance between generic and stimulus-specific promoters was so
skewed towards the latter group (70% versus 30%) because not only were the MCF-7 cells
exposed to different stimuli but as a result, they also transition to different cell fates. As a result
of the MCF-7 example that we have chosen, the stimulus-specific trajectory model captures the
promoters that have both cell fate-specific and stimulus-specific expression responses of the
cellular system. The generic trajectory model instead captures the promoters with behavior
that is coordinated between both stimuli. We would therefore expect that a larger number of
promoters are needed to participate in the transition of cells towards different fates as well as
recruitment to respond to different stimuli.

Our analysis indicated that both generic and stimulus-specific promoters target AP-1 com-
plex including FOS. FOS contains a conserved DEF domain, susceptible to phosphorylation by
ERK, and this domain makes FOS a good sensor for an upstream ERK signal [42, 43]. An
HRG-induced sustained ERK signal mediates phosphorylation of FOS protein, under a more
potent and stable control than that observed under EGF treatment [7]. Differences in the
expression levels of IEGs like FOS have a big impact on successive transcriptional events, as
they are often hubs in regulatory networks. These immediate early quantitative differences at
the transcription factor level will, in turn, be converted into qualitatively different induction in
successive transcriptional events. This would inhibit the original upstream signal by negative
feedback once it has become unnecessary as seen in the case of FHL2.

As for EGR1, we found this gene was represented by both generic and stimulus-specific pro-
moters. An earlier study showed using two EGF pulse-stimulated 184A1 human mammary
cells that both p53-dependent restraining processes followed by the second pulse elimination
of the suppressive action of p53 via the PI3K/AKT pathway as well as ERK-EGR1 threshold
mechanism is necessary for S phase entry [44]. In addition, another study using MCF10A
mammary cells that involve EGR1 and the ERK-ERF axis to drive mammary cell migration in
response to EGF [45]. The study is partially consistent with our current observation that the
EGF- and HRG-mediated ERK-AP-1 axis and EGR1 are central components of cell divergence
of MCF-7 mammary tumor cells, and that the ERK signal is dynamically regulated by the tran-
scriptional negative feedback through FHL2 or DUSP5, a MAPK phosphatase.

The observation of alternative promoters that map to the same genes demonstrated how it
is possible to control the one gene via multiple signals. Amongst the alternative promoters that
we identified, we saw that the majority featured alternative promoters that had stimulus-spe-
cific expression and suggested that promoters mapping to the same gene were all being
expressed in a divergent manner between different stimuli. The observation that another group
of genes (37 out of 162) had alternative promoters that were represented in both generic and
stimulus-specific groups was interesting as this highlights the divergent nature of how genes
are expressed and controlled across their corresponding promoters regions. Other CAGE stud-
ies have exposed the level of discordance that can occur for different promoters that map to the
same gene, suggesting that to really understand transcription and its functional consequences,
we need to move to the resolution of promoters as opposed to genes.
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The comparison of PPI networks for generic and stimulus-specific promoters reflect the
convergence of overlapping components in the signaling pathways, specifically for the six tran-
scription common TFs (EGR1, FOS, SMAD3, BRIP1, FOXA1, and KLF6). We saw many PPIs
that were unique to the generic versus stimulus-specific networks which was consistent with
the idea that these genes and their proteins are required in different stages and abundances
during the time course, depending on the role they play in the cell fate transition. However, the
six common transcription factors mark components of the signaling pathways where their
usage, at the expression level at least, occurs in both a generic and stimulus-specific manner at
different timing regulated by alternative promoters. The result suggests that regulatory mecha-
nisms of these transcription factors are in fact very diverse and precisely controlled in a time-
dependent manner, and that divergent regulatory events are integrated as a core network that
functions to act as a robust axis to drive cell determination.

Supporting Information
S1 Fig. Heatmaps showing patterns of expression for the highly-expressed generic and
stimulus-specific promoters. These values span the whole range of generic and stimulus-spe-
cific promoters values for A. 49 generic promoters and B. 100 stimulus-specific promoters,
identified as being the most highly-expressed (average expression value in either EGF or HRG
treatment was greater than the 85% percentile of values under the corresponding treatment).
There are many more genes controlled by stimulus-specific promoters highly expressed, partic-
ularly under the HRG treatment and at mid-delayed times.
(EPS)

S2 Fig. Heatmaps showing the expression profiles of promoters that map to genes involved
in controlling cell proliferation. A. There were 16 generic promoters that mapped to genes in
the GO term ‘negative regulation of cell proliferation’. B. There were 21 stimulus-specific pro-
moters that mapped to genes in the GO term ‘positive regulation of cell proliferation’.
(EPS)

S3 Fig. Heatmap showing the expression profiles of seven alternative promoters that all
map to FOS.
(EPS)

S4 Fig. Heatmaps showing the expression profiles of the A. generic or B. stimulus-specific
promoters that map to transcription factors (scaled by promoter). As observed for the
whole set of generic and stimulus-specific promoters, HRG drives more dramatic expression
changes; while generic transcription factors are mainly expressed at immediate early times,
most stimulus-specific ones are expressed at mid-delayed times.
(EPS)

S5 Fig. Co-expression networks in EGF and HRG time courses A. and C. for the 38 tran-
scription factors controlled by generic promoters and B. and D. the 68 transcription factors
controlled by stimulus-specific promoters. Each node represents a gene, and the edges join
genes that are highly-correlated during the time course (|correlation coefficient|> 0.95). The
color of an edge indicates the strength of correlation, ranging from blue (negative correlation)
to white (uncorrelated) to red (positively correlated). We see more dramatic co-expression in
the HRG time course compared to the EGF time course, and this is observed more readily for
the subset of stimulus-specific transcription factors.
(EPS)
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S6 Fig. Density distributions of the correlation coefficients for the transcription factor
pairs for the A. 38 transcription factors controlled by generic promoters and the B. 68 tran-
scription factors controlled by stimulus-specific promoters under EGF (red) and HRG
(blue) treatments.While the expression of the majority of transcription factor pairs is uncor-
related under EGF treatment (describing an almost normal distribution), the expression of the
majority of transcription factor pairs is highly correlated, either positively or negatively
(describing a bimodal distribution), under HRG. These differences in correlated expression for
both generic and stimulus-specific transcription factors are particularly striking for stimulus-
specific transcription factors, which tend to be more positively correlated.
(EPS)

S1 Table. List of FANTOM Consortium members.
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S2 Table. Statistically significant GO and KEGG terms for the generic genes identified
from the CAGE data set. Statistical significance was defined as adjusted P-value< 0.05 using
the Benjamini-Hochberg method. No KEGG pathway was found to meet statistical significant.
(DOCX)

S3 Table. Statistically significant GO and KEGG terms for the stimulus-specific genes iden-
tified from the CAGE data set. Statistical significance was defined as adjusted P-value< 0.05
using the Benjamini-Hochberg method.
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S1 Text. Validation of CAGE results with other gene expression data sets.
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