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We report the first genome sequence for Arthrobacter siccitolerans 4J27, a newly described desiccation-tolerant species. The
complete genome of A. siccitolerans 4J27 has been sequenced and is estimated to be around 5.3 Mb in size, with an average GC
content of 65.13%. We predict 4,480 protein-coding sequences (CDSs).
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The genus Arthrobacter belongs to the class of high-GC-content
Actinobacteria. Species of Arthrobacter have been found in

common soils and in extreme environments, including dry soils
(1). Arthrobacter siccitolerans 4J27 is a highly desiccation-tolerant
new species (2, 3). Many desiccation-tolerant microorganisms
produce xeroprotectants to protect themselves against damage
caused by drought (4–10) and other stressors (11). Thus, the syn-
thesis of nonreducing disaccharides such as trehalose and sucrose
is associated with the ability of these organisms to survive in the
dry state (5, 9–11). We have reported the production of trehalose,
glucose, and glutamine at relative concentrations of 5.8:2.8:1 as a
xeroprotectant designated S4J27-D (2). To our knowledge, the
complete genome sequence of A. siccitolerans had not yet been
deposited in the DDBJ/EMBL/GenBank databases. In this study,
we determined the whole-genome sequence of A. siccitolerans 4J27
with pyrosequencing technology as implemented by the 454 Life
Science–Roche platform (12). Sequencing was provided by Life-
sequencing S.L. (Valencia, Spain) with a combined shotgun and
8-kb mate-pair sequencing approach.

A total of 142,567 reads were produced, with an average read
length of 623 bases and 90,146 sequences for the shotgun ap-
proach and an average read length of 412.81 bases for the mate-
pair sequencing strategy. The total number of sequenced bases is
88,868,818, representing a sequencing depth of around 23�. De
novo assembly was performed with default parameters using New-
bler assembler v. 2.6. The assembly resulted in 64 contigs, 50 of
which were larger than 500 bp. The N50 of the contig assembly was
212,564 bp, and the largest contig was 628,521 bp. Most of these
contigs were ordered in three scaffolds (based on mate-pair infor-
mation), where the largest scaffold was 4,789,105 bp. This combi-
nation of scaffolds and contigs resulted in an estimated genome
size of 5.3 Mb. Gap closure was attempted with gap-spanning
clones and PCR products. Putative coding sequences were pre-
dicted and genes were annotated with a pipeline implemented at
Lifesequencing S.L. Briefly, protein-coding sequences (CDSs) were
predicted by the combined use of Glimmer (13–15), RNAmmer (16),
tRNAScan (17, 18), and BLAST (19, 20). The complete genomic
information for A. siccitolerans 4J27 is contained on three scaf-

folds, one of which is apparently the circular 4,789,105-bp chro-
mosome with an average GC content of 65.15%. The genome was
found to contain 4,536 protein-coding genes, 2 rRNA operons,
and 51 tRNA genes.

Analysis of this genome sequence data leads us to propose the
presence of all three known pathways for trehalose biosynthesis in
the main component of the xeroprotectant mixture, i.e., from
UDP-glucose and glucose 6-phosphate (OtsA-OtsB pathway),
from malto-oligosaccharides or �-1,4-glucans (TreY-TreZ path-
way), or from maltose (TreS pathway). This knowledge can lead to
advances in biotechnological applications for anhydrobiotic engi-
neering (5, 8, 11).

The complete genome sequence of A. siccitolerans 4J27 will
contribute to the development of xeroprotectant mixtures with
biotechnological applications.

Nucleotide sequence accession numbers. The complete ge-
nome sequence of A. siccitolerans 4J27 has been deposited in the
DDBJ/EMBL/GenBank databases under accession numbers
CAQI01000001 to CAQI01000064.
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