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Even though more than 30 years have passed since the eradication of smallpox, high

titers of smallpox-specific antibodies are still detected in the blood of subjects vaccinated

in childhood. In fact, smallpox-specific antibody levels are maintained in serum for more

than 70 years. The generation of life-long immunity against infectious diseases such as

smallpox and measles has been thoroughly documented. Although the mechanisms

behind high persisting antibody titers in the absence of the causative agent are still

unclear, long lived plasma cells (LLPCs) play an important role. Most of the current

knowledge on LLPCs is based on experiments performed in mouse models, although

the amount of data derived from human studies is increasing. As the results from mouse

models are often directly extrapolated to humans, it is important to keep in mind that

there are differences. These are not only the obvious such as the life span but there are

also anatomical differences, for instance the adiposity of the bone marrow (BM) where

LLPCs reside. Whether these differences have an effect on the function of the immune

system, and in particular on LLPCs, are still unknown. In this review, we will briefly discuss

current knowledge of LLPCs, comparing mice and humans.
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INTRODUCTION

The bone marrow (BM) is one of the most important immunological organs in the body. Therein
reside the hematopoietic stem cells that give rise to the cells in the blood including leukocytes. In the
mid 1990’s the BM was also suggested as the source of persistently high antigen-specific antibody
titers (1). Not long after were the antibody secreting cells in the BM described. They were named
plasma cells (PCs) and were shown to have a lifespan similar to long-lived memory B cells, i.e.,
long-lived PCs (LLPC) (2). Currently the general consensus is that LLPCs live for a (very) long
time.

The cells that give rise to antibody-secreting cells are B cells, which develop from hematopoietic
stem cells via precursors in the BM. As immature B cells they leave the BM andmigrate via blood to
the spleen where they mature into naïve B cells. B cells also circulate via blood to other secondary
lymphoid organs, particularly to lymph nodes and gut-associated lymphoid tissues (GALT). B cells
express a B cell antigen receptor (BCR) on their surface i.e., a membrane-bound antibody. When
naïve B cells encounter their cognate antigen they become activated, and after clonal expansion
differentiate into short- and/or long-lived antibody-secreting PCs. LLPCs are typically formed
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during the germinal center (GC) reaction. In the GCs, the B
cells undergo clonal expansion and their BCRs are diversified by
class switch recombination (CSR) and/or somatic hypermutation
(SHM), where the former acts on the antibody constant region
and the latter on the variable region. CSR results in the switching
from IgM to IgG, IgA, or IgE and thereby a change in effector
function, such as complement activation, while the antigen
specificity is retained. SHM allows the BCRs to undergo affinity
maturation, which results in cells that express BCRs with higher
affinity to outcompete those with lower affinity (3). B cells that
leave the GCs can join the pool of either memory B cells or PCs,
where the PCs migrate to their survival nïche in organs such as
the BM or gut where they can further differentiate into LLPCs.

As mentioned, PCs can be either short- or long-lived, and
are terminally differentiated cells that do not proliferate further.
Short-lived PCs are found in extrafollicular sites, such as the red
pulp of the spleen and medullary chords of the lymph nodes,
while LLPC are located in other organs such as the BM and GALT
where they produce antibodies for long periods of time (4–6).

The different functions of PCs and naïve B cells are reflected in
their different morphology. In contrast to naïve B cells, PCs have
a larger cytoplasm with abundant rough endoplasmic reticulum
and Golgi apparatus. These components are necessary for the
production and secretion of large amounts of antibodies (7).
Such high antibody production requires the cells to correct
for protein misfolding and aggregation within the endoplasmic
reticulum, and hence PCs constitutively activate the unfolded
protein response. By contrast to naïve B cells, PCs no longer
bind or present antigen, as these receptors—BCR andMHCClass
II, respectively—are down regulated from the cell surface. This
view might have to be reconsidered though, as it has recently
been observed that the BCR remains on the cell surface and is
functional in both IgA- and IgM-secreting PCs (8, 9).

LONG-LIVED PLASMA CELLS: A BRIEF
COMPARISON BETWEEN MICE AND MEN

The Adiposity of the Bone Marrow
Mice

Adipocytes are the cells that produce fat, and in mice the
adiposity of the BM is low compared to humans (10). The amount
of fat in the BM also differs between mouse strains (11). It has
been suggested that there might be two types of BM adipose
tissue (12), constitutive and regulated, where the former arises
early in life while the latter forms later in life, increases with age
and is distributed across the bone in a more scattered way. The
distinction between these two adipose tissues is thus based on
spatiotemporal distribution (13, 14).

Humans

In humans, there are two types of BM: red and yellow. The red
BM is hematopoietically active and contains the platelets, red
blood cells, and leukocytes. The yellow marrow mainly contains
adipose tissue, which has an antagonistic effect on hematopoiesis
(15). At birth the BM mostly contains red, hematopoietically
active marrow. However, conversion from red to yellow marrow
starts early in life. Around the age of 25 years, 50–70% of the

BM has turned yellow and hematopoiesis is mainly restricted to
the axial skeleton (ribs), proximal humerus (shoulder bone), and
femur (thigh bone) (11, 16). It has also been suggested that, as in
mice, there might be two types of adipose tissue in human BM
(13).

The fact that mice have less adipose tissue and more red
BM than humans suggests that a larger part of the BM is
hematopoietically active during the lifetime of the mouse.
However, whether less BM adipose tissue affects PC biology and
long-term vaccine responses is still unclear. In this context, as
rabbits start to accumulate adipocytes in the yellow marrow early
in life (in adolescence) they might be a better model to decipher
the effect of BM adipose tissues on human PC biology (17).

Life Expectancy and Long-Lived Plasma
Cells
Mice

The life span for mice is 1–3 years, depending on the strain (18).
In the mid 1990’s it was demonstrated that, after infecting mice
with lymphocytic choriomeningitis virus (LCMV), the initial
antibody response occurred in the spleen. However, after clearing
the initial infection, and for the remainder of the animal’s life,
the BM became the major site for long-term production of virus-
specific antibodies (1). In another study, virus-specific PCs were
adoptively transferred into naïve mice after depletion of memory
B cells (by irradiation), and it was shown that a large fraction of
the PCs in both the BM and spleen survived. These PCs produced
antibodies for over a year in the absence of detectable memory
B cells (19). Moreover, after immunization with ovalbumin, it
was observed that the PCs were present in constant numbers in
the BM and that they survived for more than 90 days without
DNA synthesis (2). In yet another study, after oral immunization
with ovalbumin and cholera toxin, antigen-specific LLPCs were
detected in the GALT where they secreted IgA, and in the BM
where they secreted IgG and IgA (20). At both sites, the antigen-
specific LLPCs persisted for at least 9months after immunization.
This study also indicated crosstalk between the GALT and BM.
Thus, in mice, LLPCs can survive for months or even a year
or two. However, as the life span of mice is much shorter than
that of humans, it becomes a hurdle when investigating the
immunological persistence of, for instance, vaccine responses and
LLPCs.

Humans

The life expectancy for humans in 2015 was 71.4 years (21). The
persistence of antibody levels for life has been well-documented
in humans (22, 23). Indeed, work performed in the late 1980’s
showed that the BM is a site of B cell development from precursor
cells as well as for antibody-secreting cells (24–26). However,
whether this is due to the longevity of LLPCs that are generated at
the time of vaccination/disease or to spontaneous differentiation
of antigen-specific memory B cells into “new” LLPCs is more
difficult to address. Nevertheless, using a novel carbon dating
technique a recent study showed that PCs can survive for up to
22 years in the GALT (27). Thus, investigating true LLPCs that
survive for decades will require studies in human tissues.
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FIGURE 1 | Cell surface markers and transcription factors expressed by mouse and human long-lived plasma cells.

Cell Surface Markers
Mice

B220 is a pan-B-lineage marker in mice though not B-lineage
specific. In contrast, CD19 is specific to the B-lineage. Naïve
and GC B cells express both of these markers on their cell
surface whereas their expressionwas thought to be absent on PCs.
However, B220 positive and negative PCs have been described,
although it is currently unclear whether they are LLPCs (28).
Further, PCs express CD138 (Syndecan-1), CD93, CD44, VLA-
4, IL6-R, BCMA, and CXCR4 and, of these, CD138 is often
used to distinguish LLPCs from other B-lineage cells in the BM
(Figure 1) [reviewed in (29)].

Humans

Human PCs can be identified by their very high levels of both
CD27 and CD38 and, as mouse PCs, they also express CD138
(30, 31). As in mice, they also express CXCR4, IL6-R, and
BCMA. In the human BM, PCs that are CD19+ or CD19−

secreting vaccinia-specific antibodies have been described (32).
The CD19− PCs show characteristics similar to LLPCs in mice
(30, 31) with a resistance to in vivo B cell depletion with
Rituximab. Rituximab is an anti-CD20 antibody that targets most
stages of B-cell maturation but not PCs, as they do not express
CD20 (31). Although the CD19− and CD19+ PCs show similar
antibody heavy chain repertoires, the VH mutation number and
frequency vary depending on isotype (31). BM from infants aged
5–7months lack CD19− PCs (31), indicating that the CD19+ PCs
appear earlier in life than the CD19− PCs. The VH repertoire
of BM LLPCs is a mixture of PCs rather than being dominated
by a large clonally-related population (30) and the heavy chain
repertoire is stable for over 6.5 years (33). Thus, further work
is still needed to understand how different phenotypes of LLPCs
correlate to function in both humans and mice.

Transcription Factors
Mice

The gene expression pattern in PCs is distinct from that of
activated B cells. For instance, the transcription factors Bcl-
6, Pax5, and Bach2 are silenced in PCs whereas PC-specific

genes are activated (34). One of the main regulators of PC
differentiation is Blimp-1 (35–38), which is expressed in all PCs
and some GC B cells that have a phenotype resembling PCs
(35). Our understanding of e.g., Blimp-1 as a crucial factor for
PC differentiation has benefited much from the introduction
of reporter mice (Blimp-1 GFP) where the fate of PCs can
be followed throughout the life of the mouse (39). Blimp-
1 is required for full PC differentiation but the commitment
to PC fate can be Blimp-1-independent (40). Many of the
components of the unfolded protein response that are up-
regulated in PCs are regulated by Blimp-1 (41). Together with
Blimp-1, another transcription factor, IRF4, is responsible for
terminating the transcriptional program of GC B cells, CSR, and
promoting PC differentiation (42). Indeed, inactivation of IRF4
ablates PC formation (38). IRF4 also regulates XBP-1, which
coordinates changes in the cellular structure and function of
PCs (43) including maintaining Ig transcription (38). Blimp-
1-deficient PCs lose the ability to secrete antibodies but retain
their transcriptional identity, whereas XBP-1-deficient PCs show
decreased antibody secretion (38).

Bcl-6 is a transcriptional repressor that is essential for GC
formation and multiple other functions, such as proliferation
and assessing DNA damage. Bcl-6 and Blimp-1 have a reciprocal
relationship depending on the differentiation stage of the B
cell. In general, B cells with high levels of Bcl-6 have a high
proliferative capacity but low antibody secreting capacity while
the converse is true for Blimp-1 (44, 45). Thus, PC differentiation
and function depends on the presence of Blimp-1, IRF4, and
XBP-1 and the absence of Bcl-6.

Humans

In humans, Blimp-1, IRF4, and XBP-1 are associated with
commitment to the PC fate (35, 43). These and some of the
other transcription factors mentioned above e.g., Bcl-6 might
have the same role in humans as in mice. Recently, more factors
involved in commitment to PC differentiation in humans have
been discovered. For example, the transcription factor KLF4,
which enhances the ability of plasmablasts to differentiate into
PCs and LLPCs (46).
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In conclusion, more work is still needed to understand LLPCs
in humans but also mice. With the emergence of new techniques
such as single cell RNA sequencing, more light will certainly
be shed on the regulatory networks in both human and mouse
LLPCs in the coming years.

The Survival Nïche
IL-5 and IL-6 were among the earliest cytokines shown to
have important roles in PC biology in both mice and humans
(47–50). IL-5 was originally identified as a B-cell growth and
differentiation factor (51) as well as an eosinophil differentiation
and IgA-enhancing factor (52, 53). IL-6 was initially described in
the early 1980s and named B-cell differentiation factor based on
its ability to induce B cell differentiation (54, 55). In addition to
these cytokines, other factors also contribute to PC survival, e.g.,
APRIL (see below).

Mice

Since the above-mentioned studies, it has been demonstrated
that eosinophils and PCs co-localize in mouse BM and that
eosinophils produce APRIL although also megakaryocytes and
basophils can produce APRIL (56–58). It has also been shown
that anti-IL-5 treatment decreases the expression of both APRIL
and IL-6 mRNA in the BM (59). The exact role of IL-6 for LLPCs
is still unclear since on one hand IL-6−/− mice generate fewer
Ag-specific PCs but on the other hand LLPCs transferred into an
IL-6−/− recipient mouse persist (49, 60). Although APRIL was
already known to be important for PC survival, eosinophils were
mainly known as important players in inflammatory responses
related to allergies and immune defense against parasites (61–
63) but not in the context of PCs. However, a recent report
questions the importance of eosinophils for LLPCs in the BM
since neither genetic deletion nor antibody treatment against
eosinophils affected the LLPCs (64). In addition to hematopoeitic
cells producing APRIL, osteoclasts might also contribute (65).
Moreover, it has recently been shown that regulatory T cells are
important for PC survival in the BM (66). It should also be
mentioned that BAFF contributes to the survival of LLPCs (67)
and, as BAFF is abundant in peripheral blood, under conditions
such as inflammation CXCR4 positive LLPCs might leave the BM
to reside in other CXCL12-rich tissues (68).

In mice, ∼80% of all PCs and eosinophils are located in the
GALT (69). Here, eosinophils are responsible for the generation
and maintenance of IgA-secreting PCs and promotion of CSR
to IgA, and they are also necessary for maintaining immune
homeostasis in GALT (70).

Although LLPC are mostly considered to reside in the BM
and GALT, a population of B220−CD138+ LLPCs that secrete
IgM and persist for the lifetime in the spleen, but to a lesser
extent in the BM, was recently described (71). This IgM-secreting
LLPC population is distinct from BM resident LLPCs that mainly
secrete IgG. The former develops in the absence of the GC
reaction and shows no evidence of antigen selection. That is, the
IgM from these LLPCs have a low level of somatic mutations,
which contrasts the IgG-secreting PCs where mutations are
abundant. The authors suggested that this process might be a pre-
GC evolutionarily conserved pathway, such as the one protecting

cartilaginous fish. Splenic LLPCs secreting mainly IgM have also
been described in a mouse lupus model (NZW/B mice) where
they survived for over 6 months (72).

Humans

A high number of eosinophils reside in the human gut and are in
the vicinity of LLPCs (27). Gut eosinophils express high levels of
APRIL and IL-6, which is thought to promote survival of PCs also
in humans (70). Another report showed that IL-6 together with
either APRIL or soluble factors from stromal cells are mandatory
for the generation of LLPCs in vitro (73). It also appears that PCs
prolong the survival of eosinophils in that secretory IgA binds to
their FcαR receptor, which prevents apoptosis (74). However, the
role of eosinophils in the survival of LLPCs in the human BM
is less clear than in mice. There are indications, however, that
eosinophils play a role in the persistence of high antibody titers
in humans (75, 76).

Whether it is in the gut, BM, or spleen, the role of the
environment appears to be one of the crucial factors for
maintaining LLPCs and antibody titers. Elucidating the signals
needed for their survival in different nïches and the role of
other cell types such as osteoclasts and regulatory T cells require
additional studies in the human setting.

Plasma Cells in Disease
Generating high affinity antigen-specific antibodies is critical
to protect against infections. However, on the other side
of the coin are diseases related to PCs and production of
autoantibodies in autoimmune diseases. Examples include anti-
citrullinated protein antibodies in rheumatoid arthritis and anti-
nuclear/anti-DNA antibodies in systemic lupus erythematous
(SLE). There are also cancers of plasma cells (myelomas) that
secrete mono/oligoclonal antibodies. A newly described systemic
disorder is characterized by increased serum IgG4 levels with
fibrotic changes in the affected area (77) and other organ-
associated diseases (78–80).

Plasma Cells and the Use of Antibodies in
the Clinic
The immortalization of PCs to produce monoclonal antibodies
(MAbs) resulted in a Nobel Prize in 1984 to George Köhler and
Cesar Milstein (81). This has resulted in the widespread use
of MAbs in diagnostics and in therapeutics targeting diseases.
For instance, in 1997, anti-CD20 was the first MAb approved
as a therapeutic to treat lymphoma. The anti-CD20 MAb has
also been used in rheumatoid arthritis and cancers, including
diffuse large B-cell lymphomas, melanoma, follicular lymphoma,
and chronic lymphocytic leukemia but not LLPCs as they do
not express CD20. In multiple myeloma, two other MAbs have
been approved for treatment, anti-CD38 (Daratumumab) and
anti-SLAMF7 (Elotuzumab) (82, 83). Both of these molecules
are highly expressed on both healthy and malignant PCs and
these two MAbs have turned out to work efficiently in multiple
myeloma by NK cell mediated antibody-dependent cellular
cytotoxicity (both) and complement dependent cytotoxicity as
well as apoptosis via cross-linking (Daratumumab) (82, 83).
There are also therapies directed against BAFF, a survival
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factor for B cells. For example, the human MAb Belimumab
that antagonizes BAFF, which is approved as treatment for
SLE and is under evaluation for treatment of severe active
lupus nephritis in a phase III trial. Belimumab reduces the
autoantibody levels and reduces the risk of severe disease flares
(84). BAFF might also act directly on PCs, at least in disease
situations, as therapies targeting BAFF are currently being tested
in patients with multiple myeloma (85, 86). The known PC
survival factor APRIL is also being targeted using the blocking
agent Atacicept, which reduces autoantibody levels in patients
with SLE (87). In addition, Mepolizumab, a MAb against IL-
5, lowers eosinophil counts and reduces the number of asthma
exacerbations in patients with eosinophilic asthma (88). Thus,
the potential therapeutic targets for PCs are increasing based
on our current understanding of regulatory pathways. For
instance, the proteasome inhibitor Bortezomib is used to treat
multiple myeloma effectively, which depletes both short-lived
and LLPCs in SLE (89), and further investigations will likely
uncover additional factors and mechanisms involved in the
formation and regulation of LLPCs. In this context it is timely
that the 2018 Nobel prize in Physiology or Medicine was just
awarded to Allison and Honjo, for the discovery of checkpoint
blockade therapy, which represents a new concept in cancer
treatment, This depend on the treatment with MAbs but these
do not to target the cancer cells directly but rather indirectly
by releasing the breaks on T cells (anti-CTLA4 and anti-PD1)
(90, 91).

In summary, there are already known important differences
between mice and humans that need to be taken into account
when considering results from studies of LLPCs, and additional
studies are required to understand the impact of these differences
on LLPC biology. Finally, in addition to the importance of PCs
in mediating life-long protection to infectious diseases such as
smallpox and measles, understanding the regulatory networks
deciding PC fate will provide greatly needed possibilities to
design new and more potent therapeutic strategies for diseases
involving human LLPCs such as SLE, myelomas, and numerous
others.
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