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Most pituitary tumors are considered benign adenomas, and only 0.1%–0.2% of them
present metastasis and are defined as pituitary carcinomas (PCs). Refractory pituitary
adenomas (PAs) lie between benign adenomas and true malignant PCs and are defined
as aggressive-invasive PAs, characterized by a high Ki-67 index, rapid growth, frequent
recurrence, and resistance to conventional treatments. Refractory PAs and PCs are
notoriously difficult to manage because of limited therapeutic options. Vascular endothelial
growth factor (VEGF) plays a crucial role in angiogenesis not only during development but
also during pathological processes in pituitary tumors. Recently, increasing numbers of
preclinical studies and clinical research have demonstrated that anti-VEGF therapy plays
an important role in pituitary tumors. The purpose of this review is to report the role of
VEGF in the development and pathology of pituitary tumors and the progress of anti-VEGF
therapy in pituitary tumors, including refractory PAs and PCs. Previous preclinical studies
indicated that cyclin-dependent kinase 5 (CDK5)-mediated VEGF expression might play a
crucial role in the development of PAs. Vascular endothelial growth inhibitors have been
reported as independent predictors of invasion in human PAs and have been indicated as
markers for poor outcome. Furthermore, several studies have reported that angiogenesis
decreases tumor sizes in experimental animal models of pituitary tumors. The expression
of VEGF is relatively high in PAs; therefore, anti-VEGF therapy has been used in some
refractory PAs and PCs. To date, anti-VEGF has been reported as monotherapy, in
combination with temozolomide (TMZ), TMZ and radiotherapy, and with pasireotide,
which might be a promising alternative therapy for refractory PAs and PCs resistant to
conventional treatments. However, the role of anti-VEGF therapy in pituitary tumors is still
controversial due to a lack of large-scale clinical trials. In summary, the results from
preclinical studies and clinical trials indicated that anti-VEGF therapy monotherapy or in
combination with other treatments may be a promising alternative therapy for refractory
PAs and PCs resistant to conventional treatments. More preclinical studies and clinical
trials are needed to further evaluate the exact efficacy of anti-VEGF in refractory PAs
and PCs.
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INTRODUCTION

Pituitary adenomas (PAs) are common tumors arising in the
anterior pituitary gland with the second highest incidence,
representing approximately 10%–15% of intracranial primary
tumors (1–3). Most PAs are considered benign tumors that can
be cured by surgery and medication. However, a subset of
invasive PAs with a high Ki-67, rapid growth, and early
recurrences is refractory to conventional treatments such as
surgery, medication, and radiotherapy and are referred to as
refractory PAs (4). Rarely, 0.1%–0.2% of pituitary tumors can
present with either craniospinal dissemination or systemic
metastases, which are true malignant tumors and defined as
pituitary carcinomas (PCs) (5). Refractory PAs and PCs are
notoriously difficult to manage because of limited availability of
therapeutic approaches. Recently, temozolomide (TMZ) has
been recommended as a first-line treatment for refractory PAs
and PCs by the European Society of Endocrinology due to its
promising efficacy. However, only approximately 60% of patients
show a response to TMZ, and some patients develop resistance
during treatment (6, 7). Therefore, the discovery of new
therapeutic targets is of particular importance for the
management of refractory PAs and PCs. Recent studies have
shown that vascular endothelial growth factor (VEGF) and its
receptor (VEGFR) play crucial roles in angiogenesis not only in
its development but also during pathological processes in
pituitary tumors (8). Moreover, an increasing number of
clinical case reports have demonstrated that anti-VEGF
therapy is beneficial in treating refractory PAs and PCs. Here,
this review presents the role of the VEGF/VEGFR pathway in
angiogenesis of pituitary tumors and the progress of anti-VEGF
therapy in pituitary tumors, including refractory PAs and PCs.
ANGIOGENESIS IN PITUITARY TUMORS

Angiogenesis, the process of blood vessel growth, is essential for
tumor progression and metastasis (9). During angiogenesis, an
organized vascular network develops from a primitive vascular
network (10). Angiogenesis correlates with the development of
metastasis (11–13), recurrence (14), and poor prognosis (15, 16)
in many human tumors, including breast, bladder, prostate, and
stomach tumors. Contrary to most solid tumors, PA tissue
contains fewer blood vessels than normal pituitary glands (17).
In particular, not only was the number of vessels much lower but
also the size of each vessel was much smaller in PAs than in
normal pituitary glands (17–22). The angiogenesis between
different PA subtypes is divergent among studies. Jugenburg
et al. (22) reported that PAs have significantly lower vascular
densities than non-tumorous adenohypophyses. Pituitary
prolactin (PRL)-secreting adenomas have the highest vascular
densities, and growth hormone (GH)-producing adenomas have
the lowest vascular densities. However, no differences were
observed between noninvasive and invasive PAs. Primary PCs
show no significant increase in vascular densities, but some
metastatic tumors exhibit high vascularity. These results
Frontiers in Oncology | www.frontiersin.org 2
indicated that PAs have a limited capacity to induce
angiogenesis. Another study demonstrated that the highest
counts of immunopositive vascular profiles were noted in
follicle-stimulating hormone (FSH)-expressing adenomas,
whereas the lowest vascular density was observed in GH-
expressing tumors (22, 23). Angiogenesis has been shown to be
related to clinical behavior, prognosis, and response to treatment
in many different types of PAs. Turner et al. (17, 24) reported
that invasive macroprolactinomas were significantly more
vascular than noninvasive tumors; however, medical therapy
with metyrapone or bromocriptine did not influence
angiogenesis in adenomas. Vidal et al. (25) also reported a
tendency of invasive PAs to be more highly vascularized than
noninvasive PAs; the highest level of microvessel density was
found in PCs, while the lowest was found in GH-producing
adenomas. Moreover, they demonstrated that the microvessel
density of macroadenomas in older patients was significantly
higher than that in patients younger than 40 years (25). In
summary, PAs are usually less vascularized than normal pituitary
glands, while PCs are more vascular than PAs. Although the
vascular densities may be related to tumor size, proliferation,
hemorrhage, and the treatment response of PAs (19–22, 25), it is
still unclear what specific role they play in the tumorigenesis and
progression of PAs.
VASCULAR ENDOTHELIAL GROWTH
FACTOR EXPRESSION IN
PITUITARY TUMORS

VEGFs are key mediators of endothelial cell proliferation,
angiogenesis, and vascular permeability. VEGFs are a family of
angiogenic and lymphangiogenic growth factors. VEGF
pathways comprise multiple VEGF glycoproteins (VEGFA,
VEGFB, VEGFC, VEGFD, and VEGFE) and multiple
transmembrane receptors (VEGFR1, VEGFR2, and VEGFR3)
(26). VEGFA, commonly referred to as VEGF, has multiple
isoforms as a result of alternative exon splicing (27). Although
they have various affinities, these isoforms are all capable of
binding to VEGFR1 or VEGFR2. VEGFR has intracellular
tyrosine kinase activity, which is considered to be the major
mediator of the angiogenic properties of VEGF. VEGF binds to
the external membrane domain of VEGFR and causes
intracellular signaling in endothelial cells, resulting in
proliferation and migration (28). VEGF and VEGFR contribute
to a potential therapeutic target in a variety of tumors (29–31).
VEGF and its receptors are regularly overexpressed in a wide
variety of human cancers, including PAs and PCs. Although the
concordance of VEGF expression between studies may be poor,
in general, VEGF immunoreactivity is moderate to strong in
most cases (32). Lloyd et al. (33) analyzed VEGF expression in
148 cases and found positive staining in all subtypes, with a mild
to moderate degree in 92.3% (131/142) of PAs and a strong
degree in 100% (6/6) of PCs. Fukui et al. (34) also found that
VEGF expression was weak in 12.5% (6/48), moderate in 54.2%
(26/48), and strong in 33.3% (16/48) in a total of 48 PAs. Wang
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et al. (35) reported that 58.9% of 197 PAs had strong VEGF
expression. VEGF mRNA was detected in more than 85% of PAs
and had a significant correlation with VEGF protein expression
(32, 36). VEGF expression varies in different subtypes of PAs (33,
35, 37). High VEGF expression was found in nonfunctioning (19,
21, 33, 35, 38) and pituitary adrenocorticotropic hormone
(ACTH) (19, 33, 35)-, GH (19, 33, 38)-, PRL (35, 37, 38)-, and
FSH (35, 37)-secreting PAs. In tumor tissues, pituitary GH- and
PRL-secreting adenomas had diffuse VEGF distribution, while
ACTH-, TSH-, and luteinizing hormone (LH)-secreting
adenomas showed focal VEGF expression (32, 36, 39). In
addition to tumor cells, VEGF mRNA and VEGF expression
were mainly present in endothelial cells and folliculostellate cells
(36, 40, 41). PCs had significantly higher VEGF mRNA
amplification and stronger VEGF immunostaining than those
of PAs (33). Therefore, different subtypes of PAs have different
levels of VEGF, indicating that anti-VEGF therapy has distinct
therapeutic effects on different subtypes of PAs.

VEGF has significant roles in the development of tumor
neovascularity and peritumoral edema. Anti-VEGF antibodies
removed 75%–99% of the permeability activity (42). Evidence
has shown that VEGF is correlated with the pathogenesis of
cystic formation in PAs (34). Other features affected by VEGF
expression remain controversial. Overexpression of VEGF was
associated with intratumoral hemorrhage (43), extrasellar
invasion (37, 44), and rapid recurrence (37), although these
findings were not significant in other studies (19, 21, 34, 35, 37,
38, 45, 46). Moreover, as shown in several studies, VEGF
expression had no relation with tumor size (19, 34, 35, 45) or
Ki-67 index (21, 38, 43). Moreover, no clear association was
found between microvessel density and VEGF expression (19,
21). The low microvessel density despite VEGF overexpression
has caused researchers to ask if inhibitory factors related to
VEGF exist in PAs (36). The role of VEGF in the development
and progression of PAs is still controversial; however, the
expression of VEGF has not yet been used as a conclusive
marker of the aggressive behavior of PAs. Current studies
indicate that VEGF might play a role in tumoral vascular
growth, not by increasing the number of vessels, but by other
mechanisms, such as an increase in vascular permeability that
favors the abundant diffusion of nutrients.
PRECLINICAL STUDIES OF
ANGIOGENESIS IN PITUITARY TUMORS

Preclinical data indicated that VEGF is a potential therapeutic
target in PAs. A previous study demonstrated that VEGF plays a
crucial role in tumor angiogenesis during the development of a
rat prolactinoma animal model (40). Estrogen-induced
prolactinoma expresses a high level of VEGF associated with
marked angiogenesis (47). Anti-VEGF resulted in a significant
shrinkage in tumor volume, a decrease in the Ki-67 index, and
the repair of pituitary vessels (48). Additionally, the
characteristic “blood lakes” in prolactinoma were replaced by
repaired microvascular structures on three-dimensional (3D)
Frontiers in Oncology | www.frontiersin.org 3
observation under a confocal laser scanning microscope. The
current first-line therapy for prolactinomas is dopamine (DA)
agonists (Das). Dopamine D2 receptors (D2Rs), which are
widely localized in the anterior and intermediate lobes of
pituitary glands, can combine with DA to activate signaling
cascades (49). DA therapy targeting D2R yields an excellent
response in prolactinomas and some clinical benefits in non-
prolactinoma pituitary tumors (50). The decrease in D2R
expression may explain the resistance to DA. Previous studies
have identified the association between VEGF and D2R. In D2R
knockout mice, Cristina et al. (51) reported increases in VEGF
mRNA transcription, VEGF expression, and highly vascular
adenomas. When treating D2R-deficient mice with anti-VEGF,
Luque et al. (52, 53) noticed a substantial decrease in serum
prolactin, a reduction in tumor size, and a significant decrease in
vascularity. Furthermore, anti-VEGF might have additive effects
in combination with drugs targeting complementary pathways
related to angiogenesis. In mice with hemorrhagic prolactinoma,
monotherapy with anti-VEGF or DA can restrain tumor growth
and improve vascular remodeling. Only the combination of anti-
VEGF and DA can suppress intratumoral hemorrhage (54). In
concurrence, prolonged DA treatment enhanced pituitary VEGF
expression in wild-type mice (51). These findings provide a
provocative possibility of combination therapy with anti-VEGF
and DA.
THERAPEUTIC TARGETING OF
VASCULAR ENDOTHELIAL GROWTH
FACTORS IN PITUITARY TUMORS

Bevacizumab
PAs and PCs highly express VEGF, which is one of the
justifications for targeting VEGF and its receptors in this
disease. Anti-VEGF has demonstrated significant activity as a
single agent in murine studies. The recombinant humanized
monoclonal antibody bevacizumab is the first approved agent
directed against VEGF (Figure 1 and Table 1). The common side
effects of bevacizumab are fatigue, hoarseness, and hypertension.
The rare side effects of this agent include clotting, hemorrhage,
wound-healing disorders, gastrointestinal perforation, reversible
posterior leukoencephalopathy syndrome, and proteinuria (55).
Bevacizumab needs to be administered only every 2 or 3 weeks
due to its prolonged half-life. This agent can be readily combined
with chemotherapy agents, and preclinical evidence indicates
synergy for some combinations of chemotherapeutic compounds
when used alongside bevacizumab. Bevacizumab has thus far
been the drug most tried for targeting the VEGF pathway in
pituitary tumors.

The published clinical cases (7, 56–68) are presented in
Table 2. In this review, we used the same criteria used in the
recent European Society of Endocrinology survey (7). A complete
radiological response was defined as no visible tumor, partial
response (PR) as at least 30% tumor regression, stable disease
(SD) as less than 30% regression but nomore than a 10% increase,
and progressive disease (PD) as more than a 10% increase in
November 2021 | Volume 11 | Article 773905
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tumor size or presentation of new metastasis. For functioning
tumors, complete biochemical response was defined as
normalization of hormone concentration, PR as more than a
20% reduction in hormone, SD as less than but no more than a
20% change in hormone, and PD as more than a 20% increase in
hormone levels. To date, 19 cases treated with bevacizumab have
been reported. Among these cases, eight are corticotroph tumors.
Three were other subtypes (one somatotroph, one lactotroph, and
one null cell), and the subtypes of other cases were not available.
The majority of the PAs (8/11) were clinically functioning when
the cases were reported; five in 12 cases presented with
extracranial metastases, and seven in 12 were diagnosed with
PC at the time of data collection. Most of the patients (9/12)
underwent more than two surgeries in the sella. All patients
received radiotherapy. One hundred percent (10/10) of tumors
showed a Ki-67 index ≥10% at the last pathological examination.

Of the 12 patients to whom TMZ was administered prior to
bevacizumab, all yielded PD. A second course of TMZ was
administered to two patients (one on monotherapy, one on
TMZ combined with cabergoline), which resulted in further
progress. Notably, O6-methylguanine-DNA methyltransferase
(MGMT) immunohistochemistry was observed to be low in
Frontiers in Oncology | www.frontiersin.org 4
two and high in two. None of the four cases responded to
TMZ. Bevacizumab was chosen as the second- or third-line
therapy after TMZ failed. Six patients achieved SD [five on
monotherapy, one on somatostatin analog (SSA) +
bevacizumab], and four had disease progression. Ortiz et al.
(56) reported an aggressive silent corticotroph cell PA that
progressed to carcinoma despite TMZ administration and was
subsequently treated with bevacizumab, achieving 26 months of
SD, as documented on serial MRI and positron emission
tomography scans. Bevacizumab therapy resulted in severe cell
injury, vascular abnormalities, and fibrosis in tumors. This case
first revealed the effectiveness of targeting VEGF in blocking
angiogenesis , thus inhibit ing tumor growth. VEGF
immunoreactivity was positive in this case. However, VEGF/
VEGFR immunoreactivity may not directly demonstrate efficacy.
In another three patients with VEGFR expression in PC, two
showed poor responses to bevacizumab (67).

In the other seven cases, bevacizumab was administered in
parallel with TMZ as the first-line therapy. Although the
outcomes were not available in two cases, PR or SD was
reported in five patients, including one who failed to receive
TMZ as a first-line therapy. Preclinical studies showed that most
TABLE 1 | Targets and sites of action of the VEGF angiogenesis receptor and ligand in pituitary tumors.

Target Agent Drug class Site(s) of action

VEGF Bevacizumab Monoclonal antibody VEGF
VEGF receptor Sunitinib TKI VEGFR1, VEGFR2, PDGFR, KIT, FLT3, and CSF1R

Sorafenib TKI VEGFR2, FLT3, PDGFR, KIT, FLT3, and FGFR1
Apatinib TKI VEGFR2
CSF1R, colony-stimulating factor receptor type 1; FGFR1, fibroblast growth factor receptor 1; FLT3, fms-like tyrosine kinase 3; KIT, stem cell factor receptor; PDGFR, platelet-derived
growth factor receptor; TKI, tyrosine kinase inhibitor; VEGF, vascular endothelial growth factor; VEGFR1, vascular endothelial growth factor receptor 1; VEGFR2, vascular endothelial
growth factor receptor 2.
FIGURE 1 | Schematic representation of antiangiogenic agents that target the VEGF and VEGF signaling pathways in pituitary tumors. VEGF, vascular endothelial
growth factor; VEGFR, vascular endothelial growth factor receptor.
November 2021 | Volume 11 | Article 773905
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PAs exhibited low expression of MGMT and high expression of
VEGF, while the expression ofVEGFwas positively associatedwith
MGMT (35). TMZ and bevacizumab might be considered a
combination therapy under the premise of indications. Touma
et al. (62) reported a patient withACTH-secreting PCwho received
adenomectomy in combination with radiation, TMZ, and
bevacizumab and was kept in remission over 5 years of follow-up
after therapy. Rotman et al. (64) reported a comparable result in
another casewith a corticotrophPC.Thepatientunderwent surgery
and radiotherapy for metastasis, followed by combined,
overlapping chemotherapy with TMZ and bevacizumab, leading
toaprogression-free survival of 8 years. In theESE survey (7) on166
patients with aggressive PAs or PCs, seven were administered
bevacizumab once, as shown in Table 2. Three patients were
treated with bevacizumab monotherapy, resulting in SD in one
patient and PD in one patient. Four patients took bevacizumab
combinedwithTMZ, and50% (2/2)hadPR.These observations are
consistent with other studies that have shown complementary
effects of anti-VEGF combined with drugs targeting alternative
pathways implicated in angiogenesis and further underline the
importance of combination therapies when choosing bevacizumab.

Importantly, bevacizumab is a new option in the treatment of
aryl hydrocarbon receptor-interacting protein (AIP)-related PA.
Inactivating germline mutations in the AIP gene are linked to PA
predisposition. Korbonits et al. (60) and Dutta et al. (61) treated a
4-year-old child diagnosed with AIP-mutated somatotroph PA
with combination therapy of TMZ and bevacizumab
concomitantly with radiation and pegvisomant, which
Frontiers in Oncology | www.frontiersin.org 5
stabilized tumor growth and hormone secretion over 4 years.
This case revealed that bevacizumab could play a role in
controlling genetically driven refractory PAs.

Tyrosine Kinase Inhibitors
Although bevacizumab has been the most studied VEGF inhibitor
in pituitary tumors, various other agents are in development
(Table 1). The majority of these agents are tyrosine kinase (TK)
inhibitors. Sunitinib and sorafenib are small molecules that inhibit
multiple TK receptors, some of which are implicated in
angiogenesis, tumor growth, and metastatic progression
(Figure 1) (69–71). Sunitinib and sorafenib have been approved
in different clinical scenarios such as advanced renal cell
carcinoma (72) and local or metastatic thyroid carcinoma
refractory to radioactive iodine treatment (73) and hence are
used in the treatment of pituitary metastasis from renal cell
carcinoma (74–81) and thyroid carcinoma (82, 83). Apatinib,
also known as rivoceranib, is a TK inhibitor that selectively
targets VEGFR (Figure 1) (84). The toxicity and side-effect
profile of TK inhibitors varies as a function of their target TKs,
including hematological events (anemia, neutropenia, and
thrombocytopenia), diarrhea, nausea, fatigue, hypertension, skin
rash, elevation of liver enzymes, and proteinuria.

Sunitinib has been reported in the treatment of PAs and PC in
two cases thus far. Both cases had observed PD (Table 2). Apatinib
was administered ina41-year-old female incombinationwithTMZ
as a second-line treatment (68). This patient was diagnosed with
GH-secreting recurrent PA that resisted surgeries, radiation, and
TABLE 2 | Cases of pituitary carcinomas and aggressive pituitary tumors treated with anti-VEGF.

Ref ID Age/
Sex

Tumor
subtypes

Extent of disease
beyond sellar

region

Prior
surgeries

Prior
radiation

Medical treatments Gene,
molecular

data

Response
to anti-
VEGF

PFS after
first dose of
anti-VEGF

(mo)/
Outcome

Anti-VEGF
(56) 1 44/

M
Corticotroph
tumor,
nonfunctioning

Intracranial:
suprasellar,
cavernous sinus,
optic chiasm
Extracranial: spine

7 CNS
surgeries
Spine surgery
Sellar lesion
biopsy

1. Sellar
region
2. Vertebral
metastases

1. TMZ×8 cycles (PD)
2. TMZ×16 cycles (PD)
3. TMZ×8 cycles (PD)
4. BEV×26 cycles (SD)

VEGF pos
MGMT high
Pathology
after BEV: cell
injury,
vascular
abnormalities,
and fibrosis

R: SD 26/Survival

(57) 2 25/F Corticotroph
tumor,
functioning

Extracranial: bone 3 CNS
surgeries
Bilateral
adrenalectomy

1. Pituitary
fossa

1. SSA (PD)
2. TMZ (PD)
3. BEV and SSA×6 cycles
(SD)

NA R: SD
B: PR,
plasma
ACTH
decreased
from
>200,000 to
113,000 pg/
ml

6/Survival

(58, 59) 3 56/F Corticotroph
tumor,
functioning

Intracranial:
suprasellar,
cavernous sinus,
optic chiasm,
sphenoid sinus

6 CNS
surgeries
Bilateral
adrenalectomy

1. Sellar
region

1. SSA×1 mo (PD)
2. CAB×2 mo (PD)
3. TMZ×9 cycles (PD, after
withdrawal)
4. BEV (SD)

Ki-67 40%
MGMT low

R: SD NA/Death
(postoperative
complication)

(Continued)
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TABLE 2 | Continued

Ref ID Age/
Sex

Tumor
subtypes

Extent of disease
beyond sellar

region

Prior
surgeries

Prior
radiation

Medical treatments Gene,
molecular

data

Response
to anti-
VEGF

PFS after
first dose of
anti-VEGF

(mo)/
Outcome

(60, 61) 4 4/M Somatotroph
tumor,
functioning

Intracranial:
suprasellar,
cavernous sinus,
optic chiasm

1 CNS
surgeries

1. Sellar
region

1. TMZ×3 cycles, TMZ and
BEV×35 cycles, PEG (PR,
concurrent with surgery
and radiotherapy, stopped
due to potential gonadal
toxicity)
2. PEG and SSA (PR)

Nonsense AIP
mutation
VEGF pos
Ki-67 12%
P53 neg
MGMT low

R: PR,
reduction in
pituitary
tumor
volume
B: SD

48/Survival

(62) 5 63/
M

Corticotroph
tumor,
functioning

Intracranial:
suprasellar,
cavernous sinus,
optic chiasm,
sphenoid sinus
Extracranial: lung

1 CNS
surgery

1. Sellar
region and/
or lung
metastasis

1. BEV and TMZ×2 cycles,
TMZ×12 cycles (PR,
concurrent with surgery
and radiotherapy)

Ki-67 50% R: PR,
reduction in
lung
metastasis
volume
B: SD

60/Survival

(7) 6 NA NA NA NA NA 1. TMZ and BEV (PR) NA PR NA
(7) 7 NA NA NA NA NA 1. TMZ (PD)

2. TMZ and BEV (PR)
NA PR NA

(7) 8 NA NA NA NA NA 1. TMZ (PD)
2. TMZ and BEV (NA)

NA NA NA

(7) 9 NA NA NA NA NA 1. TMZ (PD)
2. TMZ and BEV (NA)

NA NA NA

(7) 10 NA NA NA NA NA 1. TMZ (PD)
2. BEV (SD)

NA SD NA

(7) 11 NA NA NA NA NA 1. TMZ (PD)
2. BEV (PD)

NA PD NA

(7) 12 NA NA NA NA NA 1. TMZ (PD)
2. BEV (NA)

NA NA NA

(63) 13 49/F Corticotroph
tumor,
functioning

Intracranial:
cerebrum
Extracranial: bone,
liver

3 CNS
surgeries
Bilateral
adrenalectomy

1. Sellar
region

1. TMZ (PD)
2. EVE (PD)
3. SUN (PD)
4. BEV (PD)

Ki-67 10% R: PD
B: PD

NA/Death

(64) 14 51/
M

Corticotroph
tumor,
functioning

Intracranial: right
temporal lobe,
cervico-medullary
junction, dural
based

2 CNS
surgeries

1. Sellar
region
2. Cervico-
medullary
metastasis

1. TMZ×12 cycles and
BEV×26 cycles (SD,
concurrent with surgery
and radiotherapy)

Ki-67 15% R: SD
B: SD

96/Survival

(65) 15 72/F Lactotroph
tumor,
nonfunctioning

Intracranial: dura
Extracranial: spine

3 CNS
surgeries
Spine surgery

1. Sellar
region
2. Spinal
metastasis

1. TMZ×3 cycles (PD)
2. IPI and NIV×2 cycles
(SD, stopped due to
nephritis)
3. NIV×17 cycles (PD)
4. IPI and NIV×4 cycles
(PD, with nephritis and
hepatitis)
5. BEV×3 cycles (SD,
stopped due to nephritis)

Ki-67 20%
MGMT high
PD-L1 neg
TMB low
Mismatch
repair
deficient neg

R: SD 9/Survival

(66) 16 55/
M

NA Intracranial:
suprasellar,
cavernous sinus,
optic chiasm, left
frontotemporal
dura, middle cranial
fossa

3 CNS
surgeries
Thyroidectomy

1. Sellar
region

1. TMZ×7 cycles (PD, after
withdrawal)
2. CCNU×2 cycles (SD,
stopped due to poor
tolerance)
3. BEV (NA)

Ki-67 13-
25.5%
P53 neg
MGMT low

NA NA/Death

(67) 17 NA Corticotroph
tumor,
functioning

Intracranial:
cavernous sinus

5 CNS
surgeries
Bilateral
adrenalectomy

1. Sellar
region

1. SSA (SD, stopped due
to poor tolerance)
2. CAB (PD)
3. TMZ×7 cycles (PD, after
withdrawal)
4. BEV×2 cycles (PD)

VEGFR pos
Ki-67 8-20%
P53 pos

R: PD
B: PD

1/Death

(Continued)
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SSA. As VEGFR was expressed in the tumor, apatinib and TMZ
were recommended. She achieved stabilization in the tumor and a
decrease in serum GH levels over a period of 31.5 months of
follow-up.

TK inhibitors might represent a therapeutic target in PAs
associated with somatic genetic defects. Multiple endocrine
neoplasia type 1 (MEN1) is an autosomal dominant disorder
characterized by tumors of the pituitary gland, parathyroid
gland, endocrine-gastrointestinal tract, and pancreas. In
patients with MEN1, PAs are usually diagnosed at an earlier
age, have higher degrees of aggressiveness and invasiveness, are
more often resistant to treatment, and have higher risks of
recurrence than sporadic PAs (85). Murine studies support
that targeted angiogenesis in MEN1 leads to an obvious
inhibition of pituitary tumor growth and hormone secretion
and a significantly increased tumor-free survival time.
Additionally, the vascular density in pancreatic islet tumors
was significantly reduced by the treatment (86). Sunitinib was
approved to treat locally advanced or metastatic pancreatic
neuroendocrine tumors and refractory gastrointestinal stromal
tumors (87, 88). Sunitinib has also been studied in MEN1
syndrome (89–92). However, data are still limited to drive any
conclusion on the treatment of MEN1-related PAs.

To date, although attempts at bevacizumab and TK inhibitors
in pituitary tumors have not gone beyond case studies, the anti-
VEGF/VEGFR pathway has shown promise as an alternative
therapy for patients with refractory PAs and PCs resistant to
conventional treatments. Furthermore, the anti-VEGF/VEGFR
pathway in combination with TMZ, TMZ and/or radiotherapy
with SSA might have a synergistic therapeutic effect. However,
the specific efficacy of the anti-VEGF/VEGFR pathway in
Frontiers in Oncology | www.frontiersin.org 7
patients with refractory PAs and PCs still needs further large-
scale prospective clinical trials for confirmation.
CONCLUSION

In summary, the results from preclinical studies and clinical
trials indicated that anti-VEGF monotherapy or in combination
with other treatments may be promising alternative therapies for
patients with refractory PAs and PCs resistant to conventional
treatments. However, more preclinical studies and large-scale
prospective clinical trials are needed to further evaluate the exact
efficacy of anti-VEGF in pituitary tumors.
AUTHOR CONTRIBUTIONS

All authors listed have made substantial, direct, and intellectual
contribution to the work and approved it for publication.
FUNDING

Financial support for this study was provided by the Scientific
Research Project of Capital Health Development in 2018 (grant
number: 2018-4-4018), the CAMS Innovation fund for Medical
Science (grant number: CIFMS, 2017-12M-2-005), and the
Beijing Natural Science Foundation (grant number: 7182137).
The funding institutions had no role in the design of the study,
data collection and analysis, the decision to publish, or the
preparation of the article.
TABLE 2 | Continued

Ref ID Age/
Sex

Tumor
subtypes

Extent of disease
beyond sellar

region

Prior
surgeries

Prior
radiation

Medical treatments Gene,
molecular

data

Response
to anti-
VEGF

PFS after
first dose of
anti-VEGF

(mo)/
Outcome

(67) 18 NA Corticotroph
tumor,
functioning

Intracranial:
cavernous sinus,
clivus

5 CNS
surgeries
Bilateral
adrenalectomy

1. Sellar
region

1. SSA (PD)
2. TMZ×3 cycles (PD)
3. CAB and TMZ×3 cycles
(PD)
4. BEV×1 cycles (PD)

VEGFR pos
Ki-67 5-10%
P53 pos

R: PD
B: PD

1/Death

(67) 19 NA Null cell tumor Intracranial:
cavernous sinus

5 CNS
surgeries

1. Sellar
region

1. TMZ×6 cycles (PD)
2. BEV×6 cycles (SD)

VEGFR pos
Ki-67 5-10%
P53 neg

R: SD
B: SD

18/Death
(postoperative
complication)

Anti-VEGFR
(7) 20 NA NA NA NA NA 1. TMZ (PD)

2. SUN (PD)
NA PD NA

(68) 21 41/F Somatotroph
tumor,
functioning

Intracranial:
suprasellar,
cavernous sinus,
optic chiasm, clivus

4 CNS
surgeries

1. Sellar
region

1. SSA×2 mo (PD)
2. TMZ and APA×12 cycles
(SD, concurrent with
surgery)

VEGFR pos
Ki-67 5-10%

R: SD
B: PR,
plasma GH
decreased
from 10 to
1.5 ng/ml

31.5/Survival
November 2021
 | Volume 11 |
AIP, aryl hydrocarbon receptor-interacting protein; APA, apatinib; B, biochemical criteria; BEV, bevacizumab; CAB, cabergoline; CCNU, 1-(2-chlorethyl)-3-cyclohexyl-1-nitrosurea; CNS,
central nervous system; EVE, everolimus; F, female; IPI, ipilimumab; IHC, immunohistochemistry; M, male; MGMT, O6-methylguanine-DNA methyltransferase; mo, months; NA, not
available; neg, negative; NIV, nivolumab; PD, progressive disease; PD-L1, programmed death-ligand 1; PEG, pegvisomant; PFS, progression-free survival; pos, positive; PR, partial
response; R, radiological criteria; Ref, reference; SD, stable disease; SSA, somatostatin analogs; SUN, sunitinib; TMB, tumor mutational burden; TMZ, temozolomide; VEGF, vascular
endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.
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