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Ceramide-induced BOK promotes
mitochondrial fission in preeclampsia
Jonathan Ausman1,2, Joelcio Abbade1,3, Leonardo Ermini1, Abby Farrell1,2, Andrea Tagliaferro1, Martin Post2,4,5 and
Isabella Caniggia1,2,4,6

Abstract
Mitochondria are in a constant balance of fusing and dividing in response to cellular cues. Fusion creates healthy
mitochondria, whereas fission results in removal of non-functional organelles. Changes in mitochondrial dynamics
typify several human diseases. However, the contribution of mitochondrial dynamics to preeclampsia, a hypertensive
disorder of pregnancy characterized by placental cell autophagy and death, remains unknown. Herein, we show that
the mitochondrial dynamic balance in preeclamptic placentae is tilted toward fission (increased DRP1 expression/
activation and decreased OPA1 expression). Increased phosphorylation of DRP1 (p-DRP1) in mitochondrial isolates
from preeclamptic placentae and transmission electron microscopy corroborated augmented mitochondrial
fragmentation in cytotrophoblast cells of PE placentae. Increased fission was accompanied by build-up of ceramides
(CERs) in mitochondria from preeclamptic placentae relative to controls. Treatment of human choriocarcinoma JEG3
cells and primary isolated cytrophoblast cells with CER 16:0 enhanced mitochondrial fission. Loss- and gain-of-function
experiments showed that Bcl-2 member BOK, whose expression is increased by CER, positively regulated p-DRP1/DRP1
and MFN2 expression, and localized mitochondrial fission events to the ER/MAM compartments. We also identified
that the BH3 and transmembrane domains of BOK were vital for BOK regulation of fission. Moreover, we found that
full-length PTEN-induced putative kinase 1 (PINK1) and Parkin, were elevated in mitochondria from PE placentae,
implicating mitophagy as the process that degrades excess mitochondria fragments produced from CER/BOK-induced
fission in preeclampsia. In summary, our study uncovered a novel CER/BOK-induced regulation of mitochondrial fission
and its functional consequence for heightened trophoblast cell autophagy in preeclampsia.

Introduction
Mitochondria are critical organelles that provide energy

through oxidative phosphorylation1 and coordinate cell
death via intrinsic apoptosis2. These ‘powerhouses’ are in
a constant physiological balance of dividing and fusing;
processes collectively known as mitochondrial dynamics.
Mitochondrial fusion is a process that forms healthier and
functional organelles from fragments with intact inner
mitochondrial membrane (IMM) potentials3. Optic

atrophy 1 (OPA1) and mitofusin 1 and 2 (MFN1/2) are
key proteins involved in mitochondrial fusion that are
responsible for bringing together the IMMs and outer
mitochondrial membranes (OMMs) where they reside,
respectively4,5. Alternatively, during fission, unhealthy,
non-functional mitochondrial fragments, lacking trans-
membrane potentials, are discarded and targeted for
degradation via a selective autophagic process termed
mitophagy. The latter is dependent on the accumulation
of phosphatase and tensin homolog (PTEN)-induced
kinase 1 (PINK1) in the OMM, which recruits the E3
ubiquitin ligase Parkin, leading to mitophagy6.
Central to mitochondrial fission is the dynamin-related

protein 1 (DRP1), an 80 kDa GTPase7. The activation of
DRP1 occurs as a result of a number of post-translational
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modification events, most importantly phosphorylation of
DRP1 (p-DRP1) at specific serine residue 616 leads to its
activation and recruitment to the OMM where it interacts
with resident proteins such as mitochondrial fission factor
(MFF). This is followed by p-DRP1 oligomerization8 and
consequent hydrolysis of GTP by active DRP1 providing
the mechanic–enzymatic force by which fission occurs9.
Typically mitochondrial fission occurs in highly metabolic
subcellular regions termed mitochondria-associated
endoplasmic reticulum membranes (MAMs)10. Interest-
ingly, in addition to its role in mitochondrial fusion,
MFN2 also plays a role in fission as this protein tethers
together the mitochondria and endoplasmic reticulum
(ER) forming the MAM11.
In humans, excessive mitochondrial fission has been

implicated in the pathogenesis of several diseases12.
Drp1−/− mice exhibit embryonic lethality due to defi-
ciency in the formation of trophoblast giant cells and
consequent placental dysfunction, underscoring the
requirement of mitochondrial fission for proper placental
and embryonic development13.
Preeclampsia (PE) is a serious disorder that complicates

5–8% of pregnancies worldwide and represents a significant
cause of maternal and fetal morbidity and mortality14,15. PE
is typically characterized by excessive trophoblast cell death,
generating a syncytial debris that is aberrantly extruded into
the maternal circulation where it exerts a generalized
endothelial inflammatory response clinically manifesting as
hypertension16. To date, the involvement of mitochondrial
dynamics in PE remains elusive.
We have reported that excessive cell death and autophagy

in PE are in part dependent on a build-up of ceramides
(CERs), a group of bioactive sphingolipids17. The accumu-
lation of CER in PE has been shown to increase the
expression of Bcl-2-related ovarian killer (BOK), a pro-
apoptotic Bcl-2 family member, leading to increased tro-
phoblast autophagy and death17,18. The altered MCL-1/
BOK balance toward pro-death BOK has been implicated in
the pathogenesis of PE19, although, to date, this has not
been evaluated in the context of mitochondrial fission.
Herein, we report increased expression of key regulators

of mitochondrial fission in PE. Furthermore, we attributed
CER accumulation as a regulator of increased mitochon-
drial fission, through a novel mechanism involving BOK.
Finally, we localized mitochondrial fission events to the
ER/MAM compartments and show that the degradation
of mitochondrial fragments in PE is occurring by PINK1/
Parkin-mediated mitophagy.

Results
Mitochondrial fission is increased in PE
We first examined the expression of DRP1, a key reg-

ulator of fission12, in placental tissues from PE and nor-
motensive control pregnancies. Western blot (WB) analysis

revealed significantly increased DRP1 levels in PE placentae
relative to preterm controls (PTCs) (Fig. 1a, upper panel).
Following its activation, DRP1 is recruited to MFF, a
OMM-resident protein20. WB showed no changes in MFF
levels in PE relative to PTC placentae (Fig. 1a, middle
panel). We next examined the expression of OPA1, a key
marker of fusion. WB analysis demonstrated a significant
decrease in OPA1 expression in PE compared with PTC
placentae (Fig. 1a, lower panel). Activation of DRP1 by
phosphorylation at S616 residue is required for its mito-
chondrial recruitment where it triggers fission events8.
Therefore, we isolated mitochondria from PE and PTC
placentae and examined DRP1 activation using a specific
antibody that recognizes phosphorylated DRP1 at S616 (p-
DRP1). WB showed a significant increase of p-DRP1 in
mitochondrial isolates (MIs) from PE relative to MI har-
vested from PTC placentae. Phosphorylated DRP1 levels
were normalized to TOM20, a marker of the OMM
(Fig. 1b). The post-nuclear supernatant (PNS), collected for
comparison, showed no changes in p-DRP1 expression
between the PNS of PTC and PE (Fig. 1c). Loss of mito-
chondrial membrane potential due to stress leads to the
accumulation and activation of a peptidase termed OMA-1
that mediates OPA1 proteolytic cleavage thereby inhibiting
mitochondrial fusion21,22. Hence, we examined OMA-1
content in MI using an antibody that recognizes the 60 kDa
active form. WB revealed a significant increase in OMA-1
content in MI from PE compared with PTC (Fig. 1d),
indicating that reduced OPA1 levels could be due to
increased OMA-1 activity in the IMM. CER is a cell death
inducer in PE leading to increased trophoblast autophagy17.
Thus, we examined the CER content of MI from PE and
PTC placentae using tandem mass spectrometry. A sig-
nificant enrichment in CER 16:0 and CER 18:0 was
observed in MI from PE relative to PTC placentae (Fig. 1e).
Transmission electron microscopy (TEM) was employed

for qualitative surveillance of mitochondrial morphology.
Mitochondrial fission was identified by clear contact points
between adjacent organelles and smaller globular mito-
chondrial fragments, in contrast to the elongated ovular
morphology typical of healthy mitochondria, which exist in
branching networks23. Augmented mitochondrial fission
events were observed in cytotrophoblast cells from PE
compared with PTC (Fig. 2a, i vs. ii). There was a twofold
increase in the number of mitochondria per cytotrophoblast
in PE compared with PTC (Fig. 2a, iii vs. iv; Fig. 2b). In
addition, mitochondria from PE exhibited a significantly
smaller mitochondrial width when compared with PTC
(Fig. 2a, v vs. vi; Fig. 2c).

CER increases DRP1 expression and activation
The presence of increased cytosolic, lysosomal,17 and

mitochondrial CER in PE placentae prompted us to
investigate the involvement of CER in mediating
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mitochondrial fission. DRP1 expression and phosphor-
ylation were significantly increased in JEG3 cells following
a 6-h treatment with 20 µM CER 16:0 relative to EtOH

vehicle (Fig. 3a). CER 16:0 dosage and time were opti-
mized in pilot experiments (Supplemental Fig. 1a). Similar
to PE placentae, no changes in MFF expression levels
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Fig. 1 Changes in mitochondrial dynamics in preeclampsia associates with mitochondrial accumulation of ceramide. Representative western
blots and associated densitometry of DRP1 (a, upper panel), MFF (a, middle panel), and OPA1 (a, lower panel) in PE vs. PTC. DRP1 WB and
densitometry: PE, n= 30; PTC, n= 22; unpaired Student’s t-test ***P < 0.001. MFF WB: PE, n= 18; PTC, n= 9; unpaired Student’s t-test P= ns. OPA1
WB and densitometry: PE, n= 13; PTC, n= 10; unpaired Student’s t-test *P < 0.05). b Representative western blots and associated densitometry of p-
DRP1 in mitochondria isolated from PE and PTC placentae (PE, n= 4; PTC, n= 4; unpaired Student’s t-test **P < 0.01). c p-DRP1 expression in the
post-nuclear supernatant of PE vs. PTC placentae (PE, n= 4; PTC, n= 4). d OMA-1 expression in mitochondria isolated from PE and PTC placentae (PE,
n= 8; PTC, n= 7; unpaired Student’s t-test *P < 0.05). e Ceramide levels normalized to cholesterol in mitochondria isolated from PE and PTC
placentae as assessed by LC-MS/MS (PE, n= 4; PTC, n= 4; unpaired Student’s t-test *P < 0.05). All data are expressed as mean ± SEM (standard error of
the mean)
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Fig. 2 Preeclampsia is associated with mitochondrial fission morphology in cytotrophoblast cell. a Representative TEM images of
cytotrophoblast cells from PE and PTC placentae from 29 to 30 weeks gestation. (i) Canonical mitochondrial morphology in PTC is identified by white
arrows (scale bar: 500 nm), and (ii) mitochondrial fission events in PE are denoted by white stars (N, nucleus; scale bar: 500 nm). (iii/iv) Mitochondria in
PE and PTC are indicated by white arrows (N, nucleus; scale bar: 1 µm). (v/vi) mitochondrial width is denoted by white dotted lines (scale bar: 100 nm).
b Mitochondrial number per cell in PE vs. PTC (PE placentae, n= 8 (167 mitochondria); PTC placentae, n= 7 (63 mitochondria); unpaired Student’s t-
test *P < 0.05), and c mitochondrial width in PE vs. PTC (PE, n= 8; PTC, n= 7 separate tissue samples; unpaired Student’s t-test **P < 0.01). Data are
expressed as mean ± SEM (standard error of the mean)

Ausman et al. Cell Death and Disease  (2018) 9:298 Page 4 of 18

Official journal of the Cell Death Differentiation Association



were observed following CER 16:0 exposure (Fig. 3a).
However, the content of another adaptor protein that
recruits cytosolic DRP1 to the mitochondria, MiD4924,
was increased in cells exposed to CER 16:0 (Fig. 3a).
Interestingly, CER 16:0 markedly decreased OPA1
expression in JEG3 cells (Fig. 3b). Immunofluorescence

(IF) analysis showed a striking redistribution and coloca-
lization of p-DRP1 to the mitochondria (Mitotracker®
Red) in JEG3 cells treated with CER 16:0 (Fig. 3c).
Mitochondria from CER 16:0-treated JEG3 cells displayed
a fragmented, globular morphology consistent with
increased mitochondrial fission, when compared with
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Fig. 3 CER stimulates DRP1 expression and activation while reducing OPA1 levels in JEG3 cells. a Representative western blots of DRP1, p-
DRP1, MFF, and MiD49 in JEG3 cells treated with CER 16:0 or EtOH vehicle (V) and associated densitometry (n= 10 separate experiments in duplicate;
unpaired Student’s t-test *P < 0.05, ***P < 0.001). (b) Representative western blot of OPA1 in JEG3 cells treated with CER 16:0 or ETOH vehicle (n= 3
individual experiments in duplicate; unpaired Student’s t-test *P < 0.05). Data are expressed as mean ± SEM (standard error of the mean). c IF analysis
of p-DRP1 in JEG3 cells treated with CER 16:0 or EtOH vehicle (V) and labeled with Mitotracker®. p-DRP1 (green), Mitotracker® (red), and nuclear DAPI
(blue). d Representative western blot and densitometric analysis of p-DRP1 in JEG3 cells treated with 2-OE (25 µM) or control vehicle (n= 3 separate
experiments; unpaired Student’s t-test *P < 0.05). e Immunoblotting of p-DRP1 and associated densitometry in placentae from CD1 mice injected
with ceranib-2 (20 mg/kg), or DMSO vehicle (DMSO, n= 8; Ceranib-2, n= 9; *P < 0.05)
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cells treated with EtOH vehicle demonstrating mito-
chondria networks radiating from the nucleus (Fig. 3c).
To further examine the contribution of CER in mito-
chondrial fission, we used 2-oleoylethanolamine (2-OE),
an inhibitor of ASAH1 activity25 that increases autophagy
in JEG3 cells17. Exposure of JEG3 cells to 25 µM 2-OE
resulted in a significant increase in p-DRP1 levels
(Fig. 3d). Similarly, administration of another ASAH1
inhibitor, Ceranib-2, to pregnant mice, which we showed
to elevate CER content in the murine placentae similar to
that found in PE placentae17, led to a significant increase
in placental p-DRP1 (Fig. 3e).
Similar to JEG3 cells, CER 16:0 treatment of primary

isolated cytotrophoblasts resulted in a significant increase
in both p-DRP1 and DRP1 relative to ETOH vehicle
(Fig. 4a, upper and middle panels), and this associated
with a decrease in OPA1 levels (Fig. 4a, lower panel). IF
analysis showed that following CER 16:0 treatment,
phosphorylated DRP1 was recruited to MFF on the OMM
of primary isolated trophoblasts (Fig. 4b). p-DRP1 asso-
ciation with MFF following CER 16:0 treatment was
corroborated by a Pearsons’ correlation coefficient (PCC)
of 0.50 for the two fluorphores. In addition, TEM analysis
in sections from primary isolated trophoblasts treated
with CER 16:0 established the presence of increased
globular mitochondrial fragments and fission events,
when compared with the network-like mitochondria
observed in controls (Fig. 4c).

CER augments BOK-induced DRP1 expression
We have reported that CER-induced BOK is responsible

for elevated trophoblast cell death and autophagy in PE17.
CER 16:0 treatment triggered the expression and
recruitment of BOK to the mitochondria in JEG3 cells
(Fig. 5a). To examine the role of BOK in mitochondrial
fission, we used an established human embryonic kidney
293 (HEK-293) Flp-In T-Rex cell system that allowed for
the controlled expression of BOK upon doxycycline (Dox)
stimulation26. Induction of BOK using Dox resulted in a
significant increase in p-DRP1, DRP1, and BOK expres-
sion (Fig. 5b). Electron microscopy of GFP-BOK HEK-
293-expressing cells revealed the presence of smaller,
globular mitochondria, actively undergoing fission when
compared with the larger mitochondria with well-defined
cristae seen in the controls (Fig. 5c). Small interfering
RNA (siRNA) knockdown of BOK in HEK-293 cells
showed a significant decrease in p-DRP1, DRP1 levels
compared with a scrambled control (Fig. 5d). Addition of
CER 16:0 to cells following BOK siRNA treatment did not
abrogated the knockdown effect on DRP1 (Supplemental
Fig. 1b).
To establish the relative contribution of the BH3

domain in mediating BOK’s effects on DRP1 expression,
we transiently transfected HEK-293 cells with a plasmid-

overexpressing BOK with a 17 base-pair deletion of the
BH3 domain (ΔBH3). In line with our inducible model, we
found increased p-DRP1 and DRP1 levels in HEK-293
cells following transient overexpression of wild-type (WT)
BOK relative to empty vector (EV) control (Fig. 6a and
Supplemental Fig. 1c). In addition, CER 16:0 treatment
further significantly augmented DRP1 expression in cells
overexpressing WT BOK (Fig. 6a). Transient transfection
of BOK, ΔBH3 resulted in significant less DRP1 expres-
sion compared with WT BOK (Fig. 6a). Beside the BH3
domain, BOK also contains a C-terminus transmembrane
domain (TMD) that is critical for its mitochondrial
translocation27 and depolarization. To ascertain its rele-
vance on mitochondrial fission, we generated Dox-
inducible HEK-293 cells that overexpress BOK with a
deleted TMD. A significant decrease in DRP1 and p-DRP1
levels was observed in cells upon Dox induction that
lacked the TMD relative to WT BOK controls (Fig. 6b and
Supplemental Fig. 1C).

CER induces BOK association with p-DRP1 at the MAMs
The MAMs are enriched in glycosphingolipids and

represent the microenvironment that enables mitochon-
drial fission28. Tethering of the mitochondria to the ER is
essential for MAM formation that requires MFN229. BOK
induction by Dox in HEK-293 cells stably transfected with
GFP-BOK (Fig. 5b) resulted in increased MFN2 expres-
sion (Fig. 7a). Treatment of primary trophoblast cells with
CER 16:0 resulted in a striking appearance of BOK and p-
DRP1 in the ER/MAM compartments relative to control
vehicle (Fig. 7b, i–iv) as assessed by calreticulin IF staining
(MAM/ER marker) and association of both proteins with
MFN2 (Fig. 7b, v–viii). Mean fluorescence intensity (MFI)
analysis revealed an increase in p-DRP1 (1.78-fold), BOK
(1.32-fold), and MFN2 (1.32-fold) in CER 16-treated cells
relative to control vehicle. To convincingly demonstrate
the importance of CER in promoting mitochondria-ER
tethering, we employed in situ proximity ligation assay
targeting voltage-dependent anion channel (VDAC1) and
inositol 1,4,5-trisphosphate receptor (IP3R), two proteins
found at the MAM interface30. Following a 6-h treatment
with either CER 16:0 (20 μM) or 2-OE (25 μM) in JEG3
cells, we found a marked increase in the number of
VDAC1/IP3R interactions points (Fig. 7c), indicating that
excess CER increases mitochondria–ER tethering.
TEM analysis of PE placentae showed a significant

increase in the presence of mitochondrial fission events in
close proximity to the ER compared with PTC (Fig. 8a). In
line with our observations of MFN2 accumulation in the
ER of primary cells following CER 16:0 exposure, WB
revealed increased MFN2 content in ER of PE placentae
relative to PTC (Fig. 8b). No significant changes in dif-
ferent CER species were detected in MAM isolated from
PE and PTC placentae (Supplemental Fig. 2). Our data
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indicates that CER accumulation in PE that is responsible
for mitochondrial fission pertains to the mitochondria
(Fig. 1e) and not to the ER/MAM. We next examined
whether the increase in mitochondrial CER was due to
changes in one of its regulatory enzymes, neutral cer-
amidase (ASAH2). Immunoblotting revealed decreased
levels of ASAH2 (Fig. 8c) in mitochondria from PE pla-
centae relative to PTC, suggesting that CER breakdown

via ASAH2 is decreased in PE mitochondria leading to
CER accumulation.
Mitophagy is a selective autophagic process that

degrades non-functional mitochondrial fragments pro-
duced by fission31. TEM analysis of PE placentae identi-
fied mitophagy in cytotrophoblast cells (Fig. 8d). PINK1 is
63 kDa mitochondrial protein that is cleaved by PARL to
an inactive 53 kDa isoform in the IMM; however, in
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damaged mitochondrial fragments, PINK1 cleavage is
inhibited, and its 63 kDa isoform accumulates on the
OMM where it phosphorylates cytoplasmic Parkin and
ubiquitin resulting in the recruitment of the mitophagic
machinery to carry out degradation32. Hence, we deter-
mined the PINK163kDa/PINK153kDa ratio in MIs from PE
and PTC placentae and found a significant increase in the
pro-mitophagy 63kDa isoform relative to the non-active
cleaved 53 kDa isoform in PE (Fig. 8e). Furthermore,
immunoblotting showed increased mitochondrial Parkin
levels in PE relative to PTC mitochondria (Fig. 8e).

Discussion
In the present study, we demonstrate that mitochon-

drial fission occurs in the human placenta, and is aug-
mented in PE. Furthermore, we show that CERs play a
critical role in mitochondrial fission via a mechanism that
involves BOK, a pro-apoptotic member of the Bcl-2
family. We identified the MAM as the microenvironment
in which the interplay between BOK and key players of
mitochondrial fission occurs, and that mitophagy is a
cellular defense that removes excess mitochondrial frag-
ments in PE.

GFP-control GFP-BOK

*

*

*

55 kDa

23 kDa

MFF 35 kDa

DRP1

TUBA

BOK
80 kDa

SS siBOKD

A V CER16

Mitotracker®, BOK, DAPI

*

X100

500 nm 500 nm

80 kDa

80 kDapDRP1

B

55 kDa

DRP1

TUBA

80 kDa

GFP+BOK 49 kDa

0.00 1.25 2.50 

Doxycycline (ng/mL)

DOX 

X100

pDRP1

0

2

4

6

8

X100

Doxycycline (ng/mL)
0.00 1.25 2.50 

 1P
R

D/1P
R

Dp
 K

OB dna
nietorP

 eg nah
C dloF

 de zila
mro

N
AB

UT ot

pDRP1
DRP1
BOK

C

0

0.2

0.4

0.6

0.8

1

1.2

pD
R

P
1/

D
R

P
1 

P
ro

te
in

  F
ol

d 
C

ha
ng

e 
N

or
m

al
iz

ed
 to

 T
U

B
A

SS siBOK

*
pDRP1
DRP1

*
* *

*

*

*

Fig. 5 CER augments BOK-induced DRP1 expression leading to mitochondrial fragmentation. a IF analysis of BOK (green) in JEG3 cells treated
with CER 16:0 or EtOH vehicle (V), and stained with Mitotracker® (red) and DAPI (blue). b Representative western blot and associated densitometry of
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Excessive DRP1-driven mitochondrial fission has been
implicated in the pathogenesis of several human diseases,
where accumulation of fragments with impaired mito-
chondria membrane potentials increases reactive oxygen
species generation that overwhelms the inadequate anti-
oxidant defenses33. Fission can participate in pathways
leading to cell death, as seen in post myocardial infarction

and in heritable juvenile Parkinsonism12, conditions
associated with release of Ca2+ and34 loss of glutathione
antioxidant defense35. PE placentae exhibit shallow tro-
phoblast invasion and impaired transformation of
maternal spiral arteries, which render the placenta vul-
nerable to hypoxia/oxidative stress16. Herein, we identi-
fied increased DRP1 expression, phosphorylation, and
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augmented mitochondrial fission events in placentae from
pregnancies complicated by early onset PE, which we
previously reported to have impaired oxygen sensing36

and elevated hypoxia-inducible factor 1-alpha (HIF1A)
expression37. It should be noted that mitochondrial
dynamics involve a balance between mitochondrial fission
and fusion. In pulmonary arterial hypertension, increased
HIF1A promotes DRP1-driven mitochondrial fission and

fragmentation in human lung and pulmonary arterial
smooth muscle cells, while decreasing MFN2 activity38.
Loss of the fusion regulator OPA1 in HeLa cells has been
found to alter mitochondrial membrane integrity and
cristae remodeling, leading to increased mitochondrial
fragmentation and apoptosis39. Conversely, transfection
of HL-1 cells with mutant Drp1(K38A) abrogates mito-
chondrial fragmentation in a similar manner as MFN1
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and MFN2 overexpression40. In support of the idea of a
rheostat in mitochondrial dynamic events, herein we
demonstrate that increased DRP1-dependent mitochon-
drial fission inversely correlates to fusion as identified by
decreased OPA1 expression and augmented levels of
active OMA-1 in PE placentae, and in trophoblast cells
following CER 16:0 treatment. Our finding on impaired

cell fusion in PE are in line with a study reporting
downregulation of MFN2 mRNA and impaired mito-
chondrial ATP production in PE placentae and in TEV-1
cells subjected to hypoxia41.
CERs are powerful inducers of intrinsic cell death in

several systems42. We recently reported that specific CER
species (eg., CER 16:0 and CER 18:0) are increased in PE
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placentae17. This increase in CER is dependent on the
oxidative stress status of PE that impinge on CER reg-
ulatory enzymes, ultimately leading to increased tropho-
blast cell death rates17. Herein, we show that p-DRP1 is
highly present in the mitochondria of PE placentae that
are enriched in CER 16:0 and CER 18:0. Treatment of
neonatal rat cardiomyocytes with synthetic CER 2:0
resulted in increased DRP1 expression and this was
accompanied by a more spherical mitochondrial con-
formation favouring the initiation of apoptosis43. In line
with this observation, we show that exposure of primary
isolated cytotrophoblast cells—and JEG3 cells—to natu-
rally occurring CER 16:0 increased DRP1 expression and
phosphorylation, as well as p-DRP1 recruitment to the
mitochondria, an event plausibly triggered by the pre-
sence of increased adaptor protein MiD49. Furthermore,
we demonstrate that ASAH1 inhibition in JEG3 cells and
in pregnant mice resulted in heightened p-DRP1 levels in
cells and murine placentae, underscoring the importance
of CER in the induction of mitochondrial fission in tro-
phoblast cells during pregnancy.
Key to the formation of permeable channels at the

mitochondria are the Bcl-2 family members, a group of
proteins that act as either pro-apoptotic (BAK, BAX, and
BOK) or pro-survival (Bcl-2, Bcl-XL, and Mcl-1) indu-
cers44,45. The OMM produces CERs, which has been
referred to as the ‘mitochondrial CER-rich macrodomain’
(MCRM), a platform by which BAX inserts, oligomerizes,
and forms channels responsible for apoptosis in irradiated
cells46. Mitochondrial fission is attenuated in primary
neurons isolated from Bak-deficient mice brains, under-
scoring the importance of BAK as a regulator of fission47.
Moreover, studies conducted in HeLa cells, demonstrated
that DRP1 membrane association with the mitochondria
is BAX/BAK dependent48, and BAX oligomerization is
dependent on DRP1-induced membrane hemifusion,
resulting in apoptosis49. Our present data highlight a
novel and direct role for BOK on DRP1 expression and in
fission events further underscoring the importance of pro-
apoptotic Bcl-2 proteins in orchestrating mitochondrial
dynamics. Notably, we have reported that accelerated
trophoblast cell death rates, typical of PE, are due to high
BOK levels18,26,50, and that CERs alter the BOK/MCL1
rheostat in favor of BOK leading to enhanced
autophagy17,18.
Pro-apoptotic Bcl-2 family members can contain up to

four Bcl-2 homology domains (BH1–4); however, the BH3
domain is crucial to apoptosis. Interestingly, its deletion in
the Bcl-2/adenovirus E1B 19-kDa interacting protein 1
(BNIP1) results in diminished mitochondrial fission in
HeLa cells51. Our current data on the abrogation of the
BOK-induced effect on fission following transient over-
expression of BOK-ΔBH3 in JEG3 cells further under-
score the significance of this domain in regulating fission.

Most Bcl-2 family members, including BOK, also contain
a C-terminal α-helical TMD that functions to anchor the
protein to the mitochondrial membranes aiding to its
apoptotic function52. It has been reported that the TMD is
critical for BOK recruitment to the ER and Golgi com-
partments27, and here we show that the TMD of BOK is
also important for mitochondrial fragmentation likely by
facilitating BOK recruitment to the ER/MAM compart-
ments together with p-DRP1.
ER–mitochondria crosstalk is crucial for intracellular

calcium signaling as it functions as a critical membrane
contact site for lipid exchange and conversion53. MFN2 is
the GTPase responsible for tethering the ER and mito-
chondria together54, although its most notable function is
in mitochondrial fusion5. Of note, BOK has been shown
to play a role in regulating the apoptotic response to ER
stress55. Our present study demonstrates a significant
increase in MFN2 protein following BOK induction.
Hence, we propose that BOK increases MFN2 tethering
between the ER and mitochondria to facilitate the process
of mitochondrial fission. Notably, we found a marked
increase in ER tethering to the mitochondria in PE and
this associated with high MFN2 levels in the ER isolated
from PE placentae. Emerging evidence suggests that CER
produced in the ER is transported to the mitochondria via
the MAM44. However, we did not find any CER changes
between MAM isolated from PE and PTC placentae,
indicating that the observed CER accumulation in the
mitochondrial OMM is likely due to reduced breakdown
of CERs. In support of the latter, we observed reduced
mitochondrial levels of neutral ASAH2 (enzyme that
hydrolysis CER to sphingosine) in PE placentae. We
speculate that mitochondrial CER accumulation in PE
results in more MCRM platforms in the OMM for BOK
insertion thereby contributing to mitochondrial fission
and trophoblast cell death.
Mitophagy is a highly specialized autophagic degra-

dation pathway required to remove non-functional
mitochondrial fragments31, and we have reported on
the occurrence of mitophagy in PE placentae18. Mito-
phagy is classically dependent on PINK1 and Parkin56.
In particular, mitochondrial fragments with impaired
IMM potentials fail to import PINK1 to the IMM for
cleavage, resulting in PINK1 accumulation to the OMM
where it can recruit Parkin, which is responsible for
OMM polyubiquitination required for mitophagy57.
Herein we report increased levels of full-length PINK1
relative to its cleaved non-active isoform, and this is
associated with increased Parkin levels in mitochondria
isolated from PE placentae indicating that excess frag-
ments are disposed by means of mitophagy. We propose
that PINK1/Parkin regulated mitophagy is primed in PE
likely as a defense against oxidative stress that typifies
this pathology.
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Summarizing (see Fig. 9 for putative model), our data
show that elevated CER in mitochondria from PE pla-
centae, favors pro-apoptotic BOK recruitment to the
OMM, and increased p-DRP1-dependent mitochondrial
fission, resulting in elevated mitophagy. Thus, mito-
chondrial dynamic events favoring fission contribute to
the exuberant cell death and autophagy characteristic of
PE.

Materials and methods
Placental tissue collection
Informed consent was obtained from all clinical sub-

jects, and placental collection was conducted in accor-
dance with the ethical guidelines of the University of
Toronto Faculty of Medicine and Mount Sinai Hospital by
the Placenta BioBank, Mount Sinai Hospital, Toronto. All
experiments are in agreement with the Helsinki
Declaration of 1975, including its current 7th revision in
2013. The study was approved by the Mount Sinai Hos-
pital Research Ethics Board (REB number: 11-0287-E). PE
subjects (n= 33) were selected based upon the American
College of Obstetrics and Gynecology (ACOG) criteria of
maternal hypertension and proteinuria, or in the absence

of proteinuria–thrombocytopenia, impaired liver func-
tion, pulmonary, renal, or cerebral disease58. Normoten-
sive age-matched PTCs (n= 30) were selected based on
the absence of placental disease with appropriate-for-
gestational-age foetuses. Clinical parameters of PE and
PTC subjects are listed in Table 1.

Transmission electron microscopy
PE (n= 8) and PTC (n= 7) placental tissue were col-

lected and processed for TEM analysis immediately upon
delivery. Primary isolated trophoblast cells from term
placentae (n= 5) were treated with CER 16:0 (Avanti
Polar Lipids) or EtOH vehicle, and HEK-293 cells stably
induced with GFP-BOK were induced with Dox or dH2O
as control (n= 3). Tissue and cell samples were fixed in
2% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.3) for
up to 24 h at 4 °C. The samples were processed by the
Advanced Bioimaging Centre, Mount Sinai Hospital,
Toronto. Placental tissue was processed into thin sec-
tions, and cells were embedded in coverslips containing
Quetol resin (Electron Microscopy Scieneces, 20440),
cut into 90 nm sections, picked up on copper grids and
stained with uranyl acetate and lead citrate. Imaging was
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Fig. 9 Putative model of the mechanisms underlying increased mitochondrial fission in PE. Putative model of the mechanisms underlying
increased mitochondrial fission in PE. Elevated ceramide in mitochondria from PE pregnancies activates DRP1 and increases its recruitment to MFF at
the OMM. p-DRP1 oligomerizes and completes the process of mitochondrial fission. Ceramide triggers the recruitment of BOK to the OMM, which; in
turn, contributes to both augmented p-DRP1 expression and increases MAM tethering by inducing MFN2 expression. Mitochondrial fragments are
degraded by means of PINK1/Parkin dependent mitophagy
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conducted on a FEI Technai 20 Transmission Electron
Microscope.
TEM images of cytotrophoblast cells from PE (n= 8) and

PTC (n= 7) placentae were obtained. For each placenta,
three cytotrophoblast cells were identified, the number of
mitochondria was counted, and an internal mean was
generated. Mitochondrial width was measured using Ima-
geJ® 1.49v software, where the minimum short-axis was
recorded for each mitochondrion in at least three cyto-
trophoblast cells from all PE (n= 8) and PTC (n= 7) sub-
jects. Statistical analysis was conducted as described below.

Isolation of primary cytotrophoblast from term placentae
Whole, term placentae (n= 5), from normotensive,

otherwise healthy women undergoing elective cesarean
sections (C/S) for fetal malpresentation or previous C/S,
were obtained within 10min of delivery. Approximately
60 g of placental tissue was dissected, avoiding areas of
calcification and large vasculature and was cut into
smaller pieces. Primary cell isolation was carried out as
previously described59, following a modification of Kliman
methods60. Isolated cells were counted using Trypan blue
and a hematocytometer, and cultured at a concentration
of 1 × 107 cells per 35mm well, on coverslips for IF, or not
for WB, in Dulbecco’s modified Eagle’s medium (DMEM)
F:12 media (GIBCO-BRL, 11039-021) containing fetal
bovine serum (FBS) and penicillin–streptomycin
(Gibco®). Cells were cultured for 24 h at 8% pO2 (phy-
siological oxygen tension for term placentae) and were
subsequently treated with 20 µM synthetic CER 16:0 or
EtOH vehicle for 6 h prior to collection for WB analysis,
or fixation for IF in 4% paraformaldehyde solution.

Cell culture and analysis
JEG3 human choriocarcinoma cells
JEG3 cells (ATCCHTB36TM) were cultured in six-well

plates or coverslips in 20% O2 at 37°C in Eagle's Minimum
Essential Medium (EMEM) media (ATCC, 30-2003)
containing FBS and penicillin–streptomycin (Visent Inc).
Once the cells attained 80% confluency, they were treated
with either 20 µM CER 16:0 (Enzo Life Sciences, BML-
SL115), 25 μM 2-OE (Invitrogen, 0383), or EtOH vehicle
for 6 h, and either collected for protein analysis by WB, or
fixed with 4% paraformaldehyde for IF.

HEK-293 cells
HEK-293 cells (ATCC®, CRL 1573TM) were cultured in

high glucose DMEM media (Lunenfeld-Tanenbaum
Research Institute, Toronto, Ontario) at 20% O2 at 37 °C
to a confluency of 60–80%. Cells were used for transfec-
tion to silence (siRNA) and overexpress BOK, and to
overexpress BOK ΔBH3 (described below). HEK-293 cells
were stably transfected with GFP-hBOK using a Flp-In-T-
Rex-293 cell line (ThermoFisher Scientific®) as previously
described26. GFP-hBOK cells lines included WT and
those with the following deletions: ΔBH3, ΔTMD. BOK-
ΔBH3 plasmid was obtained by deletion of residues 65–82
corresponding to the BH3 domain of WT BOK. BOK-
ΔTMD lacked the complete TMD domain. BOK WT and
mutant expression was induced in the transfected cell
lines by Dox at 1.5 or 2.5 ng/mL for 36 h.

BOK transfection experiments
BOK silencing
HEK-293 were cultured as described above, and when a

confluency of 60–80% was attained, cells were transfected
with either 30 nM of Silencer® select siRNA targeted
against the mRNA of BOK (Ambion, AM16708), or
scrambled siRNA sequences as a control, using a jet-
PRIME® protocol (Polyplus Transfection®, 89129-922).
Cells were cultured at 37°C and collected 24 h later for
protein analysis by WB.

BOK/ΔBH3 overexpression experiments
HEK-293 cells were transfected with 2 µg/35mm cul-

ture well of pcDNA BOK-L (WT BOK), pcDNA BOK-
ΔBH3, and pcDNA3.1 (EV) (ThermoFisher Scientific®)
using a jetPRIME® protocol. Protein was collected after
incubation at 37°C for 24 h.

Mitochondrial isolation
PE and PTC placentae were cut into smaller pieces,

rinsed with isotonic saline (0.9% NaCl solution), and
suspended in ice-cold buffer A (0.25M sucrose, 0.001M
EDTA, 10mM Tris-HEPES, pH 7.4). The tissue was
subjected to two, 1-min homogenizations: one at low and
the next at medium speed (Homogenizer: VWR®, 82027-

Table 1 Clinical parameters of the study population

Clinical parameters Preterm controls

(n=30)

Preeclampsia (n=33)

Gestational age at

delivery (weeks)

29.7 ± 2.3 29.3 ± 3.0

Fetal weight (g) 1719 ± 282.2 1004 ± 372.0

Fetal weight (percentile) 0% ≤ 3rd 53% ≤ 3rd

Fetal sex 40% F, 60% M 33% F, 67% M

Systolic blood pressure

(mmHg)

S: 114 ± 12.1 S: 170 ± 17.5

Diastolic blood pressure

(mmHg)

D: 80 ± 8.3 D: 102 ± 11.5

Proteinuria (g/day) Absent 3.6 ± 0.85

Mode of delivery 12.5% VD, 87.5% CS 54% VD, 46% CS

CS labor vs. CS non-labor 29% L, 71% NL 60% L, 40% NL

F female, M male, S systolic, D diastolic, CS cesareanc section, VD vaginal
delivery, L labor, NL non-labor
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184). The homogenate was centrifuged at 1300 g for 5 min
at 4 °C and the supernatant (PNS) was further centrifuged
at 12,000 g for 15 min at 4 °C, and yielded a MI pellet and
post-mitochondrial supernatant (PMS). All three fractions
(PNS, PMS, and MI) were validated using TOM20, a
marker of the OMM, and β-actin (ACTB), a cytoskeletal
protein marker. The MI was assessed biochemically by
WB for p-DRP1 and a portion was used for CER analysis
using liquid chromatography linked to tandem mass
spectrometry (LC-MS/MS).

MAM isolation
Subcellular fractionation and isolation of the MAM was

carried out as previously described61. Briefly, the mito-
chondrial pellet of PE and PTC placentae isolated as
described above was resuspended in 2mL of EMEM
media, and subsequently placed on a 30% Percoll gradient
and centrifuged at 95,000 g for 30 min at 4 °C. The Percoll
gradient was separated into the heavy fraction, containing
the mitochondria, and the light fraction (LF) containing
the MAMs. The LF fraction was centrifuged at 6300 g for
10 min at 4 °C, and the supernatant further centrifuged at
100,000 g for 1 h at 4 °C. The resulting pellet was the
MAM isolate, which was validated by WB for absence of
TOM20 and enrichment of calreticulin. DRP1 expression
was evaluated by WB, and an aliquot was used for CER
analysis by LC-MS/MS.

CER measurements
MI and MAM isolates from PE and PTC placental tis-

sues were processed for lipid extraction62 and CERs were
measured by LC-MS/MS as previously described17. LC-
MS/MS was performed at the Analytical Facility for
Bioactive Molecules (The Hospital for Sick Children,
Toronto) using an Agilent 1200 Series binary pump
(Agilent Technologies Canada Inc.) linked to an API5500
triple-quadruple mass spectrometer (AB SCIEX).

Mouse experiments
CD1 mice were purchased from Charles River (St.

Constant, QC). Animal studies were conducted according
to the criteria set up by the Canadian Council for Animal
Care and approved by the Animal Care and Use Com-
mittee of the Hospital for Sick Children, Toronto, ON.
Pregnant CD1 mice were intraperitoneally injected daily
with Ceranib-2 (20 mg/kg; Cayman Chemical, 11092)
commencing at E7.5 till E13.5. Ceranib-2 was dissolved in
dimethyl sulfoxide (DMSO) and mice solely injected with
DMSO were used as controls. At E13.5, placentae were
snap frozen for biochemical analysis.

WB analysis
WB analysis was conducted as previously described63.

Briefly, PE and PTC snap-frozen tissue was pulverized in

liquid nitrogen and homogenized in RIPA buffer (150
mM NaCl, 50 mM Tris, 1% NP-40, pH 7.5). The
homogenate was centrifuged, and the supernatant
transferred to a new tube for protein content analysis
prior to WB analysis. Similarly, cultured cells were col-
lected in 40 µL of RIPA buffer per well (of a six-well
plate) and placed on ice for 1 h, centrifuged and the
supernatant transferred to a new tube for protein con-
tent and WB analysis. The protein content of tissue and
cell samples was assessed by Bradford protein assay (Bio-
Rad®, 500-0006).
For WB, 30 µg of proteins from tissue and cell lysates

were mixed with 8 µL of sample buffer (Tris 0.5% (pH
6.8), glycerol 20%, sodium dodecylsulfate (SDS) 10%, 2-β-
mercaptoethanol, bromophenol blue 0.1%), and RIPA
buffer to a total sample volume of 32 µL. Samples were
subjected to sodium dodecyl sulfate–polyacrylamide gel
electrophoresis and then transferred onto methanol-
hydrated polyvinylidene fluoride membranes. The mem-
branes were then blocked in 5% non-fat milk dissolved in
tris-buffered saline (TBST) for 1 h, and left overnight in
primary antibody at 4 °C. The next day, the membranes
were washed three times for 15min in TBST, and sec-
ondary antibody (horseradish peroxidase (HRP)-con-
jugated polyclonal antibody) was added for 1 h at room
temperature. Blots were imaged using chemiluminescence
ECL-plus reagent (PerkinElmer Inc., NEL103001EA) and
X-ray film (GE Healthcare).

IF analysis
Following experimental treatments, cells were fixed

with 4% paraformaldehyde (Sigma®, F8775) for 15min at
37 °C. Cells were permeabilized with 0.2% Triton X-100
for 5 min, rinsed with phosphate-buffered saline (PBS)
and blocked with 5% normal horse serum (NHS) (Sigma®,
H0146) for 1 h at room temperature. Primary antibodies
were diluted in antibody diluent (0.4% sodium azide,
0.625% gelatin) and 5% NHS, and placed on cells for
incubation overnight at 4 °C. For negative controls, the
primary antibody was replaced with either nonimmune
rabbit IgG (Santa Cruz Biotechnology, [sc-2027]) or goat
IgG (sc-2028), corresponding to the primary antibodies
being used. Following three PBS washes, HRP-conjugated
secondary antibodies were diluted in antibody diluent and
applied for 1 h at a concentration of 1:2000, after which
three additional PBS washes was carried out. Cells were
treated with 4’,6-diamino-2-phenylindole (DAPI) for 5
min to detect the nucleus, prior to fixation to 25 × 75 × 1
mm glass slides with Immuno-Mount™ (ThermoFisher
Scientific®). IF images were obtained using a DeltaVision
Deconvolution microscope (GE Healthcare). Live cell
staining in JEG3 cells was conducted using 100 nM
MitoTracker® red (ThermoFisher Scientific®), which was
added for 5 min prior to fixation. IF quantification was
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performed using Volocity Software to determine either
Mean Fluorescent Intensity or PCC.

Proximity ligation assay
Duolink in situ Proximity Ligation Assay (Sigma

Aldrich, USA) permits the detection of protein–protein
interactions. JEG3 cells treated with and without CER 16:0
(20 μM) and 2-OE (25 μM) for 6 h, were cultured on
eight-well chamber slides (LabTek, ThermoFisher, CA).
Cells were then washed with PBS, fixed with cold 1:1
methanol and acetone for 3 min and permeabilized with
0.2% Triton X-100 for 5 min. Following a blocking step
with Duolink blocking solution for 30 min at 37 °C, cells
were incubated with VDAC1 and IP3R antibodies over-
night at 4 °C. Hybridization of antibodies using plus and
minus PLA probes raised against species of respective
primary antibodies, ligation, and amplification reactions
were performed according to the manufacturer's protocol.
Slides were mounted with Duolink in situ mounting
medium with DAPI (Sigma Aldrich, USA), and pictures
were obtained using spinning disc confocal microscope
with Volocity Imaging system.

Antibodies
Primary antibodies
Commercially available primary antibodies were

obtained for WB and IF analyses. Antibodies against
DRP1 (sc-32898, rabbit [WB 1:1500]), MFF (T-14, sc-
168593, goat [IF: 1:200, WB 1:1000]), OMA-1 (sc-515788,
mouse monoclonal [WB 1:500]), MFN2 (H-68, sc-50331,
rabbit [IF: 1:200, WB 1:1000]), BOK (H-151, sc-11424,
rabbit [IF: 1:200, WB 1:1000]), TOM20 (FL-135, sc-11415,
rabbit [WB 1:1000]), Neutral ceramidase (S-20, goat
polyclonal; WB: 1:500), TUBA (αTubulin; P-16, sc-31779,
goat [WB 1:2000]), and ACTB (β-actin; I-19, sc-1616, goat
[WB 1:2000]) were purchased from Santa Cruz Bio-
technology. Rabbit polyclonal anti-SMCR7 (Mid49) [WB
1:1000], mouse monoclonal anti-VDAC1 (ab14734) [PLA
1:200], and rabbit polyclonal anti-IP3R (ab5804) [PLA
1:200] were obtained from Abcam (Cambridge, UK).
Antibodies against p-DRP1 (S616) (3455 S, rabbit [IF:
1:500, WB 1:1000]) were purchased from Cell Signalling
Technology®. OPA1 (612607, mouse [WB 1:1000]) was
purchased from BD Biosciences®; PINK1 (BC100-494,
rabbit [WB 1:1000]) was purchased from Novus Biologi-
cals®; and Parkin (AB9244, rabbit [WB 1:500]) was pur-
chased from Millipore Sigma®.

Secondary antibodies
Secondary antibodies include goat anti-rabbit IgG-HRP

(sc-2054 [WB: 1:2000]), donkey anti-goat IgG-HRP (sc-
2056 [WB: 1:2000]), and goat anti-mouse IgG-HRP (sc-
2005 [WB: 1:2000]) were purchased from Santa Cruz Bio-
technology. For IF, Alexa Fluor® 488 donkey anti-rabbit IgG

(A21206), Alexa Fluor® 594 donkey anti-rabbit IgG
(A21207), Alexa Fluor® 488 donkey anti-goat IgG (A11055),
Alexa Fluor® 594 donkey anti-goat IgG (A11058), and Alexa
Fluor® 594 donkey anti-mouse IgG (A21203) were all
purchased from ThermoFisher Scientific®.

Densitometric and statistical analysis
WB densitometric analysis was conducted using Ima-

geQuant® 5.0 software. Samples were normalized to either
ACTB (β-Actin), TUBA (αTubulin), or Ponceau Stain.
Statistical analysis was performed using GraphPad Prism
5 software, where comparison of two means utilized an
unpaired Student's t-test, and comparison of multiple
means used a one-way analysis of variance (ANOVA) with
a Tukey post-test to compare two variables where
applicable. Significance was denoted as *P < 0.05, **P <
0.01, and ***P < 0.001.
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