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A systems biology approach to studying the molecular
mechanisms of osteoblastic differentiation under cytokine
combination treatment
Hua Tan1, Ruoying Chen1, Wenyang Li1,2, Weiling Zhao1, Yuanyuan Zhang3, Yunzhi Yang4,5,6, Jing Su1 and Xiaobo Zhou1,7,8

Recent studies revealed that sequential release of bone morphogenetic protein 2 and insulin-like growth factor 1 plays an
important role in osteogenic process, suggesting that cytokines bone morphogenetic protein 2 and insulin-like growth factor 1
function in a time-dependent manner. However, the specific molecular mechanisms underlying these observations remained
elusive, impeding the elaborate manipulation of cytokine sequential delivery in tissue repair. The aim of this study was to identify
the key relevant pathways and processes regulating bone morphogenetic protein 2/insulin-like growth factor 1-mediated
osteoblastic differentiation. Based on the microarray and proteomics data, and differentiation/growth status of mouse bone
marrow stromal cells, we constructed a multiscale systems model to simulate the bone marrow stromal cells lineage commitment
and bone morphogenetic protein 2 and insulin-like growth factor 1-regulated signaling dynamics. The accuracy of our model was
validated using a set of independent experimental data. Our study reveals that, treatment of bone marrow stromal cells with bone
morphogenetic protein 2 prior to insulin-like growth factor 1 led to the activation of transcription factor Runx2 through TAK1-p38
MAPK and SMAD1/5 signaling pathways and initiated the lineage commitment of bone marrow stromal cells. Delivery of insulin-like
growth factor 1 four days after bone morphogenetic protein 2 treatment optimally activated transcription factors osterix and β-
catenin through ERK and AKT pathways, which are critical to preosteoblast maturity. Our systems biology approach is expected to
provide technical and scientific support in optimizing therapeutic scheme to improve osteogenesis/bone regeneration and other
essential biological processes.
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INTRODUCTION
Bone regeneration is a complex process mediated by a series of
biophysical events, including stem cell differentiation, neo-
vascularization, and mechanical loading.1–4 Many cytokines and
growth factors such as BMP-2 (bone morphogenetic protein 2)
and IGF-1 (insulin-like growth factor 1) play critical roles in
regulating these events.5 Growth factors tend to interactively
regulate cell differentiation and growth. Yeh et al. reported that
combination of osteogenic protein-1 (OP1) with either IGF-1 or
interleukin-6 enhanced OP1-induced increase in cell proliferation,
alkaline phosphatase (ALP) activity and bone nodule formation;6, 7

while combined treatment with platelet-derived growth factor
and IGF-1 improved the periodontal structure healing of
periodontitis-affected teeth.8 These studies indicated that cytokine
combinations have a synergistic effect on bone healing and tissue
regeneration, and hence represent a potential therapeutic
strategy for the repair of bone defects.
To exploit the clinical potential of cytokine combination

therapy, researchers have developed biomaterials and systems

to facilitate multiple-cytokine delivery, and thereby improve
osteoblastic differentiation in vitro, which is a critical initial step
toward clinical application of cytokine combination therapy to
bone regeneration.9–12 Particularly, combination of BMP-2 and
IGF-1 has been widely employed in dual cytokine treatment. BMP-
2 is an osteoinductive factor that can potently induce osteoblast
differentiation in vitro and in vivo.13–15 BMP-2 has been approved
by FDA for clinical use. IGF-1 is a mitogenic factor capable of
inducing osteoblast proliferation and growth toward local
osseointegration.16, 17 We and others revealed that sequential
delivery of BMP-2 and IGF-1 significantly enhanced osteoblastic
differentiation, when compared to the groups treated with either
a single cytokine or simultaneous release of both factors.9, 10, 18 In
the present work, we further specified that delivery of BMP-2 at
day 1 and IGF-1 at day 4 (denoted ‘B1I4’) to mouse bone marrow
stromal cells (BMSCs) yielded optimal osteoblast formation in
comparison with other temporal combinations. Taken together,
delivery timing (temporal order) of BMP-2 and IGF-1 is an
important variable for obtaining the best outcome.
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Identifying proper delivery timing of dual growth factors is
critical for designing optimal cytokine combination therapies, and
hence poses obvious biological and clinical significance. However,
it is costly and time-consuming to experimentally screen all
possible temporal combinations. Hence, we proposed a systems
biology approach to address this challenge. This approach
combined computational modeling and experimental data to
investigate the BMSC lineage process. Under this framework, only
a small fraction of treatment conditions needs to be covered by
experiments, while the remainder can be simulated and predicted
using the computational model trained by the experimental data.
In the present study, we first treated mouse BMSCs (w-20-17) by

BMP-2 and/or IGF-1. These growth factors directed the initial
BMSCs toward osteoblastic differentiation and lineage commit-
ment. Then we elaborately (at many time points) measured the
molecular (gene expression and protein phosphorylation profiling)
and cellular dynamics (differentiating activity and osteoblast
formation) following growth factor delivery. These experimental
data provided a unique opportunity for us to infer bone cell
lineage-associated signaling pathways, identify activation status of
related transcription factors (TFs), and model cell lineage
progression under various treatment conditions.
To achieve these goals, we constructed a multiscale systems

model to simulate the BMSC lineage commitment under cytokine
treatments at both molecular and cellular levels. The multiscale
model integrated our experimental data of various scales to
represent a coordinated system. By choosing proper parameters,
the output of this model was fitted to the experimental data very
well. We also evaluated the significance of involved parameters to
model output through global sensitivity analysis. In addition, we
validated our model with an independent set of experimental
data, and consequently proposed a convincing mechanism to
explain the outcomes of combined treatment with specific
cytokines. Our finding is expected to provide technical and
scientific support in optimizing therapeutic scheme involving

sequential delivery of dual (or even multiple cytokines) in bone
regeneration and other tissue remodeling processes.

RESULTS
The integrated systems biology approach
To understand the underlying molecular mechanisms of bone cell
lineage commitment chronologically orchestrated by BMP-2 and
IGF-1, we established a systems biology approach to explore the
process of bone cell differentiation and growth. As illustrated in
Fig. 1, our systems biology scheme consists of four major
components: (1) experiment design and data preparation/analysis,
(2) multiscale model construction and calibration, (3) model
validation with additional experimental data, and (4) mechanistic
explanation.
To obtain essential data for model construction, mouse BMSCs

(W-20-17) were treated with temporal combinations of BMP-2 and
IGF-1 (Table S1), and the cell differentiation and growth were
analyzed by measuring dsDNA (double strand DNA) contents
(total cell mass), ALP activity (osteoblastic differentiation) and
matrix calcium deposition (osteoblast formation). Total RNA and
protein samples were collected at various time points for gene
expression and protein phospho-signaling analysis using micro-
array and reverse phase protein array (RPPA) methods, respec-
tively (the left panel of Fig. 1). These data were used to construct a
multiscale model for simulating cell lineage progression, and the
associated signaling transduction was triggered by BMP-2 and
IGF-1 (the middle panel of Fig. 1). Concretely, dynamic data from
RPPA and microarray assays contained important cues regarding
the key molecules that may potentially be involved in BMSC
differentiation toward osteoblasts. We extracted the differentially
activated proteins and differentially expressed genes from these
data to generate the generic signaling pathways associated with
BMSC differentiation and proliferation (Materials and Methods).
The dynamic data of cell population were input into the cellular
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lineage model for parameter calibration. We implemented the
molecular signaling and cellular lineage components with
different ordinary differential equation (ODE) systems. The two
scales were connected by several critical TFs associated with bone
cell differentiation and proliferation. The model was validated by a
new set of molecular and cellular data (the right panel of Fig. 1).

Molecular dynamics in comparison with RPPA data
Our molecular ODE system well recapitulated the dynamics of the
12 signaling proteins which were covered by the RPPA data
(Supplementary Fig. S1). The parameters used here are listed in
Table S2 and Supplementary Fig. S2. The protein profiles
manifested obvious difference between treatment groups with
single and dual growth factors. Particularly, when the cells were
treated with IGF-1 alone (I1), neither p38 MAPK nor PI3K/Akt/
mTOR signaling pathways was well activated (Supplementary
Fig. S3), and hence all the related downstream TFs Runx2, osterix
and β-catenin were expected to be inactivated. This is well
consistent with previously reported significance of p38 MAPK
pathway in bone homeostasis.19 When the cells were treated with
BMP-2 first and then IGF-1 (B1I4), ERK, GSK3β, and S6 were
phosphorylated (Supplementary Fig. S6). These proteins were the
signaling molecules essential for the activation of osterix, β-
catenin and cell cycle related proteins. It should be noted that
inhibition of Akt on GSK3β, and inhibition of GSK3β on β-catenin,
are achieved by phosphorylation, rather than dephosphorylation.
This is because the phosphorylated GSK3β and β-catenin will be
degraded while their non-phosphorylated part will be active and
responsible for downstream stimulation.20 This unusual mechan-
ism makes them counterintuitive at first glance, for example, the
strong phosphorylation of GSK3β in B1I4 (Supplementary Fig. S6)
will actually lead to activation of β-catenin. The molecular
dynamics in B1 (Supplementary Fig. S4) shows that both p38
MAPK and SMAD1/5 were phosphorylated, which together lead to

the activation of Runx2. Consistently, the p38 MAPK was also
activated in I1B4 owing to the immediate BMP-2 stimulation at
day 4 (Supplementary Fig. S5). However, its downstream SMAD1/5
was inhibited due to the early inhibitory effect of IGF-1 on ERK at
day 1, demonstrating the essential role of ERK in cell cycle
regulation.21

Our analysis indicated that treatment of BMSCs with temporal
combinations of BMP-2 and IGF-1 induced distinct signaling
profiles. The signaling activated by one cytokine could be
enhanced, curtailed or inactivated by the second cytokine. This
is also exemplified in the parameter values (corresponding to
phosphorylation and dephosphorylation rates) estimated from
different treatment scenarios (Supplementary Fig. S2). There are
more parameters with values <0.02 or >0.08 in the I1B4 and B1I4
treatment groups than those in I1 and B1 groups. An unusually
small or large coefficient indicates that the signaling transduction
is substantially enhanced or impeded in that particular treatment
scenario, in comparison with the evenly distributed parameter
values. In the B1I4 scenario, the parameters involved in the IGF-1-
mediated sub-pathways varied dramatically between each other,
reflecting the strong phosphorylation of ERK (or MAPK), GSK3β,
and S6 proteins stimulated by IGF-1 (Supplementary Fig. S1).

Cellular dynamics in comparison with experimental results
Our cell lineage model successfully reproduced the observations
at the cellular level (Fig. 2). The major parameters involved in the
cellular lineage model are summarized in Supplementary Table S3.
No significant difference in cell growth was seen across all groups
at the early stage (during the first 11 days) following growth factor
treatment. However, cell differentiation was markedly affected by
temporal combination of BMP-2 and IGF-1 from the beginning, as
manifested by distinct cellular composition (i.e., the percentage of
BMSCs, non-osteoblastic cells and osteoblasts) (Supplementary
Fig. S8). The heterogeneity in cellular composition was attributed
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to the varying activation of essential TFs triggered by different
combinations of growth factors. Our study further suggested that
different treatment conditions resulted in dramatic variation in
final osteoblast formation (Supplementary Fig. S8).

Synergistic effect of BMP-2 and IGF-1 on BMSC lineage
progression
To evaluate the synergistic role of BMP-2 and IGF-1 in osteoblast
formation, we conducted a series of experiments to assess the
effect of temporal combination of BMP-2 and IGF-1 on BMSC
lineage progression (Table S1). Among the six treatment groups,
the best results were obtained in the B1I4 treatment scenario in
terms of osteoblast formation (determined by ARS), followed by
I1B1 and B1, while other conditions (I1B4, I1, control) ranked at the
bottom (Supplementary Fig. S8). These results were consistent
with the change in ALP activity (Supplementary Fig. S9A in W-20-
17 cells and Supplementary Fig. S12 in MC-3T3 cells).
Besides recapitulating the cellular dynamics observed in our

experiments, our systems biology approach also presented the
ability to screen cytokine combinations, which were not covered
by experiments. We conducted a comprehensive in silico ‘grid’
search of possible combinations of BMP-2 and IGF-1 with time
intervals ranging from 0 to 5 days between two sequential
deliveries, and evaluated their effects on cell lineage progression.
Figure 3 illustrates the profiles of osteoblast formation at day 29
for 49 different temporal combinations of BMP-2 and IGF-1. The six
treatment scenarios covered by our experiments are denoted in
the corresponding grids (the left panel of Fig. 3) and compared
with predicted results by the model (the right panel of Fig. 3). In
general, when IGF-1 was added alone or prior to BMP-2, the rate of
osteoblast formation was low and even lower if BMP-2 was added
after a longer interval. On the contrary, when BMP-2 was added
alone or prior to IGF-1, a good yield of osteoblast formation could
be achieved. These observations were consistent with the
previously reported individual effect of BMP-2 and IGF-1.22 In
addition, the osteoblast formation was not a monotonic function
of the time intervals, and a peak was reached when the time
interval was 3 days (B1I4). To conclude, our results indicated that
BMP-2 should be delivered prior to IGF-1, and the specific timing
for sequential delivery is also critical for optimal osteoblast
formation.

Global sensitivity analysis on model parameters
Our multiscale model involved a batch of parameters. Although
most parameters were obtained through fitting to the experi-
mental data, they still potentially included some uncertainty. To
address this issue, we performed a global sensitivity analysis on

the molecular and cellular model parameters, respectively. The
major advantage of global sensitivity analysis compared to regular
local method is its ability to assess the overall influence of each
individual parameter when all parameters are concurrently
perturbed.23

Figure 4 shows partial rank correlation coefficients (PRCC) and
main/total effect index, indicative of influential parameter
perturbations under various treatments. For the molecular ODE
system (Fig. 4a), the outcome of B1I4 was most sensitive to p38
MAPK phosphorylation profile (parameters a3 and d3 accounted
for 11 and 14% of the output variation respectively) based on the
main effect index (the middle panel of Fig. 4a), substantially
different from other treatment conditions. Groups I1, B1, and I1B4
were largely determined by the c-Raf signaling transduction
(parameters a9 and d9 accounted for 5–13% of output variation,
see Supplementary Fig. S1 for detail of the parameters). These
three groups can be further distinguished by the higher-order
sensitivity index, i.e., the total effect index (the lower panel of
Fig. 4a). Particularly, besides c-Raf, I1, B1, and I1B4 are also
dominated by PDK1 (a12 and d12), Ras (a8 and d8), and p70S6K (a18
and d18) signaling molecules, respectively. On the other hand, B1I4
is sensitive to TAK1 (a2 and d2) in addition to p38 MAPK.
Perturbation on other parameters can also account for ≥2% of the
output variation in each treatment scenario, as indicated by the
percentages on the pie charts. These significant tendencies can
also be discerned from the PRCC bar charts (the upper panel of
Fig. 4a).
Global sensitivity analysis on the cellular ODE system also

revealed important patterns (Fig. 4b). The PRCC, main and total
effect indexes concurred that all the treatment scenarios were
sensitive to the BMSC/preosteoblast differentiation rate (para-
meters DMSC and DOBp in Supplementary Fig. S7). In addition, I1,
I1B1, and I1B4 groups were well represented by the promotion
rate of IGF-1 on BMSC non-osteoblastic transformation (i3),
whereas B1 and B1I4 were more sensitive to the promotion rate
of BMP-2 on BMSC differentiation (b1). Interestingly, although the
effective time of IGF-1 (tp) played a non-ignorable role in shaping
the model output of I1, I1B1, and I1B4, its influence on B1I4 was
limited, implying that the timing of cytokine delivery had much
more significant influence on cell lineage progression than the
effective time of a cytokine.

Experimental validation at the molecular and cellular level
Our investigation indicated that the most essential crosstalk
between the two signaling pathways triggered by BMP-2 and IGF-
1 was the interaction between ERK and SMAD. BMP-2 treatment
led to the activation of SMAD1/5, while IGF-1 inhibited it through
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the activation of ERK1/2. We validated these predicted results with
western blot. We found that the activation of ERK1/2 appeared to
have an inhibiting effect on SMAD1/5 phosphorylation in I1, B1
and B1I4 treatment groups (Fig. 5a–c). This tendency was most
significant in the B1I4 group (Fig. 5c), in which ERK1/2 was
markedly activated and lasted for 15 min following the IGF-1
delivery, and after that, increased phosphorylation of SMAD1/5
was observed for a much longer period relative to the scenarios of
single cytokine delivery as shown in Fig. 5a, b. It is worth noting
that the negative regulation of ERK1/2 on SMAD1/5 appeared not
strict but in an overall sense, probably because SMAD1/5 was also
mediated by p38 MAPK.
The dynamic expression of relevant TFs following cytokine

delivery represents another important validation of our model. We
extracted the probes referring to Runx2, osterix (encoded by Sp7
gene) and β-catenin (encoded by CTNNB1 gene) from our
microarray data and averaged them gene by gene (Fig. 5d). The
gene expression level of β-catenin was invariably increased
following IGF-1 delivery, with the B1I4 group lasting for the
longest time (up to 5 days), compared to other treatment
scenarios. The expression of Runx2 and osterix did not reach
peak until day 10 in the I1, B1 and I1B4 groups. On the contrary, a
maximum increase in the Runx2 and osterix mRNA levels was
observed as early as day 5 in B1I4 group, indicating a prompt and

substantial promotion of BMSC differentiation toward mature
osteoblast. Our additional experiments of qPCR and western blot
further confirmed that IGF-1 suppressed the osteoblastic differ-
entiation by inhibiting expression of the osteogenic factor Runx2
(Fig. 5e). Interestingly, IGF-1 was shown to inhibit cell differentia-
tion compared to the control, when it was delivered alone (Fig. 5f).

Potential molecular mechanisms underlying the cytokine
combination treatment
Our systems biology study suggested that when IGF-1 was
delivered prior to BMP-2 (i.e., before BMP-2 induced the
differentiation of MSCs to preosteoblasts), IGF-1 blocked this
differentiation through inhibiting SMAD1/5 and its downstream
Runx2, and directed BMSCs to a non-osteoblastic lineage; and the
non-osteoblastic BMSCs would never progress to bone cell
lineage. Once BMSCs differentiated to preosteoblasts (directed
by BMP-2), however, IGF-1 became essential in ensuring the
nascent preosteoblasts further matured to osteoblasts instead of
non-osteoblastic transformation. This was achieved via upregulat-
ing two critical TFs, osterix and β-catenin. In addition, IGF-1 also
promoted cell proliferation by regulating cell cycle-associated
molecules including ERK and p70S6K, which contributed to the
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with two-tailed Student’s t-test. Protein levels of pERK and pSMAD1/5 in MC-3T3 cells treated with BMP-2/IGF-1 are shown in Supplementary
Figure S11
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sustaining bone cell growth at later stage. We illustrate this
mechanism by a schematic flowchart (Fig. 6).

DISCUSSION
Treatment with combined cytokines, such as BMP-2 and IGF-1,
represents an attractive therapeutic strategy in bone as well as
other tissues regeneration.1, 2, 24 Although the biomaterials and
bio-systems facilitating controllable cytokine delivery are becom-
ing a routine, screening for the best cytokine (temporal)
combination from numerous possibilities still poses an intensive
experimental task. To address this challenge, we developed a
systems biology approach (including wet-lab experiments and
computational modeling) to explore the role of combined BMP-2
and IGF-1 treatment on MSC lineage progression. Based on our
molecular and cellular experiments data, we constructed a
multiscale model to simulate bone cell lineage progression,
integrating intracellular signaling profiles and resultant transcrip-
tion factor dynamic changes following treatment.
Generally, our model well reproduced the experimental

observations, at both molecular and cellular levels. We indeed
observed certain discrepancy between model and real RPPA data,
i.e., the phosphorylation profile for the ERK protein, which
exemplified very irregular pattern across the time points of
measurement (especially in treatment groups I1 and B1,
Supplementary Figs. S3 and S4) and could not be captured by
the ODE model. Since RPPA is high-throughput data, we
conducted western blot assays for ERK and SMAD and validated
these significant predictions by our model (Fig. 5). Importantly, our
model accurately predicted the optimal treatment scenario B1I4
(BMP-2 at day 1 followed by IGF-1 at day 4) for promising
osteoblast formation, and figured out the potential molecular
mechanisms underlying these experimental observations, which
were largely supported by previous studies with same cell lines
and growth factors.9, 10, 22

One of the most significant findings from our investigation is
that, although IGF-1 seems to inhibit osteoblastic differentiation
when delivered alone or prior to BMP-2, it enables optimal
osteoblast formation when delivered at a proper timing following
BMP-2 treatment. Our model suggests that IGF-1 takes effect via
synergistically interacting with BMP-2 to regulate three critical

bone cell-specific TFs, RUNX2, osterix and β-catenin. As elucidated
above, IGF-1 and BMP-2 competitively control the expression of
RUNX2, which plays an indispensable role in directing MSC to
preosteoblast. Although some interactions between the involved
signaling proteins have been described previously, including the
inhibition of SMAD by ERK25 (see supplementary section
‘Molecular ODE system’ for more details), they were studied in
separate contexts, which was not a complete mechanistic
explanation for the cell lineage profiles triggered by particular
cytokine combinations.
Multiscale modeling is a promising strategy for exploring

system behavior regulated by components of various (physical
and/or temporal) scales.26 In the past years, multiscale model has
been widely and successfully applied in studying complex
biological processes such as tumor growth and tissue regenera-
tion.27–32 In our present study, the multiscale refers to multi-
temporal and multi-biological scales simultaneously (Fig. 1). The
biological scale includes molecular dynamic change with regard to
signaling transduction and transcription factor expression, and
cellular lineage progression. The temporal scale specifies time-
dependent changes from minutes/hours (signaling pathway), days
(transcription factor expression) to a month (cellular lineage
commitment). However, in the current study, we did not consider
the spatial information and hence didn’t incorporate any spatial
scales or mechanical stress issues as addressed in 3D bone
regeneration model.33 Therefore, we focused on an important
aspect (the molecular mechanisms of osteoblastic differentiation
and lineage) of bone regeneration, rather the whole process of
bone regeneration.
The challenge of multiscale modeling is how to integrate

multiple scales to represent a consolidated and well-functioning
system. We addressed this issue by treating the TFs as a
connecting link between the molecular signaling pathways and
the cellular lineage commitment (Fig.1 and Supplementary Fig. S7).
In the molecular component, growth factors BMP-2 and IGF-1
sequentially trigger the activation of different signaling pathways,
further mediating the expression of bone cell-specific TFs. On the
other hand, these TFs regulate various cell processes including
differentiation and proliferation, and serve as perturbations of the
cellular component. Therefore, the TFs play a transitional role in
linking the molecular and cellular components. Since the
expression of TFs changed much more slowly than the protein
phosphorylation status (days vs. minutes), we checked the
dynamic change of the immediate upstream proteins of the TFs
after running the molecular system. The dynamic change of the
upstream proteins represents an indicator of the presence of
particular growth factors and associated TFs, which is integrated
into the cellular model to account for the impact of growth factors
on cell fate decision. To address the multiplicity of temporal scales
in signaling transduction and resultant TFs dynamics, we treated
the output of the molecular system as an initial activating status of
particular TFs, and introduce a parameter to represent the
effective time interval of particular cytokines and corresponding
TFs (tp in Supplementary Fig. S7).
Our model revealed a substantial heterogeneity in the signaling

pathways triggered by different cytokine combinations. This was
characterized by the parameter values estimated from our
experimental data under individual treatments (Supplementary
Fig. S2). The parameter values distributed more evenly for the
treatment groups with a single cytokine (I1 and B1) in comparison
with dual cytokines (I1B4 and B1I4). The extremely large or small
parameters in dual delivery implied a substantially activated or
inhibited signal transduction. This heterogeneous signaling
transduction also reflected a dynamic change in cell composition
over cell culture time. Specifically, since the RPPA values from
groups I1 and B1 were obtained at day 1, while those from I1B4
and B1I4 were measured at day 4, the cellular composition was
expected to have changed significantly over time. Although we

BMP2 IGF1

Ras/Raf/MEK/ERKSMAD1/5

PI3K/PTEN/Akt/mTORp38 MAPK

RUNX2 Osterix β-catenin

Osteoblast

Promotion SuppressionActivation Inhibition

Preosteoblast
differentiationdifferentiation

Fig. 6 Schematic illustration of osteoblastic differentiation-related
molecular mechanism under combined cytokine treatment. BMP-2
activates Runx2 through p38 MAPK and SMAD1/5 signaling. IGF-1
triggers two interactive pathways: one is the Ras/Raf/MEK/ERK
pathway, which inhibits Runx2 by inhibiting SMAD1/5; the other is
the PI3K/PTEN/Akt/mTOR pathway, which activates osterix and β-
catenin. Runx2 is essential for early stage of BMSC differentiation,
while osterix and β-catenin plays a vital role in proliferation and later
stage of bone cell differentiation
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could measure the preosteoblast proportion by ALP activity at
early stage, it was difficult to measure all the components of a cell
mixture in a real-time manner. It would be beneficial for our cell
lineage model if we could define the cell-type specificity based on
the microarray data. There are currently some attempts on this
issue,34 and it will be considered in our future work when more
real-time data become available.
We also conducted a systematic global sensitivity analysis on

the parameters involved in our multiscale model. This strategy
appeared to be more efficient in identifying the essential factors
that contribute to the model output. As shown in the results
(Fig. 4), the most sensitive parameters for different treatment
scenarios appeared quite different, and this difference occurred in
both molecular and cellular ODE systems, indicating distinct
underlying mechanisms shaping the model and experiment
outcomes. Particularly, despite the timing for IGF-1 treatment
was critical for determining the bone lineage process, the model
output turned out to be insensitive to the effective time interval
(parameter tp), especially for the B1I4 scenario.
To conclude, we for the first time revealed the molecular

mechanisms underlying the temporal sequence of BMP-2 and IGF-
1 treatment on BMSCs, using a novel systems biology approach.
Our approach proved to be promising for exploring the molecular
mechanisms of multiple cytokines treatment, and consequently
for identifying the optimal cytokine combination therapeutic
strategy. It integrates experimental data (of different temporal/
biological scales) and mathematical modeling to simulate the
molecular and cellular dynamics under various treatment condi-
tions. This strategy is powerful since it avoids intensive experi-
mental endeavors for all possible treatment conditions to identify
the optimal one. Instead, the mathematical model deals with the
conditions not covered by wet-lab investigations by conducting in
silico experiments. The success also depends on the deep mining
of information from the genomic/proteomic and cellular data in
hand, together with sufficient integration of well-established
knowledge of molecular and cellular biology. We expect our
approach can be parallel applied to other related research
involving multiple-cytokine treatment, especially for tissue
regeneration.

MATERIALS AND METHODS
Experimental studies at molecular and cellular levels
An established murine bone marrow stromal cell line, W-20-17, was
obtained from the American Type Culture Collection (Rockville, MD, USA).
The cells were routinely maintained in Dulbecco’s modified Eagle’s
medium containing 10% bovine calf serum, 2mM L-glutamine, 100 IU/ml
penicillin, 100 μg/ml streptomycin, and 1% sodium pyruvate (all from
Invitrogen, Gaithersburg, MD, USA) at 37 °C with 5% CO2 in air. For each
treatment, 50 ng/ml IGF-1 and/or 50 ng/ml BMP-2 were added into the
culture medium individually, or in combination at designated time points
of each treatment scenario (Table S1).
The osteoblast-like MC3T3-E1 cells (American Type Culture Collection,

Rockville, MD, USA) were cultured in the α-Minimum Essential medium
(Life Technologies, Carlsbad, CA, USA) containing 10% fetal bovine serum,
100 IU/ml penicillin, and 100 μg/ml streptomycin at 37 °C under 5% CO2.
The MC3T3-E1 cells were treated with BMP-2 and/or IGF-1 in a similar
manner to the W-20-17 cells (Tables S1).
At the cellular level, we quantified the dsDNA for estimation of cell

numbers, conducted alkaline phosphate (ALP) assay for measurement of
osteogenic differentiation profiles, and used alizarin red S (ARS) staining to
determine the extent of mineralization levels at designated time points. At
the molecular level, we performed both RPPA and western blot to
determine the protein level and microarray assay to check the gene
expression change upon various cytokine treatments. The details of these
experimental methods are provided in the Supplementary Information.

Construction and implementation of the molecular-scale model
We employed an ODE system to describe dynamic interactions between
molecular components of the inferred signaling pathways (Supplementary
Fig S1A). We constructed the ODEs according to the law of mass action,
which was originally proposed to explain and predict behaviors of
solutions in chemical equilibrium, and proved useful in describing
biochemical reactions and signaling molecules in a pathway.35 In our
model, the signaling transduction started from binding of growth factors
with their receptors to form a ligand/receptor complex, and signal to the
downstream nodes through either phosphorylation or dephosphorylation
of related proteins, and then regulate expression of related TFs. Thus the
input and output of the system were the added growth factors and
relevant TFs, respectively. Since this process typically progresses very fast
(within a few hours), we assumed that the total quantity of a protein of
pairing statuses (original and phosphorylated) remained constant. Like-
wise, the quantity of receptors (including those in the complexes) kept
unchanged during the short period. This scheme substantially reduced the
numbers of ODEs and parameters without any information loss. Eventually,
we derived 20 ODEs for 20 signaling proteins, and additional 16 algebraic
equations for extra variables corresponding to pairing statuses of
corresponding proteins. The whole molecular ODE system involved only
37 parameters for the 36 variables. A detailed description of the whole
molecular ODE system and involved parameters is presented in
the supplementary material. Here we outline the philosophy for
constructing these ODEs.
Suppose molecular M is activated (e.g., phosphorylated) by a series of

proteins fpAjgmj¼1 and, possibly, inhibited by another batch of
proteinsfIjgnj¼1, then the dynamic concentration [pM] of phosphorylated
M can be mathematically represented by the following equation:36

d½pM�
dt

¼
Xm

j¼1

aj ½pAj �½M� �
Xn

j¼1

dj ½Ij �½pM� ð1Þ

where aj and dj refer to phosphorylation and dephosphorylation rates
exerted by pAj and Ij respectively. And according to our assumption, the
concentration of the un-phosphorylated protein M can be calculated by
subtracting [pM] from the total concentration CM of the protein, which
keeps constant during the phosphorylation process, i.e., [M]=CM – [pM]. It
should be noted that the activation can alternatively be achieved through
combining and forming a complex, which is depicted by differential
equations analogous to (1), the only difference is the coefficients stand for
association and dissociation rates. Parameters in the molecular ODE system
were estimated by the RPPA data using Monte Carlo Markov Chain
method,37 see Supplementary Information for detail.

Construction and implementation of the cellular-scale model
We applied the compartmental model to simulate dynamics of cell
populations. This is rational since the initial BMSCs can differentiate into a
cell lineage following induction with cytokines. Hence, different cell types
could concomitantly appear in the same culture system. Here the
compartments include four cell types: BMSC, preosteoblast, (mature)
osteoblast and non-osteoblastic cell. Upon proper stimulation, the BMSCs
can differentiate to preosteoblast, which further mature to osteoblast.38 On
the other hand, our experimental observations prompted us to hypothe-
size that both BMSCs and preosteoblasts may enter a non-osteoblastic
state, and quit the osteoblastic lineage process if critical TFs could not be
timely activated. We enhanced the benchmark compartmental model by
introducing dynamic coefficients to account for the time-dependent
expression levels of related TFs. In addition, the total population of all
compartments does not keep constant as assumed in general, since in our
study the cells are proliferating under growth factor stimulation. The
compartmental model can be mathematically represented as the following
ODE system (Supplementary Fig. S7):

d½BMSC�
dt

¼ PMSCðtÞ½BMSC� � ðDMSCðtÞ þ QMSCðtÞÞ½BMSC�
d½MSCq�

dt
¼ QMSCðtÞ½BMSC� þ QOBpðtÞ½OBp�

d½OBp�
dt

¼ POBpðtÞ½OBp� þ DMSCðtÞ½BMSC� � ðDOBpðtÞ þ QOBpðtÞÞ½OBp�
d½OBa�
dt

¼ POBaðtÞ½OBa� þ DOBpðtÞ½OBp�

8
>>>>>>>>>><

>>>>>>>>>>:

ð2Þ
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In Eq. (2), “BMSC”, “OBp”, “OBa” and “MSCq” stand for mouse bone
marrow-derived mesenchymal stem cell, preosteoblast, osteoblast and
non-osteoblastic cell respectively; the proliferation rate P*(t), differentiation
rate D*(t), and non-osteoblastic transformation rate Q*(t) for different cell
types are time-dependent, and represented by a basic rate plus joint
effects (promotion or inhibition, or both) exerted by related growth factors.
Parameters in the cellular ODE system were estimated by the ARS (for OBa)
and dsDNA (for total cell mass) data using regular least square
optimization, see details in the Supplementary Materials.

Availability of data and materials
Original experimental data and supplementary materials/methods can be
found online as Supplementary Information. Matlab codes are available
upon request.
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