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Instrumental Divergence and the 
Value of Control
Prachi Mistry & Mimi Liljeholm

A critical aspect of flexible choice is that alternative actions yield distinct consequences: Only when 
available action alternatives produce distinct outcome states does discrimination and selection 
between actions allow an agent to flexibly obtain the currently most desired outcome. Here, we use 
instrumental divergence – the degree to which alternative actions differ with respect to their outcome 
probability distributions – as an index of flexible instrumental control, and assess the influence of this 
novel decision variable on choice preference. In Experiment 1, when other decision variables, such as 
expected value and outcome entropy, were held constant, we found a significant preference for high 
instrumental divergence. In Experiment 2, we used an “auto- vs. self-play” manipulation to eliminate 
outcome diversity as a source of behavioral preferences, and to contrast flexible instrumental control 
with the complete absence of voluntary choice. Our results suggest that flexible instrumental control 
over decision outcomes may have intrinsic value.

The ability to exert flexible control over one’s environment is a central feature of adaptive decision-making. One 
critical aspect of flexible choice is that alternative actions yield distinct consequences: If all available action alter-
natives have identical, or similar, outcome distributions, such that selecting one action over another does not 
significantly alter the probability of any given outcome state, an agent’s ability to exert flexible control over its 
environment is considerably impaired. Conversely, when available action alternatives produce distinct outcome 
states, discrimination and selection between actions allows the agent to flexibly obtain the currently most desired 
outcome. Notably, since subjective outcome utilities often change from one moment to the next (e.g., due to sen-
sory satiety), flexible instrumental control is essential for reward maximization and, as such, may have intrinsic 
value. Here, we use instrumental divergence – the degree to which alternative actions differ with respect to their 
outcome probability distributions – as an index of flexible control, and assess the influence of this novel decision 
variable on behavioral choice preference.

Formal theories of goal-directed control postulate that the agent generates a “cognitive map” of stochastic 
relationships between actions and states such that, for each action in a given state, a probability distribution is 
specified over possible outcome states. These transition probabilities are then combined with current estimates of 
outcome utilities in order to generate action values – the basis of goal-directed choice1,2. The separate estimation 
and “on-the-fly” combination of outcome probabilities and outcome utilities offers adaptive advantage over more 
automatic action selection, which uses cached values based on reinforcement history1. There are, however, situa-
tions in which goal-directed computations do not yield greater flexibility.

As an illustration, consider the scenario in Fig. 1a, which shows two available actions, A1 and A2, with bars rep-
resenting the transition probabilities of each action into three potential outcome states, O1, O2 and O3. Here, the 
goal-directed approach prescribes that the agent retrieves each transition probability, estimates the current utility 
of each outcome, computes the product of each utility and associated probability, sums across the resulting value 
distribution for each action and, finally, compares the two action values1. Of course, given equivalent costs, actions 
that have identical outcome distributions, as in Fig. 1a, will inevitably have the same value, eliminating the need for 
resource-intensive goal-directed computations. However, critically, this lack of instrumental divergence also elimi-
nates the power of choice: selecting A1 over A2, or vice versa, does not alter the probability of any given outcome state.

Now consider the scenario in Fig. 1b, in which the probability distribution of A2 has been reversed across the 
three outcomes, yielding high instrumental divergence. Note that, if the utilities of O1 and O3 are the same, the two 
actions still have the same expected value. Likewise, outcome entropy – the uncertainty about which outcome will be 
obtained given performance of a particular action – is the same for both actions. In spite of this equivalence, the two 
actions in Fig. 1b clearly differ. To appreciate the significance of this difference, imagine that O1 and O3 represent 
food and water respectively, and that you just had a large meal without a drop to drink. Chances are that your desire 
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for O3 is greater than that for O1 at that particular moment. However, a few hours later, you may be hungry again 
and, having had all the water you want, now have a preference for O1. Unlike the scenario illustrated in Fig. 1a, 
the high instrumental divergence afforded by action-outcome contingencies in Fig. 1b allows you to produce the 
currently desired outcome as preferences change, by switching between actions. Thus, instrumental divergence can 
serve as a measure of agency – the greater the divergence between available actions, the greater the degree of flexible 
instrumental control. Here, to assess a behavioral preference for flexible control, we use a novel paradigm in which 
participants choose between environments with either high or low instrumental divergence.

Experiment 1
Method.  Participants.  Twenty-four undergraduates at the University of California, Irvine (19 females; mean 
age =​ 20.42 ±​ 1.77) participated in the study for course credit. All participants gave informed consent and the 
Institutional Review Board of the University of California, Irvine, approved the study. All aspects of the study 
conformed to the guidelines of the 2013 WMA Declaration of Helsinki.

Task and Procedure.  The task is illustrated in Fig. 2. At the start of the experiment, participants were instructed 
that they would assume the role of a gambler in a casino, playing a set of four slot machines (i.e., actions, respec-
tively labeled A1-A4) that would yield three different colored tokens (blue, green and red), each worth a particular 
amount of money, with different probabilities. They were further told that, in each of several blocks, they would be 
required to first select a “room” in which only two slot machines were available, and that they would be restricted 
to playing on those two machines on subsequent trials within that block. Recall that instrumental divergence is a 
measure of the difference between actions with respect to their outcome probability distributions. Consequently, 
a preference for high instrumental divergence can only be assessed if each option contains at least two action 
alternatives. Here, the instrumental divergence of available slot machines differed across room options. The 
measure of interest, thus, was the decision at the beginning of each block (top of Fig. 2), between a high- versus 
low-divergence room. If flexible control, defined as high instrumental divergence, has intrinsic value, participants 
should prefer the high-divergence room, other things (e.g., expected monetary values and outcome entropy) 
being equal. To ensure that each room choice was consequential, participants were restricted to gambling on the 
slot machines available in the selected room for the duration of that block.

Figure 1.  Probability distributions over three potential outcomes (O1, O2 & O3) for two available actions (A1 
& A2) across which instrumental divergence – the difference between outcome probability distributions – is 
zero (a) or high (b).

Figure 2.  Task illustration showing the choice screen at the beginning of a block (top), and the choice 
screen (middle) and feedback screen (bottom) from a trial within a block. 



www.nature.com/scientificreports/

3Scientific Reports | 6:36295 | DOI: 10.1038/srep36295

We were primarily interested in assessing a preference for high instrumental divergence when other decision 
variables were held constant. Thus, in the majority of blocks, identical monetary pay-offs were associated with high- 
and low-divergence rooms. However, we also included subsets of blocks in which monetary pay-offs differed across 
rooms, in either the same or opposite direction of instrumental divergence: These additional blocks served to con-
firm that participants in our task were sensitive to differences in expected monetary value, allowing us to interpret 
their performance in terms of conventional theories of reinforcement learning and economic choice. Note that, 
when instrumental divergence and expected monetary pay-offs differ in the same direction across rooms, both 
variables predict selection of the same room (i.e., that with greater divergence and a greater monetary pay-off), in an 
additive fashion. In contrast, when these two variables differ in opposite directions, so that the room with the greater 
monetary pay-off is that with lower instrumental divergence, they compete for control of behavior (i.e., the greater 
monetary pay-off is pitted against the value of high instrumental divergence). Consequently, we predicted that par-
ticipants would be more likely to select the room with a greater expected monetary pay-off when that room was also 
associated with high instrumental divergence than when it was associated with low instrumental divergence.

Recall that it is because the subjective utility of a given outcome may change from one moment to the next (e.g., you 
may crave chocolate and then sate yourself on it, the value of a stock might increase one day and plummet the next) 
that flexible instrumental control is essential for reward maximization. Returning to the scenario illustrated in Fig. 1, if 
the utilities of O1 and O3 were identical and fixed, the high instrumental divergence afforded by the probability distri-
butions in Fig. 1b would be of little consequence. On the other hand, if the utilities of O1 and O3 fluctuated, so that O1 
was sometimes worth more and other times less than O3, the high instrumental divergence in Fig. 1b would allow an 
agent to maximize utility by switching between A1 and A2 according to current preferences. Here, to motivate the use 
of instrumental divergence as a decision variable, we simulate dynamic fluctuations in outcome utilities by changing 
the monetary values assigned to the different tokens at various points throughout the experiment.

Decision variables.  Our measure of interest was the decision made at the beginning of each block, between two 
gambling rooms (i.e., action pairs; see top of Fig. 2) that differed in terms of instrumental divergence and, some-
times, expected value. We formalize the instrumental divergence of a gambling room as the Jensen-Shannon (JS) 
divergence3 of the token probability distributions for the two actions available in that room. Let P1 and P2 be the 
respective token probability distributions for the two actions available in a gambling room (e.g., A1 and A2), let O 
be the set of possible token outcomes (i.e., red, green and blue), and P(o) the probability of a particular (e.g., red) 
token outcome, o. The instrumental divergence of a gambling room is defined as:
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Thus, instrumental divergence is the mean logarithmic, symmetrized, difference between outcome probabilities for 
alternative actions. Note that, while we are comparing only two available actions, this divergence measure can be gen-
eralized to any finite number of probability distributions3, allowing for a comparison of many more action alternatives. 
Note also that instrumental divergence is defined here with respect to the sensory-specific (i.e., colors) rather than moti-
vational (i.e., monetary) features of token outcomes, allowing for a clear dissociation of divergence and expected value.

We defined the expected value of a room as the sum over the products of outcome probabilities and outcome 
utilities given a particular action, summed over the two actions available in the room:

∑∑=
∈ ∈

EV p o a u o( ) ( )
(2)a Ao O

where A is the set of actions available in a room (e.g., A1 and A2), O is, again, the set of possible token outcomes, 
p(o|a) is the probability of a particular token outcome o conditional on a particular action a, and u(o) is the utility 
(i.e., monetary value) of outcome o.

Finally, an important decision variable frequently shown to influence instrumental choice is the variability, or 
entropy, of outcome states4–6, which is greatest when the probability distribution over outcomes is uniform. Given 
the actions available in a room, where A, O and p(o|a) are defined as above, and p(a,o) is the joint probability of 
action a and outcome o, the outcome entropy of that room is defined as:
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We did not manipulate the entropy of gambling rooms but define it here in order to specify that it was held 
constant across all room options throughout the task, at 0.88 bits (where a bit is the unit of information for log-
arithmic base 2, used in both equations 1 and 3). This allows us to eliminate outcome entropy as a source of any 
observed preference for one room over another.

Choice scenarios.  In this section we outline the assignment of conditional probabilities and reward magnitudes to 
token outcomes, the pairing, given those assignments, of actions in high- versus low-divergence rooms and the com-
bination of rooms into choice scenarios. The construction of choice scenarios is summarized in Table 1. We used 
two distinct probability distributions over the three possible token outcomes: [0.7, 0.3, 0.0 and 0.0, 0.3, 0.7]. The 
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assignment of outcome distributions to actions was such that two of the actions shared one distribution, while the 
other two actions shared the other distribution. These assignments were counterbalanced across subjects, such that, 
for half of the subjects, A1 & A2 shared one distribution and A3 & A4 shared a different distribution (as in Table 1). 
For the remaining subjects, A1 & A3 shared one distribution and A2 & A4 shared the other (thus, contrary to the 
scheme in Table 1, for these participants, zero-divergence rooms contained A1 & A3 or A2 & A4). In both groups, 
this yielded a low (zero) instrumental divergence for rooms in which the two available actions shared the same prob-
ability distribution (as in Fig. 1a), and a high (0.7 bits) instrumental divergence for rooms in which available actions 
had different outcome probability distributions (as in Fig. 1b). The four actions were combined into six pairs (i.e., 
rooms), which were in turn combined into 10 two-alternative choice scenarios (as that shown in top of Fig. 2). For 8 
of these scenarios, divergence differed across the two rooms, and each of these 8 scenarios were repeated 2 to 5 times, 
depending on expected value constraints discussed below, in random order across 28 blocks. For completeness, we 
also included two choice scenarios in which divergence was either equally low or equally high for both rooms. Each 
such scenario was repeated 4 times and distributed randomly among the other 28 blocks, yielding a total of 36 blocks. 
Each block consisted of 6 trials in which participants chose between the two actions in the selected room, for a total 
of 216 trials.

In the majority of blocks, the reward magnitudes assigned to the blue, green and red token respectively ($2, 
$2 and $1) yielded identical expected values for all actions. However, we also used token-reward assignments that 
yielded differences in expected value across rooms. Thus, in two subsets of blocks, the relative token values were 
such that the expected value of the zero-divergence room was either greater ($2.30) or lesser ($1.60) than that of the 
high-divergence room ($1.95). Transitions between token-reward assignments occurred every 3–5 blocks (every 
4th block on average), were explicitly announced, and always occurred after the participant had already committed 
to a particular room in a given block. We refer to blocks in which expected value was constant across rooms as bal-
anced (B). Blocks in which expected value differed across rooms in the opposite direction of divergence are referred 
to as “unbalanced opposite” (UBO) and those in which expected value differed across rooms in the same direction 
as divergence as “unbalanced same” (UBS). For filler blocks, in which the two rooms had the same divergence, high 
or low, expected value was always balanced across rooms. For critical blocks, in which divergence differed across 
the rooms, 12 were B, 8 were UBO and 8 were UBS, with the order of B, UBO and UBS blocks counterbalanced 
across participants. Note that all monetary rewards were fictive, and that participants were instructed at the begin-
ning of the study that they would not receive any actual money upon completing the study.

Pre-training on action-token probabilities.  Before starting the gambling task participants were given a practice session 
in order to learn the probabilities with which each action produced the different colored tokens. To avoid biasing par-
ticipants towards any particular reward distribution, no values were printed on the tokens in the practice session. To 
ensure equal sampling, each action was presented individually on 10 consecutive trials, with tokens occurring exactly 
according to their programmed probabilities (i.e., if the action produced green tokens with a probability of 0.3, the 
green token would be delivered on exactly 3 of the 10 trials). Following 10 trials with a given action, participants rated 
the probability with which that action produced each colored token on a scale from 0 to 1.0 with 0.1 increments. If the 
rating of any outcome probability deviated from the programmed probability by more than 0.2 points, the same action 
was presented for another 10 trials, and this process repeated until all rated probabilities were within 0.2 points of pro-
grammed probabilities for that action. After receiving training on, and providing ratings for, each action, participants 
were required to rate the outcome probabilities for all four actions in sequence; if the rating of any probability deviated 
from the programmed probability by more than 0.2 points, the entire practice session was repeated.

Results.  Pre-training on action-token probabilities.  Participants required on average 2.17 (SD =​ 1.17) ses-
sions of practice on the action-token probabilities. Mean probability ratings, obtained right before and right after 
the gambling phase, are shown in the top two rows of Table 2. On average, rated probabilities were very close to 
programmed ones, both prior to gambling, and immediately following the gambling phase.

A preference for high instrumental divergence.  The mean proportions of high-divergence over zero-divergence 
choices, for B, UBO and UBS blocks, are shown in Fig. 3a. Our primary hypothesis was that, when both expected 
value and outcome entropy were held constant across rooms (i.e., in Balanced blocks), participants would pre-
fer the room with high instrumental divergence. Planned comparisons confirmed this prediction: For blocks 

Token Outcomes Rooms
Choice 

scenarios

blue green red High Div. Zero Div. a vs. e d vs. e

A1 & A2 0.0 0.7 0.3 a. A1 & A3 e. A1 & A2 a vs. f d vs. f

A3 & A4 0.7 0.0 0.3 b. A2 & A4 f. A3 & A4 b vs. e a vs. b

Balanced $2 $2 $1 c. A1 & A4 b vs. f e vs. f

Unbalanced 1 $1 $2 $3 d. A2 & A3 c vs. e

Unbalanced 2 $2 $1 $3 c vs. f

Table 1.   Token probabilities and reward distributions, gambling rooms and choice scenarios in Experiment 
1. The top two rows in the 2nd column indicate the probability of each colored token given either of the actions 
listed to the left; the bottom three rows indicate the monetary value of each token in balanced and unbalanced 
blocks. The third column shows the pair of actions available in each room, and the fourth column the combination 
of rooms into choice scenarios.
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in which instrumental divergence differed across rooms, while expected value and outcome entropy were held 
constant, the mean proportion of high-divergence over zero-divergence choices was significantly different from 
chance, t(23) =​ 5.00, p <​ 0.001, d =​ 1.02. Critically, we confirmed that, consistent with programmed reward con-
tingencies for balanced blocks, mean monetary earnings did not differ significantly across high- ($10.84 ±​ 0.56) 
and zero- ($10.72 ±​ 0.65) divergence rooms, t(23) =​ 0.53, p =​ 0.60.

We further hypothesized that there would be a significant effect of expected monetary value, such that the 
proportion of high-divergence over zero-divergence choices would be greater when expected value differed across 
rooms in the same direction as divergence (Unbalanced same) than when expected value differed in the opposite 
direction (UBO). Since monetary rewards were fictive, these conditions provide important criterion checks, con-
firming that participants were sensitive to differences in expected monetary pay-offs. Consistent with a previously 
demonstrated correspondence between real and fictive monetary rewards, in both behavioral choice and neural 
correlates7–9, a planned comparison revealed that participants’ choices were indeed in accordance with expected 
monetary rewards: the proportion of high- over zero-divergence choices was significantly greater in UBS than in 
UBO blocks, t(23) =​ 4.88, p <​ 0.001, dz =​ 1.00. Finally, we predicted that, due to the competing effects of instru-
mental divergence and expected value, the deviation from chance performance would be greater in UBS than in 
UBO blocks, an asymmetry that is apparent in Fig. 3a. This prediction was confirmed: in spite of equal differences 
in absolute expected value, choice performance deviated significantly from chance when expected value differed 
in the same direction as instrumental divergence, t(23) =​ 5.86, p <​ 0.001, d =​ 1.20, but not when expected value 
differed in the opposite direction of instrumental divergence, t(23) =​ 1.61, p =​ 0.121, d =​ 0.34.

Experiment 2
The results of Experiment 1 confirm that, when given a choice between environments that have either high or zero 
instrumental divergence, participants strongly prefer the high-divergence option. We interpret this preference as 
reflecting the intrinsic value of flexible instrumental control. Alternatively, however, participants’ choices may reflect 
a previously demonstrated tendency to maximize outcome diversity – the perceptual distinctiveness of potential out-
comes10,11. Although highly related, in that greater instrumental divergence may yield greater outcome diversity, as was 
the case in Experiment 1, the flexible control afforded by divergence does not follow from outcome diversity.

0.7 0.0 0.3

Exp. 1 Before 0.70 ±​ 0.02 0.00 ±​ 0.02 0.30 ±​ 0.02

After 0.64 ±​ 0.16 0.04 ±​ 0.15 0.31 ±​ 0.09

Exp. 2 Before 0.69 ±​ 0.02 0.00 ±​ 0.02 0.30 ±​ 0.03

After 0.64 ±​ 0.16 0.05 ±​ 0.16 0.32 ±​ 0.09

Table 2.   Mean ratings of token probabilities following pre-training, for programmed probabilities of 0.7, 
0.0  and 0.3, obtained before and after gambling, in Experiments 1 and 2.

Figure 3.  Mean choice proportions in Experiments 1 and 2. Dashed lines indicate chance performance. Error 
bars =​ SEM. (a) Mean proportions of high- over zero-divergence choices, for blocks in which expected values 
were identical across high- and low-divergence options (Balanced), blocks in which expected values differed 
across options in the same direction as divergence (Unbalanced same) and blocks in which expected values 
differed in the opposite direction of divergence (Unbalanced opposite), in Experiment 1. (b) Mean proportions 
of high- over zero-divergence choices (left) for blocks in which the high-divergence option was Auto-play versus 
blocks in which the high-divergence option was Self-play, and mean proportions of self- over auto-play choices 
(right) for blocks in which both options had high-divergence (High-div.) versus blocks in which both options 
had zero-divergence (Zero-div.), in Experiment 2.
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In zero-divergences rooms in Experiment 1, illustrated in Fig. 1a, regardless of which action was selected, 
there was a high probability of obtaining O1, a low probability of obtaining O2 and a zero probability of obtaining 
O3 (where each numbered outcome indicates a distinctly colored token). In contrast, in high-divergence rooms, 
illustrated in Fig. 1b, participants were able to obtain both O1 and O3, as well as O2, by switching between actions 
across trials. Consequently, even when the expected values of high- and zero-divergence rooms were identical, 
as in the majority of blocks in Experiment 1, the perceptual diversity of obtainable outcomes was greater in high- 
than in zero-divergence rooms (i.e., three differently colored tokens were obtainable in high-divergence rooms, 
but only two in zero-divergence rooms). It is possible, therefore, that the preference for high instrumental diver-
gence found in Experiment 1 reflects a previously demonstrated preference for greater perceptual diversity among 
obtainable outcomes10,11. Now, consider a scenario in which a computer algorithm chooses between the actions 
in a given room, selecting each action equally often by alternating across trials. In this case, the high-divergence 
room would still yield greater outcome diversity than the zero-divergence room; however, in the absence of vol-
untary choice, the high-divergence room no longer yields flexible instrumental control. Indeed, in the absence of 
free choice, neither the high- nor zero-divergence condition can be considered instrumental.

Our main hypothesis is that greater instrumental divergence is valuable because it yields greater levels of flex-
ible instrumental control. When the instrumental component is removed, as when a computer selects between 
actions while participants passively observe, so is the potential for flexible control. Consequently, we do not 
predict any preference for high divergence rooms in the absence of free choice. However, a computer algorithm 
selecting both actions in a room equally often, by alternating across trials, would ensure that the diversity of 
obtained outcomes is still greater in high- than in zero-divergence rooms. Therefore, if choices in Experiment 1 
were driven by a desire to maximize outcome diversity, rather than instrumental divergence, similar preferences 
should emerge whether the participant or an alternating computer algorithm choose between the actions in a 
room. In Experiment 2, we used an “auto-play” option, in which the computer selected between the two actions 
available in a room, to rule out outcome diversity as the source of a preference for flexible instrumental control.

Method.  Participants.  Twenty-four undergraduates at the University of California, Irvine (19 females; mean 
age =​ 20.42 ±​ 2.62) participated in the study for course credit. All participants gave informed consent and the 
Institutional Review Board of the University of California, Irvine, approved the study. All aspects of the study 
conformed to the guidelines of the 2013 WMA Declaration of Helsinki.

Task and Procedure.  In any given gambling room in Experiment 2, whether high or low in instrumental diver-
gence, a computer algorithm selecting both actions equally often, by alternating across trials, would maximize out-
come diversity in that room. Consequently, if the choice is between two rooms with equal levels of divergence, where 
one room is auto-play (the computer chooses between actions in the room) and the other is self-play (the participant 
chooses between actions in the room), outcome diversity maximization does not predict a preference for either room. 
Conversely, if the choice is between two rooms that differ in terms of divergence, outcome diversity maximization pre-
dicts a preference for the high-divergence room, since that is also the option with greater outcome diversity, whether it 
is associated with self-play or auto-play. In contrast, according to our hypothesis, that it is the flexible instrumental con-
trol afforded by high divergence that has intrinsic value, there should be a clear preference for the combination of high 
divergence and self-play. Thus, if choosing between two high-divergence rooms, one auto-play and the other self-play, 
there should be a preference for the self-play room. On the other hand, if choosing between two zero-divergence 
rooms, one auto-play and the other self-play, the preference for self-play should be much weaker, or absent, since 
zero-divergence rooms do not yield flexible control even under self-play conditions. Likewise, if choosing between a 
high- and a zero-divergence room, a preference for the high-divergence room should only emerge if that room is associ-
ated with self-play, since high-divergence rooms do not yield flexible instrumental control under auto-play conditions.

The task and procedure were identical to Experiment 1, with the following exceptions: First, in addition to 
potentially differing in terms of instrumental divergence and expected monetary value, the two room options 
presented at the beginning of each block differed in terms of whether the participant or a computer algorithm 
selected between the two actions available in the chosen room on trials within the block. At the beginning of the 
experiment, participants were instructed that, in each block, they would have the option of playing in a room 
themselves or having the computer play for them. They were further told that, if they choose to have the computer 
play, the computer would select each available action in the room equally often, by alternating between available 
actions across trials (e.g., A1, A2, A1, A2…​). On the choice screen at the onset of each block (top of Fig. 2), the 
word “auto-play” was always printed below one room and the word “self-play” below the other room, to indicate 
whether the participant or the computer would be playing in that room for the duration of the block.

Since we were primarily interested in assessing whether there would be a preference for self-play when choosing 
between two high, but not between two zero, divergence rooms, a second difference from Experiment 1 was that a 
larger proportion of room choices involved two rooms that had the same divergence (either high or zero), as well as the 
same expected value, differing only in terms of self-play vs. auto-play. If self-play is valued only in high-divergence envi-
ronments, then participants should select self-play over auto-play when choosing between two high-divergence rooms, 
but not when choosing between two zero-divergence rooms. In addition, we included several blocks in which partici-
pants choose between a high- and zero-divergence room, with either the high-divergence room or the zero-divergence 
room being the self-play option. We predicted that the preference for high-divergence, demonstrated in Experiment 1, 
would only emerge when the high-divergence option was also the self-play option. The remaining blocks were ones in 
which both expected value and divergence differed across self- and auto-play options.
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Results
Pre-training on action-token probabilities.  Participants required on average 2.08 (SD =​ 0.93) sessions 
of practice on the action-token probabilities. Mean probability ratings, obtained before and after the gambling 
phase, are shown in the bottom two rows of Table 2. As in Experiment 1, mean rated probabilities were very close 
to programmed ones, both prior to gambling and immediately following the gambling phase.

Does a preference for high divergence depend on self- vs. auto-play?  The mean proportions of 
high- over zero-divergence choices, when the high-divergence option was self-play versus when it was auto-play, 
with expected values held constant across options, are shown on the left in Fig. 3b. Planned comparisons revealed 
that, as predicted, participants preferred the high-divergence over the zero-divergence room significantly 
more often when the high-divergence room was associated with self-play (and the zero-divergence room with 
auto-play) than when the high-divergence room was associated with auto-play (and the zero-divergence room 
with self-play), t(23) =​ 2.41, p =​ 0.025, dz =​ 0.49. Indeed, when the high-divergence room was auto-play and the 
zero-divergence room was self-play, selection of the high-divergence room did not deviate significantly from 
chance, t(23) =​ 0.11, p =​ 0.914, d =​ 0.02. As in Experiment 1, we confirmed that these differences across options 
with identical expected values were not due to unintended differences in monetary earnings: Mean monetary 
earnings were the same for high-divergence self-play ($10.98 ±​ 0.93), high-divergence auto-play ($10.83 ±​ 1.49), 
zero-divergence self-play ($11.08 ±​ 0.94) and zero-divergence auto-play ($10.87 ±​ 1.35) rooms; t <​ 1.07 and 
p >​ 0.30 for all pairwise comparisons. For those few blocks in which both divergence and expected value did dif-
fer across self- and auto-play options, in either the same or opposite directions, there was a clear effect of expected 
value, such that the proportion of high-divergence choices was significantly greater when the high-divergence 
room was associated with greater expected value, whether it was an auto-play room (mean difference =​ 0.35; 
t(23) =​ 3.78, p <​ 0.001, dz =​ 0.77) or a self-play room (mean difference =​ 0.32, t(23) =​ 3.11, p =​ 0.005, dz =​ 0.65).

Does a preference for self-play depend on divergence?  The mean proportions of self-play over 
auto-play choices, for blocks in which the divergence of both options was either high or zero, with expected value held 
constant across self- and auto-play options, are shown on the right side of Fig. 3b. Planned comparisons revealed that 
participants preferred self-play over auto-play significantly more often when choosing between two high-divergence 
rooms than when choosing between two zero-divergence rooms, t(23) =​ 2.18, p <​ 0.039, dz =​ 0.45.

Discussion
We assessed the influence of instrumental divergence – the extent to which actions differ with respect to their 
outcome probability distributions – on behavioral preferences in a gambling task. In each round of gambling, 
participants chose between two pairs of actions, knowing that they would be restricted to the actions in the 
selected pair on subsequent trials in that round. One pair of actions had high instrumental divergence while the 
other pair had zero divergence. In Experiment 1, we found that, when other decision variables, such as expected 
value and outcome entropy, were held constant, participants chose the high-divergence option significantly more 
often than the zero-divergence option. Moreover, when expected values differed across options in either the same 
or opposite direction of divergence, choice performance deviated significantly from chance only when expected 
value differed in the same direction as instrumental divergence, suggesting that high-divergence choices were 
made at the expense of monetary gain. In Experiment 2, we used an “auto- vs. self-play” manipulation to rule out 
outcome diversity as a source of the behavioral preference for high instrumental divergence.

An important aspect of subjective utilities is that they tend to fluctuate from one moment to the next: Water 
is of great value when one is thirsty, but food is preferable when one is hungry; you may desire a cup of strong 
coffee in the morning but prefer a calming cup of tea in the evening; today you may be in the mood to indulge 
in a delicious piece of cake, but tomorrow you may have committed to a healthier lifestyle. Indeed, constantly 
changing consumer preferences is a topic of intense study in economic and marketing research. As noted, it 
is exactly because of such changes in subjective utility that flexible instrumental control is essential for reward 
maximization. Here, we have simulated dynamic fluctuations in utilities by sporadically changing the monetary 
values assigned to token outcomes throughout the task. It is possible that, had the monetary token values instead 
remained fixed, the clear preference for high instrumental divergence would have been reduced, or even absent. 
On the other hand, since, in the real world, subjective utilities are constantly changing, the preference for high 
instrumental divergence might be a stable psychological construct that governs decision-making across dynamic 
and static environments. Further research is needed to determine whether dynamic changes in outcome utilities 
are necessary for this preference to emerge.

Another important consideration is the greater perceptual diversity, or distinctiveness, of token outcomes in our 
high-divergence conditions. In a series of studies, Ayal and Zakay10 asked participants to choose among various “bet-
ting pools”, where the perceptual diversity of betting options varied (e.g., rolling the same dice three times vs. rolling 
a dice, then spinning a roulette wheel and then drawing a card), while the odds of winning on a given bet, and the 
monetary reward associated with a win, was held constant. They found a significant preference for the most percep-
tually diverse pool and demonstrated a trade-off between utility and diversification, such that the attempt to maxi-
mize outcome diversity led participants to prefer alternatives with lower expected utility (see11 for similar results). In 
our Experiment 1, the high-divergence option was also that with the greatest outcome diversity. In Experiment 2, we 
used an “auto- vs. self-play” manipulation to dissociate these variables. A particularly interesting aspect of our results 
is that, when flexible instrumental control over outcomes was removed, then so was the preference for greater out-
come diversity: that is, when the high-divergence (and thus high outcome diversity) option was auto-play, we found 
no preference for that option. These results suggest that outcome diversity might derive its apparent value from its 
association with flexible instrumental control: when presented in close proximity to conditions with true flexible 
control, conditions with relatively high levels of outcome diversity, but without flexible control, lose their appeal.
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Our self- vs. auto-play manipulation is also related to several recent studies that have contrasted conditions 
in which participants made voluntary decisions with conditions in which participants were forced to accept a 
computer-selected option, demonstrating a clear preference for stimuli associated with free- over forced-choice12–14. 
In those studies, the complete absence of choice when a computer makes the selection can be likened to a Pavlovian 
scenario, in which outcome states are signaled by perceptual cues, irrespective of any action taken by the agent. Here, 
in contrast, we explore the value of flexible control within the instrumental domain, defining free choice, not in 
terms of whether a decision is voluntarily made, but in terms of the extent to which such decisions have a meaningful 
impact on future states. This distinction between actual and meaningful choice has several important implications: 
First, when forced to accept a computer-generated decision, there is a potential discrepancy between the intended 
and forced selection that might generate aversive affect. Second, the complete absence of choice might trigger a 
reduction in attentiveness or concentration that, in turn, reduces subsequent processing of the valence of obtained 
outcomes. Finally, relative to no choice, free-choice might engage post-choice reevaluation processes aimed at reduc-
ing psychological tension stemming from consideration of the desirable features of the rejected alternative15,16. These 
potential sources of a preference for flexible control are all ruled out by the current design. Our results indicate that, 
in the absence of meaningful choice (i.e., in the zero-divergence condition), the preference for free-choice over a 
computer-generated selection (i.e., for self- over auto-play) is significantly reduced.

An important consequence of assessing levels of flexible instrumental control across voluntary decisions 
is that it allows us to consider implications for different action selection strategies. Theories of instrumental 
behavior distinguish between goal-directed actions, motivated by the current probability and utility of their 
consequences, and habitual actions, which are rigidly and automatically elicited by the stimulus environment 
based on their reinforcement history. Although computationally expensive17–19, the on-the-fly construction of 
goal-directed action values allows for flexible adjustment in the face of changing circumstances. However, when 
instrumental divergence is low, or zero, the greater processing cost of goal-directed computations does not yield 
the return of flexible control, suggesting that a less resource-intensive, habitual, action selection strategy might 
be optimal. Intriguingly, evidence from the rodent literature20,21 suggests that a goal-directed strategy dominates 
when alternative actions yield distinct sensory-specific outcomes (i.e., when instrumental divergence is high). 
Consistent with such demonstrations, Liljeholm et al.22 found greater sensitivity to sensory-specific outcome 
devaluation – a defining feature of goal-directed performance – when each action alternative yielded a distinct 
sensory-specific outcome than when the probability distribution over outcomes was the same across actions. 
Further assessment of the role of instrumental divergence in the arbitration between goal-directed and habitual 
decision strategies is an important avenue for future work.

Another phenomenon closely related to our findings is that of learned helplessness – a lack of exploration, and 
failure to exercise instrumental control, following exposure to uncontrollable events. In a classic initial demon-
stration, Seligman and Maier23 found that, following exposure to inescapable shock, dogs failed to escape shock 
that was in fact avoidable. Subsequent studies replicated these findings in the domain of human problem solving, 
showing that participants were less likely to successfully solve anagram problems following pre-treatment with 
unsolvable problems24. More recent research has investigated the role of reward prevalence in reduced explo-
ration following exposure to uncontrollable events25. The current studies differ from previous work on learned 
helplessness in two critical respects: First, rather than differences in exploratory behavior, we are assessing a 
behavioral preference for environments with high instrumental divergence, thus evaluating the intrinsic value of 
flexible instrumental control. Second, even in our zero-divergence conditions, participants were able to obtain 
monetary outcomes by performing instrumental actions. In contrast, conventional induction of learned helpless-
ness entails a complete absence of instrumental contingencies. Further work is needed to determine how degrees 
of exploratory behavior scale with differences in instrumental divergence.

Notably, learned helplessness, and a perceived lack of control over negative outcomes more generally, has been 
strongly linked to depression26,27, and has been shown to predict dysphoric and anxious symptoms28. Indeed, an 
aberrant experience of voluntary control, or “sense of agency”, appears to be a common characteristic of psychi-
atric illness: Schizophrenic individuals differ from healthy controls both in the degree of intentional binding – a 
perceived compression of the time interval between voluntary actions and their consequences – and in reported 
self- vs. external attributions of decision outcomes29–33. Although operational definitions of agency and volition 
differ substantially across these reports, and while related research suggests that schizophrenic and depressed 
individuals may be more fundamentally impaired with respect to goal-directed learning and performance34,35, 
the apparent role of instrumental choice in psychopathology suggests that a better understanding of the perceived 
value of flexible instrumental control in healthy individuals may be of significant clinical interest.

Finally, at the neural level, previous work has implicated the inferior parietal lobule (IPL) in several aspects of 
goal-directed processing, including the computation of instrumental contingencies36,37 the attribution of intent38 
and the sense of agency39–41. Structurally, the rostral region of the supramarginal gyrus of the IPL, cytoarchitecton-
ically distinct from more caudal areas42, has been shown to be heavily connected to inferior frontal and premotor 
cortices43–46; regions known to play a prominent role in voluntary action selection47, as well as in self-attribution48 
and the sense of agency49. Consistent with this functional and structural anatomy, using a simple value-based 
decision-making task, Liljeholm et al.50 found that activity in the rostral right IPL scaled with instrumental diver-
gence. However, critically, the task employed by Liljeholm et al. did not allow for an assessment of a behavioral 
preference for high instrumental divergence nor for investigation of a common neural code for divergence and 
reward. Notably, when directly assessing neural activity during anticipation of free choice, Leotti and Delgado13,14 
found that activity in the ventral striatum, an area frequently implicated in reward anticipation and reward 
prediction-errors51,52, was greater for a cue that indicated an upcoming free-choice trial than for a cue signaling a 
no-choice trial. Further work is needed to determine how neural representations of the information theoretic, “cog-
nitive” aspects of instrumental divergence may interact with those subserving affective and motivational processes; 
an integration implied by the behavioral preference for high instrumental divergence demonstrated here.
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In conclusion, we have introduced a novel decision variable – instrumental divergence – and demonstrated 
its influence, dissociable from that of other motivational and information theoretic factors, on behavioral choice 
preference. Complementing previous work on the diversity10,11 and controllability25,53,54 of decision outcomes, our 
results contribute toward a fuller characterization of goal-directed cognition and action.
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