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the treatment of various neurological diseases. Shrinkage 
of machinery, chip-based technologies, and the creation of 
unprecedented nanomaterials are contributing immensely 
to the reduction of morbidity. Novel nanotechnological 
inventions have driven human excitement and curiosity 
to a new high. Judging from the pace of nanotechnological 
innovation and research, one can safely assume that the 
future is headed toward the integration of therapeutic 
neurology and nanotechnology.[1,2]

Introduction

The future is upon us, and it has brought us the gift of 
nanotechnology. In the metric system, a nanometer (nm) is 
one billionth of a meter (m). Though this scale is too small 
for the naked eye, this is the realm of the biological cell and 
its organelles. Truly speaking, all the real action happens 
at the molecular or cellular level. Nanotechnology involves 
the manipulation of technological machinery at the atomic 
scale. For perspective, a nucleus is about 6 µm across, a 
ribosome 20 nm in diameter, and a single strand of DNA 
2 nm wide. A typical human being is composed of 100 
trillion cells. Nanotechnology has created novel devices for 
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The Founding Forefather

On December 29, 1959 the famous physicist Richard Feynman 
delivered a lecture on quantum mechanics at the California 
Institute of Technology. Little did he know that this talk 
would become the cornerstone for technological revolution in 
the field of nanotechnology. Feynman proposed writing the 
entire 24 volumes of Encyclopaedia Britannica on the head of 
a mere pin.[3]

Another radical idea suggested by his friend Albert Hibbs was 
that of micromachines, dubbed as the “swallowable surgeon,” 
that could be controlled from the outside to perform surgery 
at the cellular level.[3] This device could be used to eliminate 
malignant neoplasms at their inception or repair defective heart 
valves. Among the boons of working at the nano level are the 
minimal friction and mechanical wear and tear. In addition, 
as the mass of the device is negligible, gravitational forces in 
turn become trivial.

Potential of peptide nanofibers in neurology
Amphiphilic molecules are used to create auto-assembling 
nanofibers, having alternate positive and negative L-amino 
acids. These amino acids when placed in a physiological salt 
solution reassemble into a semisolid nanofiber mesh.[4]

The relative concentration of ions in the internal milieu of a cell 
regulates the strength and shape of such a nanofiber matrix. 
Thus, it can be safely assumed that such materials can be easily 
introduced inside the cells for drug delivery, etc., without 
the needless hassle of complicated surgery. Many doors to 
therapeutic interventions can be opened using this approach.

This novel approach has been used to attempt to treat optic 
tract transection. Self-assembling peptides were introduced 
into the trauma site. After some time, some axonal growth was 
documented, leading to the partial return of functional vision 
in experimental animals with removed brachiums.[5]

Neural engineering at the cellular level is an upcoming field. 
Carbon-based nanomaterials are excellent electrical conductors 
without many adverse effects on biological tissue. In one study, 
astrocyte adhesion was markedly decreased on using carbon 
nanofibers, while neuronal cell growth was boosted.[6]

Cell attachment and cell differentiation have been measurably 
seen following use of peptide frameworks. Functional 
ligands can be introduced using simple techniques, for 
instance, with (RGD) Arg-Glyc-Asp (IKVAV) Isoleucine-
Lysine-Valine-Alanine-Valine (RADA peptide gel backbone) 
AcNRADARADARADARADA-CONH2, which are epitopes 
with integrin receptor binding sites. Outgrowth processes from 
cultured neural cells were produced from direct application 
of peptide amphiphilic molecules with IKVAV sequences. 
Moreover, astrocytic differentiation of progenitor cells was 
thwarted using the same approach.[7]

RADA16-I–incorporated peptide mesh resulted in the 
formation of functional synapses. This was due to the growth 
of PC12 cells, primarily in rat hippocampal neurons.[8]

In one study, astrogliosis was found to be reduced and the 
frequency of oligodendrocytes increased at the site of trauma.[9]

As potential implantable biomedical devices, carbon-based 
nanotubes have shown promise in the role of subcellular 
neuroelectral bridges.[10]

The challenge that is neuronanomedicine
Neurological illnesses pose strange and unique dilemmas 
for human morbidity. Inflammation, infection, neoplasia, 
autoimmunity, and degeneration are important harbingers 
of mortality.

Though science has given us novel technological wonders such 
as nanotubes, nanowires, miniature robots, and nanospheres, 
the challenges facing their implementation in order to thwart 
neurological pathogenesis are myriad.[11]

Some of the problems are as follows:

Manufacturing
Any facility that hopes to manufacture nanomachines on a 
large scale has to be efficient and extremely clean. The slightest 
amount of contamination in the manufacturing process can 
result in faulty nanoinfrastructure. The in vivo repercussions 
of this can easily be disastrous.

Drexler, one of the great pioneers of nanotechnology, 
proposed in 1986 that such nanomachines can be used for 
self-manufacture and assembly, thus resulting in a “billion 
tiny factories.”

Life of nanomaterials inside biological environments
The life expectancy of a nanomaterial inside a cell is 
questionable. No long-term data are available to give a safe 
and conclusive answer. The long-term effects of a foreign body 
inside a living cell are unknown as well.[12]

Visualization of the nanoparticle
Another problem is locating the nanomachine inside large areas 
of tissue. Massive amounts of resolution are needed to amplify 
subcellular structures. Transmission electron microscopy is the 
best bet so far to visualize such suboptimal structures, but at 
the cellular level even scanning a few cells for a nanoparticle 
is akin to surveying expansive fields of land via an airplane.

Biological side effects
One might presume that the unintended effect of something as 
minuscule as a nanomachine would at best be trivial at the cellular 
level. On the other hand, it might just translate into symptoms 
manifesting at the level of the patient. The truth is that no reliable 
database exists to justify any such conclusion. Safety protocols and 
tests have been laid down to truncate any such risk, but currently 
the identification of hazards is made on a case-by-case basis.[13]

Direct toxicity
The most obvious and straightforward risk to a cellular 
environment is from the chemical makeup of the nanoparticle. 
In general, the toxicity of nanoparticles reflects their 
chemistry.[14] For instance, the toxicity of carbon nanotubes 
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is a direct result of the external framework, dimensions, type 
of carbon isotope used, coating on the surface, and relative 
amounts of carbon used.[15]

Damage to the DNA of the cell has also been reported in 
some studies. In one study, mutation frequency in mouse 
embryonic stem cells doubled after the use of multiwalled 
carbon nanotubes.[16]

Automatic regulation of drug delivery at neuron level
Injecting accurate amounts of a drug in minuscule quantities 
to subcellular targets can be staggeringly challenging. In situ 
placement of special genes maneuvered by biological sensors 
can control the concentration of a drug as per requirements, 
in concordance with a feedback loop. This is just one of the 
various approaches that have been suggested for the drug 
delivery problem.[17]

A glimpse into the future of nanoneuromedicine
Considerable efforts are being focused in the research laboratory 
on using nanoneuromedicine for disease treatment. In case of 
neurodegenerative diseases such as Alzheimer’s disease (AD), 
Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), 
and multiple sclerosis (MS), nanomedicines have emerged as 
promising treatment options. Pathophysiological processes 
involving neuron inflammation and protein misfolding initiate 
a degeneration cycle within the cell. This can be thwarted using 
better drug targeting. Diagnosing and monitoring the end-
effects of therapeutics is possible using nanoneurotechnology.

Common presentations of AD include poor memory and 
decreased cognition due to brain atrophy and the destruction 
of cortical and subcortical neurons.[18] AD can be diagnosed 
using tau and amyloidogenic Ab42 forms, and Ab-derived 
diffusible ligands (ADDL). Cerebrospinal fluid (CSF) can 
be scanned for ADDL levels using “biobarcodes” that make 
use of ADDL-specific antibodies with gold nanoparticles.[19] 

Detection of immunocomplexes can be augmented by the 
application of scanning tunneling microscopy and anti–Ab40-
gold conjugation system.[20] Gold nanoparticles can also be 
engineered as multispot-localized surface plasmon resonance 
immunochips.[21] Nanotechnology is being used this way to 
detect Ab deposition.[22] Anti–Ab antibody-coated fluorescent 
quantum dots are being used to track Ab accumulation.[23] 

Ab aggregation inside neurons is inhibited by nanocarbon 
fullerenes, which eventually results in stopping cognitive 
decline.[24] Ab fragment-conjugated gold nanoparticles can be 
incorporated into Ab complexes. Laser is then used to selectively 
ablate Ab aggregates.[25] Nanomedicine can be used to create 
drugs for more efficient brain delivery. Magnetic chitosan 
nanoparticles incorporated with tacrine can be homed into 
specific target locations with the help of external magnets.[26]

PD is characterized by resting, tremors, bradykinesia, and 
postural instability, due to the destruction of dopaminergic 
neurons in the substantia nigra pars compacta. Striatal 
projections are typically lost.[27] Lewy bodies, protein-filled 
inclusions in neurons, are characteristic. They are made 
of misfolded a-synuclein (a-syn) and ubiquitin. Gold- and 
titanium dioxide-incorporated nanotube arrays detect a-syn 
using photoelectrochemical immunosensors.[28]

Atomic force microscopy in tandem with nanoneurotechnology 
c a n  d e t e c t  p r o t e i n  m i s f o l d i n g  o f  s i n g l e  a - s y n 
molecules.[29] Plasmonic nanogoldparticles for quantization 
of neurotransmitter concentrations can indirectly gauge PD 
pathogenesis.[30] To aid in symptomatic treatment, ascorbic acid-
functionalized carbon fullerenes encase levodopa molecules in 
drug manufacturing. This augments an antioxidant effect inside 
neurons.[31] Neuroinflammation and neurodegeneration inside 
neurons is adequately inhibited by using catalase-packaged 
polyethyleneimine nanoparticles, which effectively diminishes 
hydrogen peroxide.[32] Bromocriptine was incorporated as 
a nanoparticle with tristearin/tricaprin lipid combination 
to thwart neurodegeneration.[33] Lactoferrin-containing 
nanoparticles that cover the human neurotrophic factor gene 
modulate locomotor function and decrease dopaminergic 
neuronal loss.[34]

In addition, anti–α-syn-conjugated polybutylcyanoacrylate 
nanoparticles helped in neuronal a-syn clearance.[35]

ALS is a disease of motor neurons that leads to the loss of 
neuromuscular control with fatal outcomes.[36] Motor neuron 
degeneration takes place predominantly in the upper and 
lower motor neurons.

Protein inclusions made of ubiquitin and ALS-associated 
proteins, such as superoxide dismutase 1 (SOD1), are found 
in neurons and axons. For speedy diagnosis, gold particles 
coated with SOD1 can be combined with SOD1 aggregates to 
produce a colorimetric detection system.[37]

Carboxyfullerene nanotubes with SOD incorporates are 
neuroprotective of pathology.[38] Carbon nanoparticles with 
large carrying capacity can deliver riluzole, a glutamate 
inhibitor, to pathogenic sites more accurately.[39]

In MS, immunocytes act against self-antigens of the nervous 
system, associated with myelin and oligodendrocytes. Lesions 
of demyelinated white matter or perivascular inflammatory 
plaques are seen.[40] A water-soluble fullerene incorporated 
with an N-methyl-D-aspartate receptor antagonist inhibited MS 
disease progression as well as myeloid neuronal infiltrates.[41]

Nanomedicine and bioimaging
Curiously, positron emission tomography (PET) provides 
both diagnostic and therapeutic nanomedicine capabilities, 
otherwise known as theranostics.

Lack of blood supply in stroke models can be seen using 
liposome-encapsulated hemoglobin molecules, which can 
permeate ischemic territories.[42]

Prompt fibrinolysis can be provided by liquid perfluorocarbon 
nanoparticles incorporated with plasminogen activator 
streptokinase.[43] Cerium oxide nanomaterials can scavenge 
reactive oxygen species and give neuroprotection.[11]

Quick assessment of drug pharmacokinetics is possible 
by contrast magnetic resonance (MRI) agents, such as 
superparamagnetic iron oxide (SPIO): A 100-µm isotropic 
resolution can detect single nanoparticles.[44] Magnetite 
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targeting is utilized in cancer therapy. Easy visualization is done 
by SPIO-loaded nanoparticles, and then specifically targeted 
within the brain tissue. Tumors can be then accessed after 
nanomaterials cross the blood/brain barrier (BBB).[45]

Carmustine (hydrophilic polymeric coating)-combined 
nanoparticles can be “steered” within brain tumors using 
magnetism to achieve significant reduction of tumor volume.[46] 
Theranostic nanomaterials have been developed that contain 
antiretroviral drugs and SPIO particles. These are called “small 
magnetite antiretroviral therapy” or “SMART” particles. New 
developments in targeting ligands and nanoformulated SPIO 
particles to adequately quantize drug dose reductions hold 
promise.[47]

Conclusion

The application of nanotechnology is promising in view of 
frustrating problems in therapeutic neurology. As it involves 
cellular biology, many roadblocks lie ahead. However, the 
rapid pace of technological innovation and an increasing 
interest in both funding and curiosity are enabling scientists 
to explore this field further. Even for currently incurable 
diseases such as AD and PD, new hope has been found in the 
form of nanotechnological treatment options. The future of 
nanoneuromedicine for both bioimaging and therapeutics is 
indeed very exciting.
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