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Abstract: Accidentally clicking on a link is a type of human error known as a slip in which a user
unintentionally performs an unintended task. The risk magnitude is the probability of occurrences of
such error with a possible substantial effect to which even experienced individuals are susceptible.
Phishing attacks take advantage of slip-based human error by attacking psychological aspects of
the users that lead to unintentionally clicking on phishing links. Such actions may lead to installing
tracking software, downloading malware or viruses, or stealing private, sensitive information,
to list a few. Therefore, a system is needed that detects whether a click on a link is intentional or
unintentional and, if unintentional, can then prevent it. This paper proposes a micro-behavioral
accidental click detection system (ACDS) to prevent slip-based human error. A within-subject-
based experiment was conducted with 20 participants to test the potential of the proposed system.
The results reveal the statistical significance between the two cases of intentional vs. unintentional
clicks using a smartphone. Random tree, random forest, and support vector machine classifiers were
used, exhibiting 82.6%, 87.2%, and 91.6% accuracy in detecting unintentional clicks, respectively.

Keywords: human error detection; system design; accidental click detection; smartphone sensors;
security; artificial intelligence

1. Introduction

Over 95% of successful cyberattacks are the result of the weakest security chain
link, human error, according to Cybint [1] and the IBM Cyber Security Intelligence Index
Report [2]. Human error ‘is a generic term that involves all those instances where a planned
activity fails to achieve its intended outcome’ [3]. Human error may result from inadequate
security awareness, negligence, or health factors, including psychological or emotional
effects, among other reasons [3]. These factors increase the likelihood of human error,
especially if several factors align to cause the error.

However, even without most human error factors, a chance of unintentional error
among even experienced individuals still exists. According to [4], unintentional human
error, known as slip-based error according to [3], in the human error model, occurs on
average one to three times per hour. If an error is related to installing malware or clicking
on a phishing link, the effect can be catastrophic.

Phishing attacks have been developed to take advantage of slip-based errors for finan-
cial reasons. Slip-based human error occurs when a user commits a task unintentionally,
resulting from an unintentional click, touch on a screen, or manipulated script forcing the
user to click or touch a malicious link.

According to the IMC Group, since the start of COVID-19, the FBI reported an increase
of 300% in cyberattacks and phishing attacks [5], all of which provide clickbait for users,
taking advantage of the pandemic. Over 18 million phishing emails are sent per day,
according to Business Insider [6]. According to Symantec [7], out of every 4200 emails, one
email results in a successful phishing attack, and according to CSO Online [8], phishing
attacks account for over 80% of reported incidents that cost over $17,500 per minute.
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Proofpoint reported that 88% of organizations were subject to phishing attacks in 2020 due
to remote work forced by the pandemic [9]. Accidentally clicking on these phishing links
regardless of the cause leads to human error consequences. Some are minor, and others are
catastrophic, resulting in the loss of millions of dollars and public embarrassment.

As phishing attacks become more advanced and exploit slip-based human errors, it has
become prominent for countermeasures to be put into place to safeguard organizational
assets. Therefore, demand exists for a system that detects whether a click on a link is
unintentional or intentional.

This paper proposes an accidental click detection system (ACDS), a micro-behavioral
based ACDS, in which the system collects information from sensors presented on a smart-
phone before, during, and after a click to determine whether the click is unintentional or
intentional and then proceed with or revert the action.

This paper presents the following contributions:

1. A proposed micro-behavioral measurement before, during, and after link clicks to
prevent phishing attacks;

2. A system capable of detecting unintentional clicks on links by analyzing micro-behavior;
3. A classification model differentiating whether a click on a link is unintentional

or intentional;
4. Validation of the capability of the proposed system.

The scope of this paper is detecting an unintentional click or touch on a link presented
on a smartphone screen where the user knows that the click is an unintentional, slip-based
error, yet the click is still made. The smartphone environment is chosen due to the vast
capabilities of smartphones and because most phishing attacks result from unintentionally
clicking on a phishing email on a smartphone. According to Wandera [10], 87% of successful
phishing attacks occur on smartphones.

The remainder of this paper is organized as follows. The background and literature
review on slip-based human error detection is presented in Section 2. The hypotheses
and objectives are provided in Section 3. The ACDS design is revealed and described in
Section 4. The methodology, experimental design and procedures, and data analysis are
discussed in Section 5. The results are provided in Section 6. Finally, the conclusion and
future work are presented in Section 7.

2. Background and Literature Review
2.1. Human Error

Human error has been studied for many decades in various fields, including psy-
chology [3,11] and information security [12–14], and researchers continue to discover new
aspects related to errors and suggest new solutions as technology advances. Some sug-
gested solutions take advantage of psychological theories and discoveries to reduce, limit,
detect, and prevent errors. Some are best practices and policies, and others are technical
countermeasures. Together, they form a strong solution to the human error problem.

However, as human error may result from many possibilities due to the broad nature
of errors, researchers target the human error problem according to Reason’s model of
human error [3]. The model states that errors can be either unintentional or intentional,
where unintentional human error can be a result of lapses of memory, related to forgetting
to do something or how to do it (e.g., forgetting to close a port on the firewall) or slips
of action related to not performing an intended action (e.g., unintentionally clicking on
a phishing link). Both types are considered skill-based errors. According to Reason’s
model, intentional errors can be rule- and knowledge-based mistakes, where a user acts
intentionally but performs the action wrongly due to a lack of knowledge. Alternatively,
the errors can be violations in which a user does not follow the guidelines or policies and
acts without care or commits sabotage, a form of insider threat. Therefore, most research
work has targeted intentional or unintentional human error to prevent it.
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2.2. Intentional-Based Human Error

Various studies have been conducted to detect intentional-based human error, ei-
ther knowledge-based error or violations. The authors in [15] proposed an intentional
knowledge-based human error detection system by analyzing eye-gaze behavior while
completing the sensitive task of configuring a firewall to determine whether a user is an
expert at the task and possesses enough knowledge. The authors analyzed eye fixations,
dwells, and saccades in an experimental setting and reported that experts exhibited less of
each behavior while completing a task than inexpert users. The system reported 99.74%
accuracy in detecting the human error likelihood using the KStar classifier, which could be
a valuable solution to prevent human errors before they happen.

Furthermore, the authors in [16] proposed a human-computer interface (HCI) pro-
jected technique to identify knowledge-based human error resulting from low situational
awareness in complex processes. The proposed user interface reconfiguration considers the
projected future system state. If the current state is not what is projected, the interface alerts
the user to correct the expected error. Unfortunately, no system results have been reported.

The authors in [17] took a different approach by designing a system that anticipates
human error by collecting periodic information from questionnaires, which determines the
knowledge level of the user at a specific time. The system analyses the collected data and
predicts whether a human error is likely. However, no system results have been reported.

For violation-based human error, when a user intentionally performs a task (e.g.,
clicking on a phishing link knowing it will cause harm), a form of insider threat, the
authors in [18] proposed monitoring the physiological signals of an individual while
performing a task. They reported that a signal deviation happens once a user starts a
violation, where the ECG and GSR rates increase, and the skin temperature decreases
suddenly. The system reported a violation detection accuracy of 100% using the nearest
neighbor classifier on an experiment with 15 subjects.

Furthermore, the authors in [19] proposed the intent-based access control system and
patent [20], allowing the detection of the user’s intent, the execution probability, and the
motivation for the malicious intent. The system reported an accuracy of 100% for intent
detection by analyzing the user’s brain signals using an electroencephalogram (EEG) with
visual stimuli.

The authors in [21] further proposed a novel system and patent [22] to examine
the usage of head micromovement to detect malicious intent using visual stimuli and
reported an accuracy of 100% intention detection with a lower accuracy (70%) in motivation
detection compared with the analysis of EEG signals to detect a user’s motivation for an
intended action.

The authors in [23] designed a system to detect intentional malicious driving by
analyzing the driver’s behavior from data exported from an OBD-II sensor placed on
the vehicle. They reported 99.95% accuracy using random tree and forest classifiers to
distinguish between normal and malicious driving. Furthermore, violation-based human
error has been researched with high detection accuracy using facial recognition [24] and
baseline anomaly detection [25] based on predefined scenarios at 93% accuracy and using
an artificial immune system [26] with 86.34% detection accuracy. Most intentional human
error, whether knowledge-based or violations, can be detected with high accuracy and
mitigated using previously designed and tested systems in conjunction with insider threat
mechanisms and guidelines, including the Insider Threat Mitigation Guide by Cyber
Security Infrastructure Security Agency released in 2020 [27].

2.3. Unintentional-Based Human Error

Some work has been conducted to detect unintentional human error, whether lapses or
slips, from a technical point of view. Reason’s model states that lapses result from memory
failure or omitting items, where a user says, “I forgot!” in response to an error, whereas
slips are unintentional actions resulting from attention failure, distraction, or manipulation,
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where a user says, “I did not mean to do it” in response to an error. Slips include pressing
the wrong key or clicking on a phishing link, to list a few.

Solutions to lapses include segregation of duties where two or more users must
approve the action to be performed (e.g., configuring a firewall) and an automated checklist,
where errors can be detected if the users fall out of sequence or forget a step in a process.
Intelligent helper machines can also reduce lapse-based errors. Actions are monitored
automatically and corrected if they are mistakes.

The authors in [28] investigated a lapse-based error by analyzing EEG signals during
tactile human-machine interaction. The authors reported a change in EEG signals when a
user forgets to perform an action, and the experiment analysis reports a 68.2% accuracy
in differentiating between correct and error actions in 360 to 510 ms. As lapse-based
human error may result from an illness (e.g., Alzheimer’s disease), among other related
health issues, detecting lapses is challenging without multiple sensors placed on the user
(e.g., EEG sensors). Therefore, most research has focused on the system expectations of a
normal and correct procedure to detect a lapse-based error, which includes errors made by
medical doctors, pilots, and astronauts. Moreover, over 60% of errors result from human
error [29,30].

In slip-based human error, most intentional, knowledge-based errors or violations
would not be detected. Even lapse-based human error solutions would not detect slips.
The user can be a qualified expert who has performed an action thousands of times yet can
still make an error. Attention detection systems may assist in detecting slip errors.

The authors in [31] studied a numerical entry human-based error with bank employees,
using human behavior modeling, EEG analysis, data mining, and linear discriminant
analysis (LDA). They detected the unintentional error with 67.84% accuracy using EEG
data only, 64.42% accuracy using behavior modeling data only, and 74.84% using both EEG
and behavior modeling data.

Furthermore, the authors in [32] designed a game for grasping and pushing a ball to
detect whether a user intentionally or unintentionally missed the ball. They used acoustic
phonetic data while playing the game and separated the prior and post actions of grasping
and punching the ball. They input the data into C45 and ID3 algorithms and reported
accuracy measures of 62% and 46%, respectively.

Because most unintentional-based human error involves a human movement, often
hand movement, the authors in [33] investigated the ability to differentiate between inten-
tional and unintentional hand movement, which can help detect unintentional clicks. The
authors ran an experiment on seven individuals and collected EEG data. Then, they input
the data into an optimized LDA algorithm using particle swarm optimization, achieving
86.4% accuracy in differentiating between intentional and unintentional hand movement.

The authors in [34] used eye movement and pupil features to detect unintentional hu-
man error resulting from mental workload while performing several tasks. They achieved
84.5% accuracy on average using the random forest classifier among the 25 participants in
the experiment.

Furthermore, Google [35] developed three solutions to detect unintentional clicks on
their ads on different platforms, and all seem to reduce unintentional ad clicks. The first
solution is to introduce a delay before the ad can be clickable. The second is to disallow
app icon clicks on ads, and the third is to revert any corner ad image clicks. Usually, when
users are confident about their clicks/selections, the click is executed on or around the
center of the image/link, not the edge or corner, which reduces unintentional ad clicks by
50%, according to Google [35]. Table 1 summarizes the human error per category and type
and lists the method and accuracy for each detection. The detection accuracy dramatically
declines when detecting unintentional human error, whether lapses or slips, compared to
intentional human error, whether knowledge-based or violations.

Although related work demonstrates promising results in detecting slip-based and
general human error, no previous work has provided a solution targeting slip-based er-
rors on smartphones using micro-behavior movements before, during, and after the error,
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considering the error context. Therefore, due to the importance of detecting unintentional
human error and detecting and preventing slip-based human error, especially in smart-
phones, this paper proposes a micro-behavioral-based unintentional ACDS projected to
minimize the human error of an unintentional click on a phishing link on a smartphone.
The next section provides the hypotheses and objectives for the design and evaluation of
the proposed ACDS.

Table 1. Human error categories and detection accuracy.

Error Category Error Type Method Accuracy Ref.

Intentional

Knowledge-based Eye gaze using KStar 99.74% [15]
Human Computer Interface N/A [16]

Questionnaire N/A [17]

Violations

ECG, GSR, and temp. using nearest neighbor 100% [18]
EEG using SVM 100% [19,20]

OBD-II using [21,22]
head micromovement using 100% [23]
OBD-II using random forest 99.95% [28]

Unintentional

Lapses EEG-based 68.2% [28]

Slips
Theoretical approach N/A [29,30]

EEG-based using LDA 86.4% [33]
Eye movement using random forest 84.5% [34]

3. Hypotheses and Objectives

Attackers present sophisticated methods to gain access to system resources. Some are
psychological to subconsciously deceive a user to unintentionally click on malicious links, a
slip-based human error. Attackers take advantage of and sometimes cause attention failure,
using distraction and manipulation to gain access. Thus, it is important to develop the
following hypotheses to model unintentional vs intentional clicks or touches on a link on a
smartphone to combat this threat because 87% of successful attacks target smartphones,
which possess various sensors allowing human behavior modeling [36–40].

3.1. Hypotheses

Main hypothesis:

Hypothesis 1. Unintentional clicks can be detected and reversed by analyzing the micro-behavior
of the user before, during, and after the click.

The rationale behind this central hypothesis is derived from the human factor theory
of unintentional causation [41,42], which states that slip-based human error can result from
an inappropriate response or activity. The ability to detect unintentional hand movement,
which reached over 87% accuracy when analyzing EEG signals [33], supports this hypoth-
esis. Thus, EEG signals differ in intended vs unintended hand movement. While EEG
signals related to unintentional hand movement differ, according to the main hypothesis,
a different hand movement behavior measured at the micro-level could be sensed by the
various equipped smartphone sensors.

Therefore, to support the main hypothesis, it is important to develop the follow-
ing hypothesis:

Hypothesis 2. Hand micro-behavior before, during, and after a click exhibits a statistical difference
between unintentional and intentional clicks.

To investigate the ability to detect unintentional vs intentional clicks, it is necessary
to investigate whether a statistical difference exists between unintentional and inten-
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tional clicks, and if so, this supports the creation of a behavioral model, supporting the
central hypothesis.

3.2. Objectives

The developed quantitative objectives are as follows:

1. To design the ACDS where micro-behavior before, during, and after a click are
collected and analyzed to determine whether to revert or continue with the operation.

2. To investigate the statistical difference between unintentional and intentional clicks.
3. To provide a model to classify whether the micro-behavior of a click is unintentional

or intentional.
4. To evaluate the capability of the ACDS in detecting unintentional clicks in a real-

life scenario.

4. Accidental Click Detection System Design

Smartphone sensors, including accelerometers, gyroscopes, magnetometers, gravity,
and the screen, present numerous human behavior modeling and detection capabilities.
This monitoring can cover walking patterns, mood, health (e.g., heart rate), and fall detec-
tion, among other possibilities. Therefore, the smartphone can provide data supporting the
hypotheses and detect unintentional human error, such as unintentional clicks on phishing
links, especially as most successful phishing attacks target smartphones. The unintentional
ACDS design equipped with smartphone sensors is provided and described in this section.

The system comprises five main components:

1. Sensors: The ACDS relies on input from sensors to detect whether a click is uninten-
tional or intentional. The selected sensors to evaluate the click are the screen, touch
sensor (initiating the investigation), accelerometer, gyroscope, magnetometer, gravity
sensor, linear acceleration sensor, rotation sensor, and pressure sensor.

2. Recording unit: All sensor data are recorded on a loop of 3 s to capture the before,
during, and after sensor click data, including a screenshot of the clicked area, which
serves as an additional verification of a possible unintentional click. The limit of 4 s
was selected for analysis, as each click lasts for 40 ms to 500 ms, depending on the user
behavior and situation/condition, and 1.5 s before and after the clicks are assessed.

3. The preprocessing unit includes three parts:

a. Screen and touch sensor data: A screenshot is taken to analyze what the user
clicked on and the behavior of the click, including the time and start and end of
each segment of the click, such as before, during, and after clicking;

b. General sensor data: All sensor data are prepared by segmenting the data into
three segments: before, during, and after clicking;

c. Text extraction: The clicked area is prepared for optical character recognition to
determine what a user clicked on and the general text around the clicked area.

4. Classification: Data are input into the classifiers to report whether a click is unin-
tentional or intentional. Two classifiers are trained: (1) classifying the touch sensor
data and general sensor data and (2) classifying the text in the text matching settings,
where the extracted text from the click is mapped against the actual link and tone,
analyzing where the tone of the text is present on the page to determine whether the
text aims to convince a user to click on a link.

5. Decision-maker: The system decides to revert the clicked action and present an alert
or allow the action. The decision-maker considers all classification results to make the
decision. Details on the decision-maker are provided in the Data Analysis section.

The five components of the ACDS allow for detecting whether a click is unintentional
or intentional and deciding whether action should be reverted or allowed. Figure 1 depicts
the ACDS design.
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5. Methodology, Experimental Design, and Data Analysis
5.1. Methodology

Human error data can be collected by observation, error reporting, or systemized
data collection [43]. The best option in this research context is systemized data collection,
especially in determining human micro-behavior as a possible metric in reaction to uninten-
tional vs intentional clicks. Therefore, the methodology employs human experimentation
while collecting micro-movements from smartphone sensors. The following sections pro-
vide details on the experimental design, procedure, and discussions to provide a training
dataset. Random tree, random forest, and support vector machine (SVM) classifiers were
analyzed using the decision-making component of the ACDS to test and validate whether
the findings support the hypotheses.

5.2. Experiment

The experiment has a within-subject design where each participant faces scenarios
that lead to unintentional and intentional clicks. The sensor data were collected, and the
micro-behaviors were recorded for analysis by the ACDS. Future research directions may
also be highlighted.

5.2.1. Experiment Goal

The experiment goal is to provide a dataset, dataset 1, of human micro-behavior
in the settings of unintentional and intentional clicks or touches on a smartphone. The
dataset was trained using the random tree, random forest, and SVM classifiers in the three
components of the preprocessing phase: touch sensor data, sensor data, and text. Then, a
real-life dataset, dataset 2, of other participants was generated while making unintentional
and intentional clicks or touches. This second dataset was used to test the capabilities of
the ACDS in differentiating between the two cases and report the system accuracy. The first
dataset was used to train the ACDS to learn how to differentiate between the two cases,
and the second dataset was used to evaluate the ACDS.

5.2.2. Subjects

In a controlled setting, 20 male and female participants between 19 and 45 years old
participated in the experiment. No participant had an essential tremor illness, leading to
involuntary rhythmical shaking, and all participants were right-handed. The participants
were recruited using flyers and emails to participate in the experiment. The flyer/email
stated that participants are needed to play a game on a smartphone. Participants who
finish the game with the highest score were awarded a gift card. The rationale behind the
prize was to influence participants to play with the closest attention, as attention plays a
significant role in slip-based human error.
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5.2.3. Procedure

Participants started by signing a consent form detailing that they would be playing a
game of attention, where all behavioral data would be collected for analysis. After signing
the consent form, participants were individually provided with a Samsung Note 5 (Tabuk,
Saudi Arabia) with the game app installed and launched. Participants were requested to
click on start to start the game, starting the data recording and creating the first dataset for
training the classification algorithm.

The recorded data include the following:

1. Accelerometer, units: m/s2,
2. Gyroscope, units: rad/s,
3. Magnetometer, units: µT,
4. Gravity, units: m/s2,
5. Linear acceleration, units: m/s2,
6. Rotation sensor, units: quaternion,
7. Time, units: ms,
8. Touch sensor, and
9. Screen.

Each sensor was set at 100 samples/s, which was the maximum possible using a
Samsung Note 5. All x, y, and z coordinates were captured.

5.2.4. Game Design

The game was designed as follows. A participant must click on the text for a color if
the correct color is presented but not the color name/word and must click on the white
space below the text of the color if the color is wrong. The selected correct colors are blue,
pink, black, and red but not any other colors, including green, purple, grey, or orange. Each
word is written in a different color, sometimes similar and sometimes different from a color,
to cause the possibility of unintentional clicks. Figure 2 depicts an example of the correct
and wrong choices used in the game. Each color name is centered on the screen for easy
and consistent reach. The game follows the Stroop effect [44–46], a neuropsychological test
that challenges the brain with two different kinds of stimuli: color and name of the color,
serving the need to induce unintentional clicks.
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Figure 2. Example of correct and wrong cases.

Each session includes trials and confirmations following each trial. Each trial lasts for
more than 3 s per trial, but less than 4 s. The participant must click during this 1.5 s on the
screen. If a click is not performed, the trial is discarded, and a new trial is initiated. After a
click on the screen, when the fingertip is lifted, a delay of 1.5 s is triggered to capture the
post effect. Each participant completed 60 trials. After each trial, participants were asked
to click on the screen and choose whether their selection was thought to be correct, wrong,
or unsure for verification purposes, which was the confirmation.
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The confirmation also serves as an intentional click class for the dataset because each
click is an intended click, providing 60 confirmations. The duration for the confirmation
step after each trial was set with no time limit and served as a necessary gap between trials
to ensure each collected data point is related to the trial and that no overlap can occur.
Therefore, each session lasted 180 s plus the time taken for each click and the time taken in
each confirmation step. Figure 3 depicts the flow of the experiment.
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Out of the 60 possible selections, 50% were marked as wrong selections if they were
made, and 50% were marked as correct selections if they were made. The rationale behind
the 60 selections, each in 3 s or more, is to have enough data in the dataset for analysis. The
rationale behind the 3 s or more per trial is to invoke a fast response that a participant may
get right intentionally or wrong unintentionally, similar to the experiment done by [47],
where a participant was stimulated and requested to move the mouse right or left in a
specific time to capture the mouse dynamics. In this experiment, all participants used their
right hand in two settings:

1. Holding the smartphone and making selections with the right hand;
2. Holding the smartphone with the left hand and making selections with the right hand.

The rationale behind the two settings is to investigate the influence of the usage style
on the ACDS. To avoid the influence of one setting following the other, 10 participants
started with the first setting followed by the second setting, and the other 10 participants
started with the second setting followed by the first setting. The rationale behind giving
two groups of participants different starting settings is to remove the influence of the trial
of the first setting on the trial of the second setting, known as the matrix box for a factorial
design experiment [48].

Therefore, it is concluded with 10 participants in both the first and second settings
to evaluate whether any influence on the ACDS occurred and a dataset of 20 participants
making several unintentional and intentional clicks per session for two sessions was
obtained, providing 2400 trials and 2400 intentional clicks to confirm the results after each
session. There was no guarantee that an unintentional click would be made from the first
2400 clicks; thus, each selection was followed by the user stating whether it was selected by
mistake to determine an unintentional click. Each correct click followed by a confirmation
of a correct click was considered an intentional click. All other clicks were omitted, as one
would not know whether they were made by mistake. An additional trial was added so
that each participant completed 60 trials per session to compensate for clicks not made.

A difference exists between the number of correctly clicked colors and the 2400 in-
tentional clicks in the confirmation section related to the time factor, attention level, and
stress level. The ACDS uses the difference to differentiate between the two intentional
groups, i.e., confirmed intentional clicks and hesitant intentional clicks. The selection a user
makes is recorded in the database and marks the number of correct vs wrong selections
and whether the confirmation step after each trial matches the correct result of selection.
The total wrong and correct selections are reported in the analysis section, as they serve as
the training dataset for the classifier.

5.2.5. Form Design

The second dataset was created to use as a new untrained dataset to validate the
capability of the ACDS by requesting participants who finished playing the game to
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complete an electronic form on the smartphone. The form also allowed the investigator to
contact the participant with the highest game score. Participants entered two data types
in each section on the three-section form and clicked next to move to the second section.
The data include name, gender, date of birth, phone number, a short biography, and email.
Participants must click next to move to the next page and click submit on the last page
to submit the data. However, the next button was red and on the left, whereas the clear
button was green and on the right in the first form section. This setup is the opposite of
the typical design and may cause an unintentional error that would clear the data from
the form. The second form section after completion shows no buttons. Once the users
enter their date of birth and phone number, they are expected to click on the white space
under the fields. A hyperlink in white was placed there, which would open a new page if
clicked, simulating an error. Then, the next button appears under the form. Finally, after
the participants entered their biographies and emails, they could click on the submit button
to submit the data. The first two unintentional forms were designed to cause a slip-based
error, and the final form recorded an intentional click. The 20 participants completed the
form with three sections, comprising 40 possible unintentional clicks and 20 intentional
clicks. A total of 10 participants used one hand, while another 10 participants used two
hands. Figure 4 depicts the three-section form design. Table 2 provides a summary of the
two datasets.
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Table 2. Training and evaluation datasets.

Dataset Dataset 1 Dataset 2

Goal Training Evaluation
Method game forms

Number of clicks 2400 40
Number of Intentional clicks 2400 20

Duration 180 s + click duration and confirmation Open

Trials 120 trials per participant + 120 confirmations
per user 60

5.3. Data Analysis

After collecting the data from the 20 participants for Dataset 1 on the game for training
the ACDS and for Dataset 2 on the form for evaluating the ACDS in both settings (one or
both hands), Dataset 1 comprised 240 trials and Dataset 2 comprised 60 trials. The data
were converted to CSV format for analysis following the ACDS preprocessing component.
The dataset comprises all sensor data, a screenshot of where a click was made, and a
timestamp in milliseconds. Each trial had 3 s or more of recording: 1.5 s before the start
of the click, 1.5 s after the click, and a few milliseconds were recorded while the click was
made, which is the duration of the touch on the screen.

The first step is labeling the data in Datasets 1 and 2 for unintentional and intentional
clicks. The labeling in Dataset 1 is to train the ACDS, and the labeling in Dataset 2 is
to evaluate the ACDS. Each confirmation (correct, wrong, or unsure) in Dataset 1 was
extracted and mapped to the stream of trials to achieve this step, where the color was
correct, and a user clicked on it or on wrong or clicked under the color name on the empty
space. If the user clicked correctly while making the correct click, the trial was marked
as a successful intended click. If the user clicked on wrong while making a wrong click,
the trial was marked as a successful unintentional click. The analysis indicates that, out
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of the 240 trials, 89 were confirmed unintentional clicks, 42 with one hand and 47 with
two hands, and 104 were confirmed intentional clicks, 61 with one hand and 43 with two
hands. The remaining trials were removed, such as when a user stated a correct click
while making a wrong click, stated a wrong click while making a correct click, or stated
that they were unsure. Dataset 1 also includes 120 trials of the confirmation of intentional
clicks. Table 3 summarizes the successfully collected data of unintentional vs intentional
clicks for Dataset 1, and Table 4 summarizes the collected data on intentional clicks in the
confirmation vs. during gameplay.

Table 3. Collected data on unintentional vs intentional clicks for Dataset 1.

Condition Dataset 1 Dataset 2

1 hand intentional 42 20
1 hand unintentional 61 10
2 hands intentional 47 20

2 hands unintentional 43 10
Total trials 193 60

Total samples 19,300 6000

Table 4. Collected data on intentional clicks in the confirmation vs the game for Dataset 1.

Dataset Dataset 1

1 hand intentional confirmation 60
1 hand intentional game 42

2 hands intentional confirmation 60
2 hands intentional game 47

Total trials 209
Total samples 20,900

Dataset 2 has 60 trials, 40 for unintentional clicks and 20 for intentional clicks after
submitting the form. All trials were determined to be valid, with no noise in the data, to
evaluate the ACDS. When making the intentional or unintentional click, each trial was
extracted following the exact method applied in Dataset 1. Each trial was for 3 s or more,
including 1.5 s before the click, 1.5 s after the click, and the milliseconds during the touch
on the screen, taking advantage of the touch sensor to locate each trial in both datasets.
Figure 5 depicts an illustration of a sample trial.
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After constructing the datasets and labeling each trial, intentional vs unintentional in
both datasets and intentional in the conformation vs gameplay, further data preprocessing
was performed on the touch and sensor data, touch duration, accelerometer, gyroscope,
magnetometer, gravity, linear acceleration, rotation sensor, and pressure sensor. Each sensor
data point in the trial was divided into three, before, during, and after a click, providing
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24 features for training the ACDS classifiers plus the standard deviation calculated per
segment per participant (25 features).

However, before training the classifiers, data were normalized and smoothed. Then,
the principal component analysis was applied for dimensionality reduction. Next, feature
selection was performed using wrapper subset selection using the random tree, random
forest, and SVM classifiers to select the best features per classifier. Three classification
models were created for the intentional vs unintentional trials and three classification
models for the intentional trials in the conformation vs gameplay for the one-hand and two-
hand settings, a total of 12 classifiers. The following section reports the classifier accuracy.

Furthermore, for the recorded images, the screenshots of the center of the click were
analyzed. Optical character recognition was applied to extract the text on a page. Two
methods were used on the extracted text, matching the text with the link and extracting
the text tone on the screen. If a text contained a link, the link was matched to the extracted
text. If the text and link matched or did not match, a trust score was assigned from 0 to 1,
depending on the link type, such as short links, known phishing websites, and so on. For
the tone analysis of the text on the screen, the IBM Tone Analyser API [49] and Geoflx [50],
a chrome extension that detects text sentiment on a web page, were used to extract the tone.
If the tone was negative or positive, a trust score was assigned from 0 to 1, depending on
the tone strength.

Finally, the decision-making component decides whether a click was unintentional
or intentional based on the classification results, text matching, and text tone results. The
decision-maker assigns a weight value for each of the three components and can be tweaked
as needed. Text analysis was only performed on Dataset 2 to possibly improve the ACDS.
Figure 6 depicts the ACDS algorithm for detecting unintentional vs intentional clicks, and
the next section provides the ACDS results.
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6. Results
6.1. ACDS Results

Objectives 2, 3, and 4 are achieved in this section, and the hypotheses are tested. The
classification results are reported in each condition (one hand and two hands) to classify
unintentional vs intentional clicks and intentional clicks in confirmation vs gameplay and
report on the capability of the ACDS.

First, to achieve Objective 2 and to investigate the statistical difference between
unintentional and intentional clicks, a t-test was applied before a click during unintentional
vs intentional clicks. The signal gradually increases in fluctuation in intentional-based
clicks while remaining almost flat in unintentional-based clicks, p < 0.042. Furthermore, a
t-test was applied during the unintentional vs intentional clicks, finding p < 0.001 when the
signal deviates significantly for a brief period in intentional-based clicks while fluctuating
at lower power for a longer period during unintentional-based clicks. Finally, a t-test was
applied after a click for the unintentional vs intentional clicks, finding that p < 0.02 when
the signal returns to the prior click signal fluctuation behavior, whereas the signal continues
to fluctuate at high power in unintentional-based clicks compared to the prior stage. The
results support the hypothesis that hand micro-behavior before, during, and after a click
exhibit a statistical difference between unintentional and intentional clicks. The statistical
difference exhibited similar results in both scenarios (one-hand and two-hand settings).
In the two-hand setting, the fluctuations in the during and post stages were significantly
higher: p < 0.01 in the prior stage, p < 0.001 in during stage, and p < 0.007 in the post stage.

Twelve classifiers were created when training the ACDS: six in the one-hand setting
and six in the two-hand setting. The six classifiers in each setting were divided between
unintentional and intentional-based clicks and intentional clicks in confirmation vs game-
play. The three classifiers per condition were the random tree, random forest, and SVM
classifiers. Table 5 lists the classification results of the 12 classifiers. All were trained by
Dataset 1 while applying 10-fold cross-validation.

Table 5. Classification results on Dataset 1 for training.

Dataset Random Tree Random Forest SVM

Hand settings 1 2 1 2 1 2
Intent vs. unintended clicks 89.7% 91.6% 92.3% 91.6% 92.3% 92.2%

Intent in confirmation vs. gameplay 57.1% 59.4% 63.3% 59.4% 63.3% 76.6%

The results reveal that the SVM was the best classifier for detecting unintentional
vs intentional clicks, achieving 95.1% in the one-hand setting and 97.2% in the two-hand
setting. This result achieves the third objective to provide a classification model for whether
the micro-behavior of a click is unintentional or intentional. The results indicate low but
promising accuracy when differentiating between intentional clicks in the confirmation
page and intentional clicks in the gameplay. The best classification accuracy reached 76.6%
using the SVM classifier.

The classification models were applied on Dataset 2 while completing a form to
evaluate the capability of the ACDS. In addition, 20 unintentional clicks and 10 intentional
clicks were made, once using one hand and once using two hands. The classification results
are presented in Table 6.

Table 6. Classification results on Dataset 2 for evaluation.

Dataset Random Tree Random Forest SVM

Hand settings 1 2 1 2 1 2
Intent vs. unintended clicks 80.1% 82.6% 82.1% 82.6% 86.5% 91.6%

The results demonstrate that the SVM classifier performs best in detecting uninten-
tional vs intentional clicks, with 86.5% in the one-hand setting and 91.6% in the two-hand
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setting. The results achieve the last objective, to evaluate the capability of the ACDS in
detecting unintentional clicks in a real-life scenario and support the main hypothesis that
unintentional clicks can be detected and reversed by analyzing the micro-behavior of the
user’s response before, during, and after the click.

For Dataset 2, both link matching and tone analysis reported high-risk results with a
trust level close to zero, as in the first form, the text cancel was green, and in the second
form, there was no text but a white background hyperlink. Opening a new web page on an
empty screen after clicking on white space or the cancel button is a phishing approach that
the system was manually trained to detect. Each condition can be selected to either block
the action, revert, and show an alert or continue the operation.

6.2. Discussion

To better evaluate the proposed ACDS system, two datasets were constructed, one for
training and testing the classifier for the two conditions, i.e., intentional vs. accidental clicks,
and one for evaluating the classifiers on a different dataset that the classifiers never learned
from, a more realistic approach for verifying the accuracy of the classifiers. The classification
accuracy verification used was 10-fold cross validation as a validation approach instead of
separating the dataset to 60% training and 40% testing, as cross validation provides the
average of training and testing various dataset scenarios and report the average results,
which is a less biased approach. The testing of the classifiers on newly generated dataset
should result in less classification accuracy; however, the resulted accuracy results are less
biased and more realistic when compared to training and testing on the same dataset.

However, further dataset creation is desired to reduce bias and return a comprehensive
accuracy reporting, that is by increasing the population in the experiment, with different
demographics, and using different smartphones equipped with different sensors or sensors
manufacturers to conclude the optimal classification accuracy reporting.

The ACDS system when compared to the literature shows higher acceptability, accessi-
bility, and accuracy. Even though using EEG signals and eye movement show the ability to
detect slip-based human error with an accuracy of 86.4% [33] and 84.5% [34], respectively,
the applications may be limited, as they require either special equipment to be placed on
one’s scalp to capture the EEG signals that are susceptible to noise given the low amplitude
EEG signals have, measured in the micro volt, or require a live stream capture from a
camera at all times. Therefore, utilizing the sensors that a typical smartphone already has
in order to detect slip-based human error may be a better accepted solution to the general
public. Micro-behavior analysis provides more acceptability and accessibility to the user
and require no additional sensors to provide a slip-based human error detection system
especially in day-to-day smartphone usage. The ACDS also reports a higher accuracy when
compared to existing slip-based human error detection of an 86.5% using one hand and
91.6% when using two hands an increase in accuracy of ~+0.1%–+5.2% when compared to
EEG-based solution and ~+2%–+7.1% when compared to an eye movement-based solution.

6.3. Limitations

The ACDS system shows some limitations that relate to delay and power consumption.
The duration for data collection and analysis to obtain classification results after a click
was 5 s, which is a delay the user must accept until the analysis speed can be increased, as
smartphone technology continues to improve. The system can provide an alert after a click
if the system detects an unintentional click and can present an alert that a link address will
open so that the user can choose to continue or revert the action.

The current system consumes 5.5 mA/s, excluding classification and screen power
consumption; therefore, it should not be running all the time. Other metrics where a system
starts or stops the recording can be proposed in the future to optimize the system and
benefit from its capabilities.

The acceptability of the ACDS has not been fully evaluated, but it is expected that
the acceptability would be low in day-to-day life unless the system activates only when
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opening a chatting application or email because most phishing attackers use email or
chat options.

One drawback of the system is detecting whether a click is aimed to open a new link
or type in a box. All clicks were manually omitted to fill in the form; however, a metric to
detect whether a new page would open is required for the ACDS to function better.

The present results reveal the potential of the ACDS in detecting unintentional clicks
and differentiating them from intentional clicks; however, the current study has not been
tested in day-to-day life. Thus, some false positives or negatives are expected. The system
can be improved to learn from those mistakes over time to reduce false positives and
negatives. Furthermore, the system may take advantage of user behavior modeling to
detect intentional vs unintentional clicks, as they may vary by the user or by the user’s
current condition, such as walking or running.

If a user does not know that they made an unintentional click, the ACDS will not be
able to detect it as it heavily relies on the user’s behavior where a user notices that they
clicked by mistake or a function on the screen appears that was not expected. It is said that
no one can detect a liar if the one telling the lie does not know they are lying. This same
applies to slip-based human error. If the user does not know they are making an accidental
click, no behavior response will happen and the ACDS system will not be able to detect the
accidental click. Usually, a user realizes they are making the accidental error prior, during,
and mostly after the error is made, which is why the ACDS system needs to be able to
detect the accidental click after the click was made.

One major limitation of the ACDS system is the delay in analysis, especially post-click,
when it lasts 1.5 s at least. This is a tradeoff between accuracy/security and convenience,
where if the post click analysis is removed, the acceptability and convenance improves
but the classification accuracy degreases suddenly by 17.1–21.82% from the three tested
classifiers. One possible solution is to consider the context of the click as if the click was on
a website the user never visited before or from an email the user does not know. This may
trigger the need to analyzing the post click or not, which may assist in reducing the delay.

7. Conclusions and Future Work

Human error takes different shapes and has multiple causes, which are abused by
attackers to gain access and launch successful attacks. One of the human error types is a
slip-based human error, in which a user makes a mistake because of insufficient attention,
distraction, or manipulation. Phishing attacks, a form of deceiving the user to click on a
link or download an infected attachment, have increased in number over the past years.

Phishing attacks use psychological concepts in the text to influence users to click on
a link or download an attachment. Some are time-triggered based on specific events or
expectations, and others are random to gain as much access as possible. Other phishing
attacks force users to click on a link by having the whole page as a clickable link, by
following the curser, by substituting an intended button location, or even by changing
the text on the intended button to deceive the user. Most cases are detectable by the user
before, during, or sometimes after the click is made, where the expected reaction does not
meet the intentions.

Furthermore, smartphone use has increased, and employees rely heavily on the
computational power they provide to perform day-to-day tasks. As smartphones possess
sensitive information, a successful phishing attack may provide access to a company’s
sensitive information, such as passwords or trade secrets, to list a few. An unintentional
click is not necessarily just on links but can also be when pushing a code to production,
sending a message, confirming a transaction, or a bank transfer. An unintentional click may
lead to any of these cases. Because of the ease of use of smartphones and the sophistication
of phishing attacks, an unintentional click or touch on a phishing link may lead to a
successful attack.

Therefore, an ACDS was designed that takes advantage of the capabilities of smart-
phones (where most phishing attacks occur) to model unintentional vs intentional clicks.
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The system was trained based on data collected in a controlled experiment and evaluated
the system using a real-life scenario of completing a form. The results support the capabili-
ties of the proposed system, reaching 82.6%, 87.2%, and 91.6% accuracy using the random
tree, random forest, and SVM, respectively. Furthermore, link matching and tone analysis
of the text presented on a screen improved the system. The system assigns a risk factor
if any link does not match the text a user clicked on or if the text tone on the screen is
classified as influencing the user to click on a link, all of which are phishing strategies.

Future work may improve the system using various other classification algorithms,
including deep learning to gain better accuracy results and test the system in real-life
scenarios for a longer period where users report whether a click was unintentional or
intentional. In addition, developing a model in which a user is expected to make an
unintentional click to activate the ACDS beforehand to detect whether it occurs may
improve the user experience, as the current system consumes power and is not user
friendly due to the 5-s wait for every click. Furthermore, applying the regret theory [51],
which states that regret is a behavioral response to an error, may improve the ACDS by
detecting regret if a click is made.

Finally, studying human error probability, which is the number of errors divided by
the number of opportunities for an error to occur, may assist in predicting an error. Other
factors that cause an error can also be considered, such as detecting that a user has low
attention or is being manipulated or distracted, to improve the ACDS.
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