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Abstract: Gastric cancer (GC) is one of the most common malignancies in the world. Exosomes, a
subset of extracellular vesicles with an average diameter of 100 nm, contain and transfer a variety
of functional macromolecules such as proteins, lipids, and nucleic acids. A large number of studies
indicated that exosomes can play a significant role in the initiation and development of GC via
facilitating intercellular communication between gastric cancer cells and microenvironment. Exoso-
mal RNAs, one of the key functional cargos, are involved in the pathogenesis, development, and
metastasis of GC. In addition, recent studies elucidated that exosomal RNAs may serve as diagnostic
and prognostic biomarkers or therapeutic targets for GC. In this review, we summarized the function
of exosomal RNA in the tumorigenesis, progression, diagnosis, and treatment of GC, which may
further unveil the functions of exosome and promote the potentially diagnostic and therapeutic
application of exosomes in GC.
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1. Introduction

Gastric cancer (GC) is the fourth most common malignance and the third leading
cause of cancer death among males worldwide [1]. The estimated new cases and deaths
of GC every year is about 951,600 and 723,100 [2]. The incidence rate of GC in males is
about twice than in females and varies wildly among countries, and more than half of
those cases occur in Eastern Asia. Helicobacter pylori (Hp) infection is considered the most
important risk factor for GC and over 90% of the non-cardia gastric cancers are related
to Hp infection [3]. Thanks to the advances in the early diagnosis and treatment of GC,
a steady decrease of GC cases has been observed in most developed countries, but the
situation in many developing countries is still far from satisfactory. Due to the shortage
of regular screening, improved sanitation, and effective antibiotics, the early diagnosis
rate and prognosis of patients in developing countries remains poor. To date, the overall
five-year survival rate of advanced GC after surgery is less than 30% and the five-year
survival rate of early GC after Endoscopic submucosal dissection (ESD) is over 90% [4–7],
thus revealing the specific formation mechanisms and improving the early diagnostic rate
of GC is of vital importance.

Exosomes, initially introduced in 1980s by Trams, are a subset of extracellular vesicles
(EVs) with an average diameter of 100 nm [8]. Further studies found that exosomes contain
a variety of bioactive molecules including proteins, lipids, mRNAs, and noncoding RNAs
(ncRNAs) and play a significant role in intercellular crosstalk [9]. Exosomal contents can
be internalized by the recipient cell and mediate the activity of recipient cells, thereby
functioning as a vehicle of cell-cell communication and are involved in many physiological
and pathological activities including mammalian reproduction and development, immune
responses and infection, cardiovascular diseases and cancers [10–14]. In the course of tumor
development, exosomes not only facilitate the formation of a tumor microenvironment
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(TME) but also play a role in the occurrence, proliferation, metastasis, angiogenesis, and
drug resistance. Additionally, it has been identified that the amounts of secreted exosomes
and the exosomal compositions in cancer patients was different compared with healthy
donors and the contents and quantity of exosomes secreted by the same cell can also be
sharply different when treated with different conditions [15–17]. Theoretically, the contents
of tumor cell-derived exosomes (TDEs) may include tumor-related biomarkers, such as
micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)
or proteins, which may be detected in the early stage of GC and serve as noninvasive
biomarkers for early detection and diagnosis of GC. Moreover, recent studies consider
exosomes as ideal therapeutic targets and exosome-based therapies are emerging as a
promising strategy for GC treatment [18,19]. In this review, we summarize the functions of
exosomal RNA in the tumorigenesis, progression, diagnosis, and treatment of GC, which
may further unveil the secrets of exosome and promote the potentially diagnostic and
therapeutic application of exosome in GC.

2. Exosome Formation, RNAs Packaging and Uptake

Exosomes are small, membrane-encapsulated vesicles 30–200 nm in diameter that
are enriched in selected proteins, lipids, mRNAs, and miRNAs [20]. Generally, exosomes
are formed by the invagination of late endosomal membranes and sequential engulfment
of molecular materials in cytoplasm to form multivesicular bodies (MVBs), followed by
fusing MVBs with the cell membrane to release intraluminal vesicles (ILVs) [21]. The
inward invagination of the endosomal membrane forms MVBs, and this step enables the
cytoplasmic constituents to enter the endosomes and enriches the cargo of the ILVs (future
exosomes) [22,23]. According to the needs of the cells, some MVBs can directly fuse with
the lysosomes, and the contents of the MVBs will undergo lysosomal degradation and
be recycled by the cells. Other MVBs will be transported to and merge with the plasma
membrane, eventually resulting in the release of exosomes (Figure 1) [23,24].

Exosomes carry several selected subpopulations of RNA and deliver them to intersti-
tial space or bloodstream and these RNAs can be subsequently taken up by, and expressed
in recipient cells. Generally, exosomes are enriched in small noncoding RNAs (ncRNAs), in-
cluding miRNAs, tRNAs, lncRNAs, circRNAs, and fragmented RNAs [25]. These selected
RNAs are enriched in specific RNA species relative to the cellular RNA, indicating a specific
mechanism associated with exosome biogenesis and content loading [21]. The specific
RNA-packaging mechanism has not been fully explained and it may be influenced by the
microenvironment and the inherence of the cells. Some studies find the enrichment of
miRNAs with 3′-end nucleotide additions and 5′-terminal oligopyrimidine, which indicates
the specific modification of RNAs during exosome formation [26,27]. Besides, evidence
suggests that several mechanisms may play a part in RNA-packaging of exosomes, with
specific subtypes of RNAs bound to different exosome-targeted RNA-binding proteins
(RBPs). For example, Shurtleff suggested that Y-box binding protein 1(YBX1), a RBPs with
broad nucleic acid binding property, plays a pivotal role in exosomal sorting of miRNAs
and other small ncRNAs while other scholars identified the significant contributions of
Ago2, a miRNA effector, in RNA-packaging of exosomes [28,29].

Once the exosomes are secreted into the interstitial space or the bloodstream and reach
their target cells, they are recognized and enter the recipient cells by different mechanisms.
The distinct mechanisms and pathways for exosome uptake are of great complexity. After
being docked at recipient cell membranes, some exosomes may fuse with the plasma mem-
brane and release their constituents into the cytoplasm. Some may be taken by recipient
cells in multiple pathways, including clathrin-dependent endocytosis, caveolae-dependent
endocytosis, macropinocytosis, and phagocytosis [30–32]. After internalization of the
exosomes, these extracellular vesicles can be degraded by lysosomes or be gathered and
coexist with the endogenous ILVs in the MVBs. The exosomal RNAs can be transferred into
the endoplasmic reticulum or the cytoplasm and result in the phenotypic and molecular
alterations of recipient cell. It should be noted that exosome uptake through phagocy-
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tosis and micropinocytosis hamper the delivery of functional RNA into the cytoplasm,
as the prominent function of these pathways is to transfer cargos to lysosome for degra-
dation. Thus, some researchers supposed that exosomal RNAs might incorporate some
mechanisms to escape the degradative pathway, which so far remain unknown, to elicit
a functional response [33]. Future studies may focus on the mechanism and methods of
efficiency enhancement of exosomal RNAs escape from lysosomal degradation and widen
the application of exosomal RNAs [34]. Like endogenous RNAs, mRNAs delivered by
exosomes can be translated into functional proteins, whereas ncRNAs can engage complex
networks of ncRNA interactions and serve as important regulators of gene expression.
The utilization of these RNAs will activate the subsequent signal pathways and modulate
physiological and pathological processes, such as those seen in immune responses, cardio-
vascular diseases, and cancer. The mode of exosome uptake and the fate of the exosomal
cargo varies depending on the property of the cargo and the metabolic status of recipient
cells that regulates internalization of extracellular vesicles [35]. However, it remains poorly
understood whether a different mode of exosome uptake results in distinct physiological
and pathological processes in recipient cells.
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Figure 1. The biogenesis and uptake of exosomes. The invagination of the cell plasma membrane
forms the early endosome, which embodies cell surface proteins and soluble proteins in extracellular
space. Then, the early endosomes can mature into late endosomes, and invagination of the endoso-
mal membrane results in the formation of multivesicular bodies (MVBs). This process allows the
cytoplasmic constituents to enter the intraluminal vesicles (ILVs). The MVB can either be degraded
by lysosomes or fuse with the cell membrane to secrete ILVs as exosomes. Exosomes from the parent
cell can dock at and enter the recipient cell via several mechanisms, including fusion with the plasma
membrane, clathrin-dependent endocytosis, caveolae-dependent endocytosis, macropinocytosis,
and phagocytosis.

3. Role of Exosomal RNA in the Initiation and Development of GC

As referred to above, exosomes contain an array of proteins, lipids, DNAs, mRNAs,
and ncRNAs, and the exchange of exosomes among cells plays important roles in many
aspects of human health and disease. The study of exosomes’ roles in cancer has progressed
at a rapid pace, and exosomes have been implicated in several hallmark features of cancers,
such as tumorigenesis, tumor growth, epithelial mesenchymal transition (EMT), metastasis,



Genes 2021, 12, 73 4 of 17

angiogenesis, immune escape, and drug resistance [36–41]. In GC, accumulated studies
have assessed the efficacy of exosomal contents in the initiation and development of
GC. Exosomal RNAs are best investigated due to their powerful role in regulation of
gene expression. MiRNAs are a class of ncRNAs with a size of about 20–25 nucleotides,
which exert regulatory functions in eukaryotes mainly by interfering translation of mRNA.
LncRNAs are a series of ncRNAs with a length of more than 200 nucleotides, which
can compete with miRNAs to bind mRNAs or acting together with miRNAs to regulate
expression of downstream genes. CircRNAs are another kind of ncRNA formed by the
reverse splicing with a covalently closed single stranded circular shape. They can bind to
miRNAs and relieve the inhibition of miRNA on target mRNA and, subsequently, increase
the expression level of target genes. Despite their distinct mechanisms, they all play
important roles in the initiation and progression of GC by manipulating the expression of
target genes. We herein summarize the biological function of them in the initiation and
development of GC (Figure 2).
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Figure 2. The role of exosomal RNA in the initiation and development of gastric cancer. Exosomes
affect tumorigenesis, proliferation, angiogenesis, epithelial–mesenchymal transition, metastasis,
immune escape, and drug resistance in GC.

3.1. Tumorigenesis

The initiation of GC tumorigenesis is a result of long-term accumulation of gene
mutations and functional alteration in TME. Previous reports suggested that exosomes
play a pivotal role in the development of various precancerous diseases of GC, the for-
mation of TME and, ultimately, the development of GC. HP infection is the single most
important factor for GC and recent research has implied that the exosome is implicated in
the initiation of HP-related diseases. For instance, HP-induced exosomal mesenchymal-
epithelial transition factor (MET) can exert a pro-tumorigenic effect on tumor-associated
macrophages to promote GC progression [42]. Another study indicated that exosomes
from conditioned media of human gastric epithelial cells are involved in the endothelial
function impairment in HP infection [43]. It is also illustrated that exosomal miRNA-155
derived from HP infection macrophages can immunomodulate the inflammatory response
to inhibit the gastritis [44]. In light of the contribution of HP in GC, these studies impli-
cated the function of exosomes in the development of precancerous diseases of GC and
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ultimately in the initiation of GC. The role of exosomes in the formation and regulation of
TME in GC was also explored in the context that exosomes act as the vehicle of information
transfer in TME. Adverse conditions like hypoxia, virus infection, and acidosis can increase
exosome release of the impaired cells or cancer cells. Those exosomes can induce TME
alteration and subsequently facilitate the initiation and progression of GC. Juan indicated
that exosomes derived from gastric cancer cells can modulate the immune response in
TME to favor the progression of GC [45]. Moreover, oncogenic constituents of exosomes
can directly affect the gene expression, transcription, and translation of recipient cells to
acquire malignant characteristics. For instance, exosomal miR-101 from normal cells and
a tumor suppressor molecule can be secreted into the TME to restrain tumor cells. In the
early stage of tumorigenesis, insufficient secretion of miR-101 from residential normal cells
may not suppress GC tumor cells and facilitate the initiation of GC [46]. Several other
exosomal miRNAs associated with carcinogenesis of GC include exomiR-Let7, exomiR-221,
exomiR-25 and exomiR-210 [47–49]. In these studies, exosomal RNAs can facilitate the
carcinogenesis of GC via the expression of specific proteins. To summarize, exosomes
participate in the progression of precancerous diseases of GC, remodeling of TME, and
carcinogenic reprogramming to confer the initiation of GC.

3.2. Proliferation and Apoptosis

The rapid growth and expansion of GC leads to the survival of cancer cells and a dis-
mal outcome of chemotherapy. The exosomal RNAs has also been implicated in regulating
proliferation and growth of GC though various signing pathways. Hai-Yan manifested
that exosomal lncRNA CEBPA-AS1 from GC cells could promote cell proliferation, inhibit
apoptosis, and induce GC progression in vivo [50]. Exosomal lncRNA ZFAS1 has been
shown to promote GC growth by affecting cell cycles and apoptosis [51]. In these studies,
exosomal RNAs participate in the regulation of GC cell proliferation mainly by mediat-
ing the rate of apoptosis. Furthermore, recent experiments indicated that exosmal RNAs
can affect the growth and expansion of GC by altering the expression of transcription
factors or signal pathway proteins. For example, exosomal miR-1290 from BGC-823 cells
promotes the proliferation and invasion in gastric cancer via targeting mRNA of naked
cuticle homolog 1 (NKD1), a transcriptional regulatory factor in GC and downregulating
NKD1 expression [52]. Several exosomal miRNAs are involved in the activation of the
MAPK signaling pathway in GC, by which CD97 can enhance proliferation and invasion
in vitro [53]. These findings together corroborate the significance of exosomal RNAs in the
proliferation and apoptosis of GC cells. Aside from exosomal RNAs, other exosomal cargos,
such as proteins or lipids, are also proposed to play a role in GC growth. The delivery of
trastuzumab emtansine (T-DM1) from exosomes of HER2-positive cancer cells to other
cells has been implicated in growth inhibition and activation of caspase-3 [54]. Another
study indicated that the gastric cancer derived exosomes can drive tumor cell proliferation
via the activation of PI3K/Akt signaling pathway [55]. This literature together confirms the
significance of exosomal RNAs in tumor growth, as well as that of other exosomal contents.
It should be noted that the growth and expansion of gastric tumors cannot be attributed
completely to the acceleration of cell proliferation, but more so a result of joint action of
several processes including apoptosis, angiogenesis, immune escape, and drug resistance,
which will be further discussed in the next section.

3.3. Angiogenesis

Angiogenesis, essential for tumor growth and metastatic dissemination, is a multi-step
process by which tumors develop new vasculature and obtain sufficient nutrition. The
function of exosomes in tumor angiogenesis of GC has been recently widely documented.
For instance, miR-130a from gastric cancer cells-derived exosomes can enter vascular
cells and target C-MYB, a transcription factor of angiogenesis, to promote angiogenesis
and tumor growth [56]. MiR-23a carried by GC cells-derived exosomes can be used by
vascular cells and suppress the expression of a well-known tumor suppressor gene, PTEN
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to promote angiogenesis [57]. These exosomal RNAs from TDEs can target vascular cells
and promote angiogenesis though expression alternation of transcription factor or tumor
suppressor gene. Similar findings implicated that exosomal miR-155 and miR-135b from
culture medium of gastric cancer cells also enhanced angiogenesis in GC by inhibiting the
expression of transcription factor FOXO3a and FOXO1 [58,59]. In light of the key role of
vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) signaling pathway in
angiogenesis and tumor growth, many studies elucidated that tumor-derived exosomal
molecules can induce angiogenesis via directly targeting the VEGF signaling pathway.
Mengyan delineated that exosomal circSHKBP1 can sponge miR-582-3p to enhance VEGF
mRNA stability and enhance angiogenesis in GC [60]. Ting implied that exosome miR-
155 derived from GC targeted the c-MYB/VEGF axis to increase VEGF expression, and
subsequently promoted angiogenesis [61]. Moreover, Guangxin indicated that the VEGFR-
2 inhibitor can counteract the aggressive behavior of vascular cells triggered by irradiated
gastric cancer cells-derived exosomes [62]. The role of exosomes in angiogenesis of GC
has been widely documented in recent years, which provides a new orientation to curb
angiogenesis and progression of GC. These findings will become more valuable if they can
be associated with therapeutic interventions such as chemotherapy.

3.4. Immune Escape

The immune system can monitor, recognize, and eliminate cancer cells and foreign
invaders, such as bacteria and parasites. The rapid proliferation and mutation of GC cells
can generate different types of antigens, which can be detected, presented, and eliminated
by immune innate cells to prevent potentially malignant transformation. However, gastric
cancer cells have developed many mechanisms by which they can escape from the surveil-
lance of the immune system and avoid the immune response. These mechanisms include
decreased expression of MHC I or MHC II, downregulation of cancer-related antigens, and
adhesive molecules [63–66]. Recently, the exosome was considered to play an active part in
this process. TDEs can generate an immunosuppressive environment by attenuating the
response of immune effector cells and recruiting immunosuppressive cells. The production
of adenosine via the sequential activity of CD39 and CD73 ectoenzymes participates to
the generation of an immunosuppressive tumor microenvironment, and it is reported that
through the expression of immune-related molecules, such as CD39 and CD73, TDEs can
regulate the immune microenvironment of tumor cells and help malignant cells avoid
being recognized by immune cells [67,68]. A recent study suggested that TDEs carried
Programmed cell death 1 ligand 1 (PD-L1), retain immunosuppressive activity via the
downregulation of T-cell surface CD69. Exosomal PD-L1 induced immunosuppression
microenvironments and predicted a worse survival rate [69]. Another similar study found
that exosomes from GC cell line BGC-823 promoted the PD-L1 expression of neutrophils
and suppressed T-cell immunity, which facilitated the immune escape of GC cells [70]. In
addition to this, it has been reported that TDEs help cancer cells evade immune recogni-
tion by employing decoy mechanisms [67]. Not all studies prefer the promotional effect
of exosome in immune escape, in some cases, gene-modified tumor cells can cause the
TDEs contain glycosyl-phosphatidylinositol-anchored interleukin 2 (GPI-IL-2), resulting
in increased antitumor effects and hamper immune escape [71]. Similar studies enlighten
clinical application prospects of exosome-based immunotherapy in cancers. Hitherto,
evidences about the exosome role in immune escape are mostly from other cancers like
myeloid leukemia, B cell lymphomas, and colorectal cancer and data from GC are relatively
rare. However, the cumulative studies above indicated that exosome-mediated immune
response count in the immune escape of cancer cells. Thus, a better understanding of
the function of exosomes in immune response would be helpful for developing potential
exosome-based biomarkers and therapeutics.
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3.5. Epithelial-Mesenchymal Transition (EMT)

Epithelial-mesenchymal transition (EMT) is defined as the biological process of ep-
ithelial cells transforming into mesenchymal cells through specific procedures. During
EMT, cells are altered at the molecular level as well as in cell morphology with the loss
of polarity, which causes the increased potential for migration. The main hallmarks
of EMT is the loss of epithelial E-cadherin and acquirement of mesenchymal markers
like vimentin, N-cadherin, and a spindle-like cellular shape [72,73]. Examples of TDEs
promoting EMT in GC have been reported in many studies. Generally, exosomes can
promote EMT via the following mechanisms: facilitating oncogenic cell transformation,
enhancing cell migration and invasion, stimulating angiogenesis, and reprograming the
pre-metastatic niche [73]. For instance, Mei demonstrated that exosomal miR-155-5p from
Paclitaxel-resistant tumor cells can induce EMT and chemoresistance in sensitive cells [74].
Exosome-transmitted lncRNA PCGEM1 promotes EMT in gastric cancer by maintaining
the stability of SNAI1 [75]. MiR-223 was another abundant cargo in GC exosomes which
modulate EMT via the PTEN-PI3K/AKT pathway to support cancer promotion [76]. In
these studies, exosomal RNAs from tumor cells or TME induce the activation or suppres-
sion of several signaling pathway and alter the phenotype and biological behavior of cancer
cells, resulting in increased motility, invasiveness, and metastatic potential of cancer cells.

3.6. Metastasis

Metastasis is one of the main causes of cancer-related deaths and treatment failure. It
is a complex and intricate process that involves several steps including EMT, cancer cell
invasion, intravascular transport, and attachment to and engraftment in distant organs.
Every step is driven and manipulated by the cooperation of tumors and TME [77,78]. The
most common metastatic site and organ of GC is the left supraclavicular lymph node and
liver. It is reported that the five-year survival rate of GC patients with metastasis is less than
10% [4]. The biology of exosomes in GC metastasis is emerging, and the number of studies
clarifying their function in the above steps has increased substantially. The contribution of
exosomal RNA in the metastasis of GC involves all steps of metastasis from EMT, cancer cell
invasion, organotropic metastasis, and the formation of the pre-metastatic niche. Firstly, the
plasticity of tumor cells can be partly attributed to exosomes, especially considering their
significant role in EMT as mentioned above. Next, exosomes were implicated in promoting
migration and invasion ability of GC cells via various signaling pathways. Exosomal miR-
196a-1 from high-invasive GC cells can target secreted frizzled related protein 1(SFRP1), the
modulator of Wnt signaling, in low-invasive cells to promote invasion and metastasis [79].
Moreover, recent experiments have also indicated a function of exosomes in facilitating the
landing of metastatic cancer cells and the formation of a pre-metastatic niche. Exosomal
EGFR was reported to effectively remodel liver microenvironments via suppressing miR-
26a/b expression to favor gastric cancer liver metastasis [80]. RNAs in TDEs can activate
alveolar epithelial toll-like receptor 3 (TLR3) to promote neutrophil recruitment and confer
lung premetastatic into a niche formation [81]. Thus, exosomal RNA can participate in
most processes of GC metastasis, promote the progression of GC, and pose more challenges
to GC treatment.

3.7. Drug Resistance

Chemotherapy is considered the most effective treatment modalities for GC patients,
and drug resistance remains the greatest challenge for antitumor therapy [82]. The mech-
anism of drug resistance is complicated, among which function of exosomes counts. In
normal cells, exosomes function in the transfer of abundant cargos into the TME. In the
cancer context, some “anti-chemotherapy” information may be packed in exosomes, re-
leased into the TME, and eventually deciphered by other cancer cells. The transmission of
those message may endow the sensitive cancer cells with a drug resistance ability, which
is revealed by accumulated evidence. A recent study indicated that exosomal miR-21 de-
rived from tumor-associated macrophages confers cisplatin resistance in GC [83]. Haiyang
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suggested that CAFs secrete miR-522 to suppress ferroptosis by targeting arachidonate
lipoxygenase 15(ALOX15) and promote acquired chemoresistance in gastric cancer [84].
Moreover, some researchers have identified many other exosomal RNAs, like lncRNA
HOTTIP, miR-501, miR-106a-5p, and miR-421, which could be involved in the chemore-
sistance of GC [85–87]. Under these circumstances, exosomal RNAs aid in the acquisition
and spread of drug resistance property and limit drug activity toward cancer cells. Besides,
chemotherapy and radiation therapy could also directly affect exosome biogenesis and
the content of exosomes with potential implications on therapy outcome. It should be
noted that the function of exosomal RNA in drug resistance is complicated and some
scholars claim that exosomal RNAs may also play a role in reducing drug resistance [88].
Apart from chemoresistance, exosomes are also found to be of great value in determining
outcomes in radiation therapy and some studies suggested that exosomes may induce the
radiation-induced bystander effect (RIBE) [89]. Since radiotherapy is seldom conducted in
the treatment of GC, reports about the role of exosome in GC radiotherapy resistance is
relatively few. Building on the observation that exosomal RNAs play an active part in the
mechanism of drug resistance, engineering of exosomes to deliver a specific RNA for GC
will be developed in the near future.

4. Clinical Application of Exosomal RNAs in GC
4.1. Diagnostic Potential of Exosomal RNAs as Biomarkers of GC

One feature of GC is the lack of specific manifestations in the early stage, which
make early detection difficult and may delay the optimal treatment period [90]. Currently,
endoscopy combined with biopsy is considered the gold standard for GC diagnosis. En-
doscopy is an invasive examination with a relatively high cost; hence, a novel non-invasive
diagnostic method is urgently needed. Liquid biopsy has emerged as a non-invasive ap-
proach with the potential to identify tumor related biomarkers. Recently, researchers have
made great efforts to identify tumor-derived components, such as circulating tumor cells
(CTCs), circulating tumor DNA (ctDNA), serum miRNAs, and exosomes for a diagnostic
purpose [91–95].

Previous studies have indicated that the exosomal RNAs outperform plasma miRNAs
in the reflection of cancer progression and the early diagnosis of cancers with the following
advantages: the miRNAs in exosomes can be protected from being degraded by RNase;
the content of exosomes is closely related to that of donor cells which confers the exosome-
based detection a higher specificity; and the concentration of exosomes in body fluid is
higher than traditional markers [96–98]. In this section, we discuss the state-of-the-art
exosomal RNAs in GC.

Among those exosomal molecules, miRNAs are considered the most potentially ideal
marker for its abundance and easy accessibility. Recently, the potential value of miRNAs
as biomarkers for early diagnosis and prognostic prediction of GC has been reported. For
instance, Ning et al. found that the levels of miR-19b and miR-106a in exosomes of patients
with GC were markedly overexpressed compared to healthy subjects, indicating that serum
exosomal miR-19b-3p and miR-106a-5p had the potential to aid in the detection of GC [99].
However, the authors of this study did not explore its value in the early detection of GC.
Some exosomal miRNAs such as miR-1246, miR-92b-3p, let-7g-5p, miR-146b-5p, and miR-9-
5p were found to be significantly associated with early-stage GC and may serve as early GC
biomarkers [100]. Additionally, the expression of some exosomal miRNAs was corelated
with lymph node metastasis and tumor stage, or was proposed as independent prognostic
factors for GC. For example, Huan et al. suggested that exosomal miR-423-5p increased
in GC patients, and the elevated exosomal miR-423-5p was significantly associated with
lymph node metastasis and indicated a poor outcome [101].

Existing studies on lncRNAs remain limited compared to those on miRNAs. Recently,
studies validated that exosomal lncRNAs can also serve as tumor biomarkers for GC.
Chenchen suggested that the exosomal expression of LncRNA PCSK2-2:1 of GC patients
was markedly downregulated compared to the control group, and was correlated with
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tumor size, stage, and venous invasion [102]. This study and researches alike validated
the possibility to use lncRNAs to predict metastasis and prognosis of GC. Another study
indicated that the diagnostic value of exosomal lncRNA SLC2A12-10:1 in discriminating
GC patients from healthy subjects was higher than traditional tumor biomarkers, which
highlighted the potential utility of this exosomal lncRNAs as novel tumor markers for GC
screening [103].

circRNAs are another kind of endogenous ncRNAs which may act as tumor markers
in GC. Recently, circRNAs has become a new hotspot in the field of tumor research. More
and more attention has been paid to its potential value in tumor diagnosis, treatment, and
prognosis evaluation. To date, the relationship between exosomal circRNAs and tumor
diagnosis mainly focuses on lung cancer and breast cancer, and reports regarding GC are,
at best, sparse. A recent study suggested that circPVT1 expression was an independent
prognostic marker for overall survival and disease-free survival time of GC patients [104]. It
has been reported that an obvious decrease was observed in the exosomal hsa_circ_0065149
levels of early GC patients compared to a healthy group and expression of ciRS-133 derived
from GC patients’ serum was significantly higher than the control group [105,106]. These
studies offered the promise that exosomal circRNAs may also become novel diagnostic
markers for GC diagnosis and prognosis evaluation in the near future.

As mentioned above, different exosomal RNAs including miRNAs, LncRNAs, and
circRNAs are described as potential GC diagnostic and prognostic biomarkers, which are
summarized in Table 1. Although these exosomal RNAs were described as potential GC
biomarkers, there is still a need for experiments to corroborate their value in the early
detection of GC. The need for sensitive and specific exosomal biomarkers will continue
to grow as our knowledge of the exosome grows. There may be a long way to go before
finding a highly sensitive, stable, and non-invasive GC biomarker.

Table 1. Potential exosomal RNA biomarkers in gastric cancer.

Biomarker Type Molecules Exosome Origin Stage of GC Description/Function/Importance Ref.

miRNAs miR-423-5p serum Stage I-IV The expression of exosomal miR-423-5p was correlated
with lymph node metastasis. [101]

miR-19b-3p
miR-106a-5p serum NA

The higher expression was related to GC lymphatic
metastasis and was observed in stages III and IV
compared to I and II stages.

[99]

miR-23b plasma Stage I-IV An independent prognostic factor for OS and DFS at
each GC stage. [107]

miR-21
miR-92a plasma Stage II and III Independent prognostic factors for OS and PRFS in

stage II and III GC. [108]

miR-181b-5p ascites Stage III-IV with ascites Distinguished between non-malignant and GC-ascites. [109]

miR-374a-5p serum 20% from stage I-II and
80% from stage III-IV Upregulation predicted poor prognosis. [110]

miR-379-5p
miR-410-3p serum 37% from stage II and

63% from stage III
Higher expression indicated shorter progression-free
survival of the patients. [111]

miR-92b-3p,
let-7g-5p,

miR-146b-5p,
miR-9-5p

serum Stage I–II Higher levels of those serum exosomal miRNA were
significantly associated with early stage GC. [100]

miR-221 Peripheral blood NA Positively correlated with poor prognosis [112]

miR-10b-5p,
miR-101-3p,
miR-143-5p

plasma Stage I–IV Proposed as biomarkers for lymph node metastasis,
ovarian metastasis, and liver metastasis, respectively. [113]

miR-21-5p,
miR-92a-3p,
miR-223-3p
miR-342-3p

peritoneal fluid NA Positively correlated with peritoneal cancer index. [114]

miR-1246 serum Stage I Differentiated GC patients with TNM stage I from
healthy controls and patients with benign diseases. [115]

miR-217 serum NA Enhanced gastric cancer cell proliferation, and
reduced exosomal CDH1 level. [116]

miR-1307-3p serum NA The expressions were significantly increased in
GC group. [117]
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Table 1. Cont.

Biomarker Type Molecules Exosome Origin Stage of GC Description/Function/Importance Ref.

lncRNAs lncRNA-GNAQ-6:1 serum 43% from stage I–II and
57% from stage III–IV

Expression was significantly lower in the gastric
cancer group. [118]

lncRNA-GC1 serum 46% from stage I–II and
54% from stage III–IV

LncRNA-GC1 may serve as a noninvasive biomarker
for detecting early-stage GC and for monitoring
disease progression.

[119]

lncRNA PCSK2-2:1 serum 37% from stage I–II and
63% from stage III–IV

Expression level in GC patients was significantly
downregulated and was correlated with tumor size,
tumor stage, and venous invasion.

[102]

lncRNA HOTTIP serum 44% from stage I–II and
56% from stage III–IV

Expression levels were typically upregulated in GC
and were significantly correlated with invasion depth
and TNM stage.

[86]

lncUEGC1 serum Stage I
AUC values of 0.8760 and 0.8406 in discriminating
early GC patients from healthy individuals and
chronic atrophic gastritis, respectively.

[120]

lncRNA MIAT serum NA

Serum exosomal MIAT levels were significantly higher
in GC patients than in gastric adenoma patients and
healthy controls, and may serve as a promising novel
biomarker for monitoring the progression of GC.

[121]

lnc00152 plasma 43% from stage I–II and
57% from stage III–IV

Significantly elevated in GC patients compared with
healthy groups. [122]

RNA H19 serum 49% from stage I–II and
51% from stage III–IV

Significantly upregulated in patients with GC both
before and after surgery, and preoperative lncRNA
H19 levels were significantly correlated with the
TNM stage.

[123]

CEBPA-AS1 plasma Stage I–IV The AUC value of CEBPA-AS1 was higher than those
of other traditional tumor biomarkers [100]

circRNAs Hsa_circ_0065149 plasma 25% from stage I–II and
75% from stage III–IV

Significantly decreased in early GC patients, and has
higher sensitivity and specificity than traditional
clinical biomarkers.

[105]

ciRS-133 plasma NA Markedly higher compared to normal subjects. [106]

Abbreviations: micro RNA (miRNA or MiRNA); circular RNA (circRNA); long non-coding RNA (lncRNA); disease-free survival (DFS);
overall survival (OS); area under the curve (AUC); Not available (NA).

4.2. Therapeutic Potential of Exosomes in the Treatment of GC

Since GC ranks as the fourth most common cause of cancer-related death in the world,
it is imperative to seek better targeted therapies. In light of their characteristic property
in delivering functional molecules to targeted cells, exosomes may serve as therapeutic
vehicles of GC therapy, both at the basic and applied levels. Recently, exosomes designed
for the delivery of therapeutic agents are being actively explored [124–126]. Compared with
previous drug carriers such as liposomes, exosomes have the following advantages: they
are efficient at penetrating biological barriers and entering other cells; the heterogeneity
of exosomal surface molecules favor their receptor-targeted feature and make targeted
therapies for cancer possible; and they are well tolerated and can deliver therapeutic
agents with minimal immune clearance [127,128]. Therefore, the therapeutic application of
exosomes as nanocarrier is promising. In this section, we introduce the advancements in
research of the therapeutic potential of exosomes in GC.

Over the last few years, great efforts have been made to engineer exosomes for the
encapsulation of therapeutic agents such as miRNAs or its inhibitors. Usman proved
that EVs can serve as a versatile delivery system for therapeutic RNAs in leukemia and
breast cancer cells [129]. In GC, researchers found that macrophage-secreted exosomes
can transfer miRNA-21 inhibitors into cancer cells and regulate the proliferation and mi-
gration ability of recipient cells [130]. Another study suggested that exosomes containing
hepatocyte growth factor siRNAs can inhibit the proliferation and migration of both cancer
cells and vascular cells in GC [131]. This progress provides preliminary evidence for the
application of exosome in intervention of GC progression in vitro. Furthermore, some
scholars corroborated that exosomes can not only be engineered to regulate tumor growth
or migration but also play a role in the solution of drug resistance. Wang illustrated that
exosomes can act as the vehicle to deliver anti-miR-214 to GC cells and reverse chemore-
sistance to Cisplatin [132]. Qiumo proved that exosomal c-Met siRNA can significantly
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restrain the aggressive behavior of GC and partly reverse the chemoresistance to Cisplatin
in vitro and in vivo [133]. Together, these preclinical studies offer encouragement for the
application of exosomes as vehicle of therapeutic agents.

Despite the promising prospect and these pioneering works, the application of exo-
somes as a nanocarrier in clinical treatment of GC still has many difficulties to overcome.
To begin with, it is hard to guarantee the homogeneity of exosomes. While some types of
exosomes present the potential of tumor inhibitory effects, others may not have therapeutic
effects, or may even have the opposite effects to facilitate tumor progression. Then, current
isolation methods of exosomes are relatively inefficient and cannot satisfy the requirement
of immunotherapy. Anyway, we cannot ask an infant to do everything well. As more and
more clinical research and improvement of exosomes extraction techniques, exosomes will
shine brilliantly in the clinical treatment of GC.

5. Conclusions and Perspectives

As outlined above, exosomes are reported to be internalized and mediate the activity
of recipient cells, thereby functioning as vehicles of intercellular communication. In this
review, we introduced many cargos of exosomes including miRNAs, lncRNAs, and cir-
cRNAs, which function in hallmarks of GC. These findings may enlighten more studies
regarding the pathogenesis and mechanism of GC, hopefully opening up new avenues
in the treatment of GC. However, the question remains whether such phenotypic and
molecular alterations are of relevance because of the use of supra physiological amounts of
cell culture-derived exosomes in most studies. More precise studies and characterization
procedures are needed to verify its function in physiological status.

The cargos of exosomes present the features of donor cells and are preserved in a
relatively independent environment with a high stability. This allows for a multicomponent
diagnostic window into disease detection and monitoring. However, large-scale studies
are urgently needed to ascertain their value before the application of those exosomal
constituents as highly sensitive, stable, and non-invasive biomarkers of early GC. The
property of exosomes in delivering functional molecules to target cells also advances their
potential utility as therapeutic vehicles, both at the basic and applied levels. In some
studies, exosomes are engineered to deliver therapeutic agents and direct their delivery to
a specific target. Most of these studies are in a pre-clinical experimental stage, and there is
still a long way to go before the practical applications of exosomes can become an effective
treatment strategy.
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