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Abstract

Deep learning has a huge potential to transform echocardiography in clinical practice and point 

of care ultrasound testing by providing real-time analysis of cardiac structure and function. 

Automated echocardiography analysis is benefited through use of machine learning for tasks such 

as image quality assessment, view classification, cardiac region segmentation, and quantification 

of diagnostic indices. By taking advantage of high-performing deep neural networks, we propose 

a novel and eicient real-time system for echocardiography analysis and quantification. Our system 

uses a self-supervised modality-specific representation trained using a publicly available large-

scale dataset. The trained representation is used to enhance the learning of target echo tasks 

with relatively small datasets. We also present a novel Trilateral Attention Network (TaNet) 

for real-time cardiac region segmentation. The proposed network uses a module for region 

localization and three lightweight pathways for encoding rich low-level, textural, and high-level 

features. Feature embeddings from these individual pathways are then aggregated for cardiac 

region segmentation. This network is fine-tuned using a joint loss function and training strategy. 

We extensively evaluate the proposed system and its components, which are echo view retrieval, 

cardiac segmentation, and quantification, using four echocardiography datasets. Our experimental 

results show a consistent improvement in the performance of echocardiography analysis tasks 

with enhanced computational eiciency that charts a path toward its adoption in clinical practice. 

Specifically, our results show superior real-time performance in retrieving good quality echo 

from individual cardiac view, segmenting cardiac chambers with complex overlaps, and extracting 

cardiac indices that highly agree with the experts’ values. The source code of our implementation 

can be found in the project ‘ s GitHub page.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
*Corresponding author. alzamzmiga@nih.gov (G. Zamzmi). . 

Declaration of Competing Interest
The authors declare no conflict of interests.

HHS Public Access
Author manuscript
Med Image Anal. Author manuscript; available in PMC 2022 August 01.

Published in final edited form as:
Med Image Anal. 2022 August ; 80: 102438. doi:10.1016/j.media.2022.102438.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


Keywords

Echocardiography; Classification; Segmentation; Real-time analysis; Cardiac quantification; B-
mode; Doppler; Quality assessment

1. Introduction

Echocardiography, henceforth echo, is a safe and low-cost imaging test that is widely 

used for the analysis of cardiac structure and function. It is clinically used for disease 

diagnosis based on the interpretation of clinical biomarkers such as the ejection fraction and 

chamber volume. In clinical routine, the process of extracting these biomarkers involves 

visually selecting good-quality end-diastole (ED) and end-systole (ES) frames from a 

specific cardiac view followed by manually, or semi-automatically, delineating specific 

cardiac regions for quantification (Oh et al., 2006). This process is tedious, error-prone, 

often prohibitively expensive for analyzing large studies, and is limited by inter- and intra- 

observer variability (Oh et al., 2006). To mitigate these issues, quantitative imaging has 

attracted increasing attention in recent years (Zamzmi et al., 2020) as it can provide low-cost 

and scalable analysis, facilitate the monitoring of disease characteristics and functions, 

expedite clinical workflow, standardize echo analysis, and help democratize it in rural 

settings with limited resources. Further, automated echo analysis can lead to the detection of 

new patterns aiding in gaining new understandings and discoveries (Wong et al., 2020).

Recent advances in machine learning (ML) techniques have allowed the development of 

automated methods for echo image quality assessment, view classification, cardiac region 

segmentation, and disease diagnosis (Zamzmi et al., 2020; Wong et al., 2020). However, the 

performance of these methods is often limited by the size of the labeled training datasets 

and the required computational resources (Zamzmi et al., 2020). As many echo datasets are 

limited in size, these methods often adopt transfer learning from large models pre-trained on 

a large-scale collection of natural images (e.g., ImageNet). However, several studies (Torrey 

and Shavlik, 2010; Rosenstein et al., 2005; Jiang et al., 2020) reported the negative impacts 

of transferring the knowledge from the natural image domain to the medical image domain 

due to the differences between these domains in terms of visual characteristics (e.g., shape, 

color, texture), spatial resolution, data and noise distributions. In addition to the impact of 

negative transfer, current automated methods are designed with clinical performance in mind 

and little consideration is given to issues such as speed, computational time, model size, and 

power/energy consumption.

In this work, we present a fully automated system for real-time echo retrieval, region-

based cardiac segmentation, and quantification of cardiac indices. Our system uses a 

self-supervised echo-specific representation to enhance the learning of the target echo 

tasks (i.e., image retrieval and segmentation prior to quantification). To obtain real-

time performance, we use a lightweight multi-head network for image retrieval, and 

present a novel network, named Trilateral Attention Network (TaNet), for fast region-

based segmentation. We demonstrate the eiciency of the proposed framework using four 

echo imaging datasets and evaluate its performance against expert-based classification, 

Zamzmi et al. Page 2

Med Image Anal. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



segmentation, and quantification. Our experimental results show a consistent improvement 

in the performance of the echo tasks with enhanced computational eiciency that charts a path 

toward adoption in clinical practice.

1.1. Related work

We briefly present the state-of-the-art methods for echo classification and segmentation. A 

comprehensive review of existing methods can be found in Zamzmi et al. (2020).

1.1.1. Automated echo view classification—Echo view classification categorizes 

the acquired echo into different views such as the parasternal long axis view (PLAX), apical 

four-chamber view (A4C), and subcostal view (SV). Broadly, existing methods for view 

classification can be divided into conventional ML-based methods and deep learning-based 

methods.

Wu et al. (2013) presented one of the first conventional methods for classifying echo 

images into eight views including PLAX, A4C, and SV. Their method extracts spectral 

energy features from the images using a GIST descriptor. These features are then used to 

train a support vector machine (SVM) for classification. Other methods used SVM with 

handcrafted descriptors such as Scale-invariant feature transform (SIFT) (Qian et al., 2012), 

histogram of oriented gradients (HOG) Agarwal et al. (2013), and bag of visual words 

(BoWs) (Penatti et al., 2015).

Recent works for echo view classification use state-of-the-arts deep convolutional neural 

networks (CNNs) such as VGG (Simonyan and Zisserman, 2014), DenseNet (Iandola et al., 

2014), and ResNet (He et al., 2016). For example, Zhang et al. (2017) used a VGG-based 

model to classify echo images into 23 views including PLAX, A4C, and SV. Similarly, 

Madani et al. (2018) used a VGG-based method for view classification. Their method 

classifies echo images into 3 modes: B-mode (12 views), M-mode, and Doppler (2 views). 

The networks in both studies (Zhang et al., 2017; Madani et al., 2018) are trained using 

random weights or ImageNet weights. Instead of using the deep VGG architecture, Vaseli et 

al. (2019) used shallow versions of VGG to classify echo images into 12 views. The shallow 

models have corresponding large teacher models, which are used to transfer the learned 

knowledge to the three lightweight student models. The lightweight models have only 1% 

of the three teacher models parameters, and hence, they are significantly faster. Other deep 

learning-based methods for view classification can be found in Østvik et al. (2019) ; Smistad 

et al. (2020).

1.1.2. Automated echo quality assessment—Echo quality assessment task involves 

detecting and eliminating the low-quality echoes. Automating this task facilitates the 

analysis of subsequent tasks because it automatically removes unusable or unmeasurable 

cases. Previously reported works in echo quality assessment use traditional techniques to 

generate a quality score. For example, Snare et al. (2012) developed an algorithm based on 

a parametric multi-chamber model of A4C view and an extended Kalman filter to calculate 

a goodness-of-fit score for determining acceptability of the recorded echo. Pavani et al. 

(2012) used a Generalized Hough Transform (GHT) for delineating incoming echo images 

in PLAX view and comparing them with a representative atlas to generate a quality score. 
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Both studies achieved acceptable performance in assessing the quality of A4C and PLAX 

views.

Several deep learning-based methods have also been proposed for quality assessment. For 

example, Abdi et al. (2017) proposed a multi-stream network architecture that consists of 

five regression models for five cardiac views. The proposed method achieved 85% ± 12% 

accuracy and outperformed previous traditional techniques. Dong et al. (2019) proposed 

a deep learning framework that consists of three networks; a basic network that roughly 

detects A4C view, a deeper CNN that performs classification refinement, and finally an 

aggregated residual visual block network that automates key anatomical structures detection. 

The proposed network achieved 93.5% mean average precision (mAP). Other deep learning-

based approaches for echo quality assessment can be found in Nolan and Thavendiranathan 

(2019); Liao et al. (2019); Zamzmi et al. (2019b); Vrettos et al. (2020).

Previous deep learning-based methods for echo view classification and quality assessment, 

except Dong et al. (2019) ; Vaseli et al. (2019), focused mainly on the performance while 

ignoring the speed and computational complexity of the models. Further, these methods 

were initialized with random weights or those learned from natural images. In this work, 

we propose a customized lightweight multi-head model with echo-specific representation 

for real-time echo retrieval, which consists of view classification (head 1) and quality 

assessment (head 2). We hypothesize that the lightweight model with the echo modality-

specific weights would result in a generalized positive knowledge transfer and faster 

convergence leading to improved accuracy and real-time performance.

1.1.3. Automated echo segmentation—Segmentation is performed to delineate the 

boundary of a desired cardiac region for quantifying biomarkers. These biomarkers can be 

subsequently used for cardiac disease monitoring and diagnosis.

Previously reported methods for echo segmentation used low-level image processing-based 

methods such as watershed (Cheng et al., 2005; Lacerda et al., 2008) and Otsu thresholding 

(Santos et al., 2007), deformable model-based methods such as active contour (Chen et 

al., 2007), B-spline snake (Marsousi et al., 2010; Oktay and Akgul, 2009) and level set 

(Nandagopalan et al., 2010), and statistical model-based methods such as active shape (Guo 

et al., 2014; Beymer et al., 2009) and active appearance models (Belous et al., 2013).

Instead of using the traditional methods, deep learning-based methods, such as Fully 

Convolutional Networks (FCN) and UNET, have also been widely used to achieve state-of-

the-art performance in segmenting various cardiac chambers. FCN is one of the first and 

most widely used deep learning architectures for semantic segmentation in several medical 

imaging domains including echo (Chen et al., 2016; Dong et al., 2018; Yang et al., 2019). 

Although FCN outperformed the traditional methods, it reduces the resolution of the input 

image resulting in sub-optimal prediction with fuzzy object boundaries. To address this 

issue, advanced deep learning architectures have been proposed. These architectures can be 

subdivided into encoder-decoder architecture and dilation architecture.
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In the encoder-decoder architecture, the encoder is used to extract spatial features at 

different levels of abstraction while the decoder is used to upsample the output of the 

encoder to the original image resolution. Typically, this architecture uses skip connections 

to recover high-resolution details of the predicted output image by concatenating the feature 

maps from the encoder with their corresponding upsampled feature maps in the decoder. 

Examples of encoder-decoder segmentation architectures include UNET (Ronneberger et 

al., 2015) and SegNet (Badrinarayanan et al., 2017). These models have been used for 

left ventricle (LV) segmentation in echo images. For example, Veni et al. (2018) combined 

a UNET model with a shape-driven deformable model (level set) for LV segmentation. 

Similarly, Zhang et al. (2017) used four UNET models to segment the cardiac chambers 

from four different views. Azarmehr et al. (2019) used both UNET and SegNet to segment 

the LV endocardium from the PLAX view. Their experimental results suggest the superiority 

of UNET as compared to SegNet for LV segmentation. Jafari et al. (2018) integrated shape 

information and motion (i.e., optical flow) with UNET for segmenting LV in A4C view. 

Other works that use encoder-decoder architecture for echo LV segmentation include (Chen 

et al., 2020; Zamzmi et al., 2020; Moradi et al., 2019; Leclerc et al., 2019).

The dilation segmentation architecture removes the down-sampling operations and up-

samples the corresponding convolutional filters (dilated or atrous convolutions) to obtain 

high-resolution feature maps. Examples of dilation architectures include DeeplabV3 

((Yurtkulu et al., 2019), dilated convolutions) PSPNet (Zhao et al. (2017), pyramid pooling), 

and Global Convolutional Network ((Peng et al., 2017), large kernels). Several works used 

dilation architecture to perform cardiac segmentation in echo images. For example, Chen 

et al. (2019) and Teng et al. (2020) investigated and compared the performance of PSPNet 

along with other networks for LV segmentation.

Although the encoder-decoder and dilation architectures achieved excellent segmentation 

performance, the dilation convolutions and skip connections in these architectures increase 

the computational cost and memory overhead leading to a slow inference speed. To solve 

this issue, a novel segmentation architecture, known as Bilateral Segmentation Network 

(BiSeNet), has been proposed to achieve a good trade-off between accuracy and speed (Yu et 

al., 2018). BiSeNet uses a dual-pathway to concurrently generate low-detail and high-level 

semantic information. The detail path is shallow and only has three convolution layers 

with large spatial size while the semantic path is lightweight for rapid down-sampling. As 

these paths concurrently generate feature maps, the efficiency increases significantly without 

impacting the performance (Yu et al., 2018).

To summarize, our literature review reveals that current echo segmentation methods use an 

encoder-decoder architecture (e.g., UNET) initialized randomly or with ImageNet weights. 

This architecture runs at a slow inference speed due to computational complexity and 

memory overhead caused by the skip connections. Our review also reveals that most current 

methods (1) use a separate model for cardiac region localization prior to segmentation or 

(2) apply segmentation to the entire image. In medical images, it is common that the target 

region occupies a relatively small portion of the image (Hesamian et al., 2019; Badshah 

et al., 2020). Hence, considering the entire image would add noise caused by irrelevant 

portions and might lead to the segmentation network being biased toward the background.
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1.2. Contributions

Our specific contributions can be summarized as follows.

• We devise an efficient system for real-time echo image retrieval (view 

classification and quality assessment), segmentation, and quantification based 

on a self-supervised echo-specific representation (see Fig. 1, a). Specifically, 

the echo tasks are fine- tuned by transferring relevant knowledge from an echo-

specific representation constructed using self-supervised learning. Our results 

show that fine-tuning based on the echo-specific representation enhances the 

generalization of the target echo tasks and leads to faster convergence.

• We propose a lightweight multi-head model for image retrieval (Fig. 1, b). This 

model is based on MobileNetV2 (Sandler et al., 2018) but has fewer layers and 

a fuzzy pooling layer instead of the average pooling layer. The fuzzy pooling 

operation can handle the uncertainties presented in the images due to the speckle 

noise. The proposed model achieved superior performance, in terms of accuracy 

and computations, as compared to the state-of-the-art models.

• We present a Trilateral Attention Network (TaNet) for real- time cardiac region 

segmentation (Fig. 1, c). TaNet, inspired by BiSeNet (Yu et al., 2018), contains 

a Spatial Transformer Network (STN) to localize specific regions of interest 

(ROIs) while learning the context relationship among them. It then uses three 

pathways for capturing textural (local binary patterns [LBP]) features, low-level 

details, and high-level semantic information. The proposed TaNet is trained 

end-to-end to jointly optimize the localization and segmentation tasks for region-

based segmentation.

• We present temporal quantitative curves of different cardiac re- gions (Fig. 1, 

d). Although the estimation of cardiac indices in ED or ES frames represents 

the clinical standard, we believe quantifying indices and plotting them over time 

would provide a better understanding of cardiac pattern and function.

To enable other researchers building upon our system, we made the source code available in 

the project ‘s Github page. The rest of this paper is organized as follows. Section 2 lists the 

datasets used in our work followed by the system description in Section 3. We provide the 

experimental setup and results in Section 4, which is followed by conclusions.

2. Materials

We used four datasets in this work: EchoNet-Dynamic dataset (Ouyang et al., 2020), NIH 

IVC dataset, NIH PLAX dataset, and NIH Doppler dataset. The first dataset is primarily 

used to train the self-supervised echo-specific representation while the others are used to 

fine-tune the echo tasks.

In all datasets, each echo study has three ground truth (GT) labels. The first GT label 

determines the view of the recorded echo as A4C, inferior vena cava (IVC), Doppler, etc. 

The second GT label determines the quality of the recorded echo as low quality or moderate/

good quality. When determining the quality label, the following criteria were considered: 
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(1) the cardiac region is clearly present and (2) the edges or boundaries of the cardiac 

regions are clear enough to separate them. Both the view and quality labels are used for 

the echo retrieval task (Fig. 1, b). The third type of GT is the segmentation masks, which 

are used to learn the segmentation of cardiac regions (Fig. 1, c) from the background. In 

addition to these labels, each echo clip or image has cardiac biomarkers provided by a senior 

echocardiographer and further verified by a certified cardiologist.

2.1. EchoNet-dynamic dataset

EchoNet-Dynamic dataset (Ouyang et al., 2020) contains videos collected in real clinical 

practice. It contains 10,036 B-mode (A4C) videos collected from 10,036 random patients 

who underwent an echocardiography exam between 2006 and 2018. The videos were 

acquired using iE33, Sonos, Acuson SC2000, Epiq 5G, or Epiq 7C ultrasound machines. 

The number of video frames ranges from 24 to 1002 with a mean acquisition rate of 51 

frames per second (FPS). In the processing stage, the videos were cropped, masked to re- 

move protected health information (PHI), and resized to 112 × 112 pixel resolution. Each 

video in this dataset has an ejection fraction (EF) biomarker provided by human experts. 

Clinically, EF is calculated as follows:

EF = EDV − ESV
EDV (1)

where EDV (ED volume) and ESV (ES volume) are computed, based on LV tracings, using 

the modified Simpson’s rule.

EchoNet-Dynamic is one of the few publicly available echo datasets that can be used to train 

deep learning models. In this work, we used 80% of EchoNet-Dynamic to train the shared 

echo-specific representation (Fig. 1, a). We used the remaining 20% for fine-tuning and 

evaluating the echo target tasks. Precisely, we used 1600 patients of the fine-tuning dataset 

(≈2000 patients) for training and validation (10-fold cross validation). The remaining 400 

patients are used as an independent test set.

2.2. NIH IVC dataset

This dataset contains 268 IVC videos collected from 264 patients. The videos were acquired 

using iE33, GE E9, GE Vivid 7, GE Vivid E95, and Acuson Sequoia C512 ultrasound 

machines, and have a spatial resolution of 800 × 600 pixels. Each video is associated with 

the following biomarkers: the IVC diameter and the estimated right atrium pressure (RAP) 

based on the IVC collapsibility during inspiration. These values are provided by an expert 

sonographers;, and verified further by an expert cardiologist. Clinically, the IVC thickness is 

measured perpendicular to the long axis of the IVC within ≈ 2.0 cm (cm) of the right atrium 

(RA) as shown in Fig. 2. Then, the RAP can be estimated based on IVC as follows:

Zamzmi et al. Page 7

Med Image Anal. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RAP =

 if IVC  ≤ 21mm and collapse  > 50% RAP = 5
 if IVC  ≤ 21mm and collapse  < 50% RAP = 10
 if IVC  > 21mm and collapse  < 50% RAP = 15
 if IVC  > 21mm and without collapse  RAP = 20

(2)

The collapsibility indicates that IVC’s diameter (measured in millimeters, mm) increases 

or decreases by 50%. RAP is measured in millimeters of mercury (mmHg). In addition to 

IVC and RAP values, the quality of each video was assessed for acceptable quality, and 

the binary mask of IVC region is provided. The images of IVC dataset were resized to 512 

× 512 pixels using bicubic interpolation. We also performed mean normalization to ensure 

that the images have a similar distribution. We used 80% (patient-level) of IVC dataset to 

fine-tune the echo tasks (Fig. 1, b,c). This fine-tuning set is further divided into training and 

validation using 10-fold cross validation. To evaluate the generalization of the fine-tuned 

models, we used the remaining 20% of IVC dataset as an independent testing set.

2.3. NIH PLAX dataset

This dataset contains 68 PLAX videos collected from 60 patients. The videos were acquired 

using iE33, GE E9, GE Vivid 7, GE Vivid E95, and Acuson Sequoia C512 ultrasound 

machines, and have a spatial resolution of 800 × 1024 pixels. Echo video with PLAX view 

shows the following cardiac regions: LV, right ventricle (RV), left atrium (LA), septal wall 

(SW), posterior wall (PW), and aorta. Each video has two biomarker values provided by 

an expert sonographer and were further verified by an expert cardiologist. These values 

are PW thickness (PWT) and SW thickness (SWT). Clinically, these values are measured 

perpendicular to LV’s long axis at the level of mitral valve (MV) leaflet tips as shown in 

Fig. 3. In addition to SWT and PWT, the quality of each video was assessed for acceptable 

quality, and the masks are provided for the following cardiac regions: LV, SW, PW, RA, and 

LA.

The images of this dataset were resized to 512 × 512 pixels using bicubic interpolation. We 

also performed mean normalization to ensure that the images have a similar distribution. We 

used 80% (patient-level) of this dataset to fine-tune the echo tasks (Fig. 1, b, c). We then 

used 10-fold cross validation to divide this fine-tuning set (80%) into training and validation. 

As an independent testing set, we used the remaining 20% set.

2.4. NIH Doppler dataset

This dataset contains images showing continuous wave and pulsed wave Doppler flows 

collected from patients who were referred for echocardiographic examination in the Clinical 

Center at NIH.

The Doppler traces of the mitral valve flow (MV), mitral annular flow (MA), and tricuspid 

regurgitation flow (TR) were acquired using different commercial echocardiography systems 

including Philips iE33, GE Vivid 95, and GE Vivid E9. Each Doppler image has a flow type 

label (TR, MV, or MA) and a segmentation mask provided by an expert technician, which 

separates the spectral envelope from the background. Besides, the expert technician assessed 

the quality of images as low- or good-quality and measured the maximum velocities for TR, 
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MV (E and A), and MA (E’). Clinically, the maximum velocities are measured by finding 

the peaks of Doppler envelopes. The images of the dataset were resized using bicubic 

interpolation, and normalized to ensure a similar distribution. We used 80% (patient-level) 

of this dataset to fine- tune the target echo tasks. This fine-tuning set is further divided into 

training and validation using 10-fold cross validation. For evaluation, we used the remaining 

20% (patient-level) as a testing set.

NIH datasets (IVC, PLAX, Doppler) follow NIH policy for the use of specimens/data 

(OHSRP determination #18-NHLBI-00686). The use of the de-identified videos was 

excluded from IRB review per 45 CFR 46.

3. Real-time echocardiography analysis & quantification

Fig. 1 presents the main components of the proposed system, which are self supervised 

echo-specific representation, image retrieval (view and quality classification), cardiac 

segmentation, and quantification.

3.1. Self-supervised echo representation

We trained a self-supervised denoising autoencoder to learn echo-specific representation 

(Fig. 1, a). In the encoder part of the autoencoder, we used a smaller version of 

MobileNetV2 (Sandler et al., 2018), which we call MobileNetV2-s. As compared to 

MobileNetV2 (Sandler et al., 2018), MobileNetV2-s has only 5 inverted residual bottleneck 

blocks and a final fuzzy pooling layer (Diamantis and Iakovidis, 2020) instead of average 

pooling layer. It has 55,620 parameters and is less than ≈ 2 megabytes (MB). This 

makes MobileNetV2-s more suitable for analysis in embedded real-time systems. Further, 

the replacement of traditional pooling with fuzzy pooling allows better handling of the 

uncertainty caused by the speckle noise. The decoder part of the autoencoder is the reverse 

of MobileNetV2-s encoder.

The entire MobileNetV2-s-based autoencoder is trained, via self-supervised learning, using 

the large-scale EchoNet-Dynamic dataset (80%) to learn echo-specific features. Using 

self-supervised learning to build echo-specific representation allows exploiting available 

large-scale datasets for creating better initialization and transferring relevant knowledge (i.e., 

echo weights) to target tasks, which have relatively small datasets. This can lead to better 

generalizability and faster convergence as discussed thoroughly in Rajaraman et al. (2021) ; 

Zamzmi et al. (2021). The autoencoder is trained to minimize the mean square error (MSE) 

with a batch size of 64 for 128 epochs, root mean square propagation (RMSprop), and initial 

learning rate of 1 × 10−3.

3.2. Real-time echo image retrieval

The image retrieval component retrieves a specific view with acceptable quality. As shown 

in Fig. 4, this component is a lightweight model with a shared echo modality-specific 

encoder and two heads: (1) view classification head to identify the cardiac view and (2) 

quality assessment head to assess the quality of the identified view.
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For the shared echo-specific encoder, we used the encoder part of the MobileNetV2-s 

autoencoder. As mentioned above, MobileNetV2-s encoder has only 5 inverted residual 

bottleneck blocks and a final fuzzy pooling layer (Diamantis and Iakovidis, 2020) instead 

of average pooling layer. We then attached two heads, namely view classification head and 

quality assessment head, to MobileNetV2-s encoder as shown in Fig. 4. Each head has 

the following layers: global average pooling (GAP), dropout, fully connected, and softmax 

layers. We fine-tuned each head along with its encoder as follows. First, we initialized 

MobileNetV2-s encoder with the echo-specific weights followed by fine-tuning the echo-

specific encoder and the view classification layers using the datasets presented in Section 2. 

The view classification head is fine tuned to minimize the categorical cross entropy (CCE) 

loss using stochastic gradient descent (SGD) optimizer. We used a batch size of 32, for 32 

epochs, and an initial learning rate of 1 × 10−3. This head classifies a given echo as A4C, 

IVC, PLAX, or Doppler. Similar to the view classification head, the quality assessment head 

is fine-tuned to minimize binary cross entropy (BCE) loss using SGD optimizer with a batch 

size of 16, for 32 epochs, and an initial learning rate of 1 × 10−3. This head classifies a given 

echo view as good quality or bad quality. In clinical practice, echocardiographers visually 

identify echo views and manually exclude low-quality echoes as they lead to inaccurate 

measurements. Since our image retrieval component is lightweight, it enables real-time echo 

view classification and quality assessment in clinical practice.

3.3. Real-time echo segmentation

Fig. 5 depicts our TaNet for cardiac region segmentation. TaNet localizes ROIs using a 

localization component and then uses three pathways for learning rich textural, low-level, 

and context features. The entire network is fine-tuned end-to-end to learn localization and 

segmentation. The joint learning of localization and segmentation within the same network 

prevents unnecessary repetitions of training individual models in isolation and allows the 

network to focus on specific ROIs (i.e., cardiac regions) while learning the relationships 

among them.

3.3.1. Localization—CNNs operate on the whole image and are limited by the spatial 

invariance of input data. The traditional approach for handling these issues involves using 

separate models for spatial transformation and localization. Jaderberg et al. (2015) proposed 

a more efficient transformation network, called STN, for applying spatial transformations 

(e.g., scaling, translation, attention) to the input image or feature map without additional 

training supervision. STN is a plug-and-play module that can be easily inserted into 

existing CNNs. It is also differentiable in the sense that it computes the derivative of the 

transformations within the module, which allows learning the loss gradients with respect to 

the module parameters.

In medical images, it is common that the target ROI occupies a relatively small portion of 

the image. Hence, considering the entire image for segmentation would add noise caused by 

irrelevant regions. Inspired by Yin et al. (2021), we use STN for focusing the attention of 

the segmentation on a specific ROI while suppressing irrelevant regions. We explain next the 

main components of the STN module, which are the localization network (L), grid generator 

(G), and sampler (S).
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Localization network (L): this network takes an image (z) with different ROIs as input and 

creates, for each ROI, the spatial trans- formation parameters (θ):

θ = L z (3)

where z is a rough segmentation mask with coarsely labeled cardiac ROIs and θ ∈ ℝN × 2 × 3, 

N represents the number of cardiac region(s) in the input image. In case of A4C, IVC, 

PLAX, and Doppler views, the number of ROIs (N) equal to 4 (LV, LA, RV, and RA), 1 

(IVC), 5 (LV, RV, LA, SW, and PW), and 1 (Doppler envelope), respectively.

To generate the rough segmentation mask (z) with coarsely labeled ROIs, we used 

the MobileNetV2-s-based autoencoder with its weights and fine-tuned it for coarse 

segmentation. It is important to note that the coarse segmentation is performed only once 

as a pre-training step to get a rough location for each ROI and estimate its transformation 

matrix (θ). As discussed in Yin et al. (2021), providing a coarse segmentation of different 

ROIs allows the localization network to (1) generate the transformation parameters (θ) for 

these regions and (2) learn the context relationship among them. The output of the coarse 

segmentation is an image (z) with coarse semantic labels corresponding to different ROIs.

Given an input image I ∈ ℝCI × HI × W I, where CI, HI, and WI represent the image 

channels, height, and width, respectively, the output of the coarse segmentation model 

z ∈ ℝHz × W z  can be expressed as:

z = CSM I (4)

where CSM stands for the coarse segmentation model (MobileNetV2-s based autoencoder). 

The predicted rough mask (z) is then sent to the localization network (L) to generate the 

trans- former parameter matrix θ ∈ ℝN × 2 × 3  for each region (Eq. (3)). Our localization 

network (L), which is used to estimate θ for each ROI, has eight convolutional layers and a 

final regression layer to generate the N × 2 × 3 spatial transformation matrix (θ). For each 

ROI, θ is defined as follows:

θ =
sx 0 tx
0 sy ty

(5)

where sx, sy, tx, and ty parameters, which are learned by L, allow cropping, translation, and 

isotropic scaling.

Grid generator (G): given θ ∈ ℝN × 2 × 3, the relevant parts of the image (i.e., ROI ∈ { 1, 

2,.., N}) are sampled into a sampling grid G of pixels Gi = xit, yit . Specifically, the pointwise 

affine transformation is computed for each ROI as follows:

xis

yis
= θ Gi =

sx 0 tx
0 sy ty

xit

yit

1
(6)
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where χiS, yiS  are the source coordinates in the input feature map that define the sample 

points, χit, yit  are the target coordinates of the grid in the output feature map, and θ is the 

affine transformation matrix.

Bilinear sampler (S): To perform the spatial transformation, θ (for each ROI) and the 

sampling grid are sent to a bilinear sampling kernel to produce N output maps V 1:N, 

V ∈ ℝC × H′ × W ′ corresponding to N ROIs; C, H′, and W′ are the grid’s number of 

channels, height, and width, which is the same in the input and output.

Each xiS, yiS  coordinate in the sampling grid (θ(Gi)) defines the spatial location in the input 

where the bilinear sampler is applied to get the value at a particular pixel in the output V. 

This can be written as:

V i
c =

n

H

m

W
ROInm

c max 0, 1 − xis − m max 0,1 − yis − n (7)

where ROInm
c  is the value at location (n, m) in channel c of the input ROI, ROI ∈ { 1, 2,., 

N}, and V i
c is the output value for pixel i at location χit, yit  in channel c. Since the bilinear 

sampling (Eq. (7)) is differentiable, it allows the gradient loss to flow back to the input 

feature map, sampling grid coordinates and, therefore, to the transformation parameters θ 
and the localization network (L).

After localizing the relevant ROIs in the input image, they are sent to the pathways for 

pixel-wise prediction as shown in Fig. 5. Finally, the segmented ROIs can be remapped (Yin 

et al., 2021) to their original positions using a reverse grid transformer (G−1).

3.3.2. Segmentation—The segmentation is performed using three pathways: spatial or 

detail pathway (SP), handcrafted pathway (HP), and context pathway (CP). Each of these 

pathways extract a unique set of features as described next.

Spatial Pathway (SP):  To extract rich low-level details at a low computational cost, a 

shallow pathway that has three convolutional layers with high channel capacity is adopted. 

Specifically, we used three blocks, each containing a 3 × 3 convolutional layer with stride 

of 2 followed by batch normalization and ReLU activation. The number of filters in the 

first, second, and third blocks are 64, 64, and 128, respectively. This pathway outputs feature 

maps that are 1
8  of the input image size as shown in Fig. 5.

Handcrafted pathway (HP):  Depending on the medical imaging modality and the 

application, the standard convolutional kernels can be replaced by handcrafted-based kernels 

to extract a unique set of statistical, geometrical, or textural features.

As compared to the handcrafted-based methods, the main strength of deep learning is its 

ability to learn features at different levels of abstraction, which allows learning complex 

functions that map the input to the output. However, these complex functions may be 
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generic. On the other hand, hand-crafted descriptors or kernels are designed to extract 

specific features (e.g., textural, geometric) that may be different from the ones extracted 

by deep learning models. For example, the textural features (e.g., LBP) have strong ability 

to differentiate small differences in texture and topography especially at the boundaries 

between complex regions with challenging separations. Due to this, handcrafted descriptors 

are still widely and successfully used in different medical imaging modalities including 

ultrasound and Chest X ray (CXR).

The main limitations of handcrafted features are that they are computed at a single 

level of abstraction contrary to the deep features which are extracted at different levels; 

their performance relies on a set of parameters (usually determined manually based on 

experience); and, therefore, they exhibit limited generalizability. In this work, we adopted 

the work proposed by JuefeiXu et al. (2017) to address these issues and integrated 

handcrafted kernels into CNN learning. Specifically, being able to extract, at different levels 

of abstraction, a unique set of textural features that are complementary to the deep features 

while generalizing the parameters of handcrafted kernels in a learnable framework is the 

main motivation of creating a custom handcrafted-encoded CNN pathway for segmentation.

Similar to the spatial pathway (SP), we add a handcrafted pathway (HP) with three 

convolutional blocks, but replace the standard convolutional filters with LBP filters. These 

LBP-encoded convolutional kernels are used to extract rich texture features from the 

echo images. The mathematical formulation of these LBP-encoded convolutional kernels 

is presented in detail in Appendix A. Each LBP block has a layer with fixed anchor weights 

(m) followed by a second layer with learnable convolutional filters of size 1 × 1. We 

generated the anchor weights stochastically with different ranges of sparsity. As similar to 

propagating gradients through layers with learnable and unlearnable parameters (e.g., ReLU, 

Max Pooling), the entire path can be trained by back propagating the gradients through the 

anchor weights as well as the learnable weights. In other words, we leave the anchor weights 

unaffected and only update the weights of the learnable filters.

One might argue the unnecessity of the handcrafted path (HP) as the traditional CNNs can 

theoretically approximate any signal. While this may be true, it is important to note that 

the traditional pathway in our network (SP) is shallow with only three convolutional layers, 

limiting its ability to extract diverse textural features in different orientations. Recall that 

we used a shallow spatial path to decrease the latency and computational burden. Hence, 

the handcrafted path is used to augment the spatial path, and extract rich textural features 

in different orientations, without increasing the computational burden, while the spatial path 

is used to extract general low-level details from the image; finally, the context path (CP) 

is used for fast-downsampling of the feature map to obtain a sufficient receptive field. Our 

experimental results demonstrate that the use of LBP (HP) along with low-level features 

(SP) provides a stronger, more diverse and representative feature descriptors. These results 

are consistent with previous works in the literature (e.g., Tang et al. (2020)) that discuss the 

discriminative power of LBP and suggest the use of ensemble or fusion of both deep and 

LBP features to boost the performance of classification in medical (Liu et al., 2019; Zamzmi 

et al., 2019a; Francis and Pandian, 2021; Yasar and Ceylan, 2021) and non-medical images 

(Wang et al., 2019; Yang et al., 2020; Tang et al., 2020).
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Context Pathway (CP):  Since the size of the receptive field highly impacts the 

performance of segmentation, several methods are proposed (e.g., pyramid pooling He et 

al. (2015)) to obtain sufficient receptive fields. However, most of these methods have high 

computational complexity and memory consumption. Inspired by Yu et al. (2018), we used 

a lightweight model (i.e., Xception) for fast-downsampling of the feature map to obtain a 

sufficient receptive field and encode high level context information. Then, a global average 

pooling is added to the top of the lightweight model to provide the maximum receptive 

field with global context information. Finally, the output of the global average pooling is 

up-sampled as shown in Fig. 5.

In summary, TaNet has three pathways for extracting unique sets of low-level (SP), textural 

(HP), and context (CP) information. As SP and HP have only three layers, they are not 

computationally intensive. The CP uses a lightweight model for rapid down-sampling. All 

the three pathways extract complementary features concurrently, which further increases the 

network efficiency.

Pathways Fusion:  As the aforementioned pathways extract different feature embeddings, 

the simple summation of these representations or embeddings can degrade the performance 

and complicate the network optimization. To efficiently com- bine these pathways, we 

adopted the approach proposed in Yu et al. (2018) and fused the features as shown in Fig. 

6. First, we concatenate the pathways’ outputs and then use batch normalization to balance 

the different scales of the features. Then, the concatenated features are combined into a 

single feature vector (Oconcat). This feature vector is sent to a global pooling followed by 

a convolutional layer (1 × 1), ReLU activation, convolutional layer (1 × 1), and finally 

Sigmoid function to generate the weight vector vconcat. This weight vector is used to 

re-weight the concatenated feature vector (Oconcat) as follows:

Oout put = Oconcat . × vconcat . + Oconcat . (8)

3.3.3. Loss function—The loss function of the entire TaNet network can be defined as 

follows:

L = 1
N i

N
LSeg ROIi, ROIi

gt (9)

where ROIi, i ∈ {1, 2, ..., N} represents the pixel-wise prediction for each ROI, ROIi
gt

represents the corresponding ground truth, and N represents the total number of ROIs. 

Similar to Yu et al. (2018), our segmentation loss (LSeg) consists of principal and auxiliary 

loss functions. The principal loss function are used to supervise the output of the whole 

network while the auxiliary functions are used to supervise the output of the context 

pathway. Mathematically, the segmentation loss function (LSeg) can be defined as:

Lseg Y , W = Lp Y , W + α1Laux1 Y 1, W + α2Laux2 Y 2, W (10)
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where Lp is the principal loss (softmax) function, Y is the final segmentation for each ROI, 

W is the learnable parameters, Laux1 and Laux1 are the auxiliary loss functions (softmax) for 

the context pathway, Y1 and Y2 represent the output features from CP. To balance the weight 

of the loss functions, we empirically set α1 and α2 to 1.

3.3.4. Training—We trained TaNet in two stages: pre-training and fine-tuning.

Pre-training:  As shown in Fig. 7, this stage has two steps: (1) pre-training the coarse 

segmentation model (CSM) and (2) pre-training the localization network (L). We trained 

a coarse segmentation model (CSM) to get rough predictions of different ROIs. Then, we 

trained the localization network (L) to generate estimations of θ1:N. It is important to note 

that this stage is performed only to estimate the approximate location of different ROIs.

To generate rough ROIs, the coarse segmentation model (CSM) is trained with 32 batch size 

and a learning rate of 1 × 10−3. We used Adam optimizer to minimize the loss between 

GT masks and the predicted coarse segmentation masks. Then, we used the out- put of the 

coarse segmentation (z) as input to the localization network (L). The localization network 

(L) is trained with 32 batch size and 1 × 10−3 learning rate to optimize the Smooth L1 loss. 

The smooth L1 loss, which is commonly used for box regression, is less sensitive to outliers 

Wang et al. (2020). The localization network aims to minimize the smooth L1 loss between 

predicted θ and ground truth θr
gt:

L1smooth  =
 if  θr − θr

gt < 1 0.5 θr − θr
gt 2

 otherwise  θr − θr
gt − 0.5

(11)

where θr and θr
gt are the predicted and ground truth transformation matrices for a specific 

region r ∈ {1, 2,..N}. The ground truth transformation matrix is calculated for each region 

θr
gt, r ∈ {1, 2,..N}) as follows. We calculated the central coordinates (x, y) for each coarsely 

segmented ROIr (r ∈ {1, ..N}) and estimated θr
gt as:

θr
gt =

Sx 0 tx
0 Sy ty

=

W−
W z

0 −1 + 2x
W z

0 H−
Hz

−1 + 2y
Hz

(12)

where Hz and Wz represent the height and width of the labeled image (z) while H−  and 

W−  represent the height and width of a fixed window size. The ground truth transformation 

matrix θr
gt  is generated for each region based on Eq. (12).

End-to-end fine-tuning:  With the pre-trained parameters (stage 1) loaded, we fine-tuned 

the entire network end-to-end. We used Adam optimizer and an initial learning rate of 1 × 

10−3. The optimization goal is to minimize the loss (Eq. (9)) between ROIs prediction (ROIi) 

and ROIs ground truth labels ROIi
gt .
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3.4. Real-time echo quantification

Instead of extracting cardiac biomarkers in specific frames (e.g., ED and ES), the temporal 

analysis of cardiac indices over frames has great applicability in clinical cardiology practice 

and research. It provides information about the mechanics of cardiac chambers and captures 

how they change over time. We present next the steps for computing cardiac biomarkers 

from the segmented regions.

3.4.1. Post processing—Prior to the delineation of the cardiac boundaries, we perform 

morphological cleaning to remove any isolated pixels and only keep the closed region of 

interest. Next, we compute the contour of the clean regions using Moore-Neighbor tracing 

algorithm modified by Jacob’s stopping criteria Reddy et al. (2012). Next, the de- lineated 

region is divided into equal segments (or sectors). These segments are then used to compute 

several cardiac indices.

3.4.2. Biomarkers estimation—We estimate the following biomarkers: IVC diameter 

(IVCD), right atrium pressure (RAP), LV internal diameter (LVID), septal wall thickness 

(SWT), posterior wall thickness (PWT), maximum velocities, and ejection fraction (EF). 

IVCD and RAP biomarkers are computed from IVC dataset, LVID, SWT, and PWT are 

computed from PLAX dataset, maximum velocities are computed from Doppler dataset, and 

EF is computed from A4C view (EchoNet dataset). After computing these biomarkers, we 

compare them with the manual human-based measures.

IVCD and RAP Calculation:  To compute IVCD, we find the major axis of the sub 

region that is located approximately 2 cm proximal to the ostium of RA. We then compute 

the Euclidean distance between the endpoints of the major axis. Finally, we convert the 

computed pixel distance into millimeters (mm) as follows:

Pixel = 25.4 ÷ dpi mm (13)

IV CD = IV CDdistance × Pixel (14)

where dpi is the dots per inch in a given clip. After computing IVCD, we construct the 

IVCD curve by plotting IV CD values over frames. Next, we use the Savitzky-Golay filter 

to obtain a smoothed IV CD curve. The smoothed curve is then used to compute RAP as 

follows. First, we compute IVC collapsibility based on the differ- ence between the absolute 

maximum peak and minimum valley in the IV CD curve:

Collapsibility = IV Cpeak − IV Cvalley
IV Cpeak

× 100% (15)

Finally, the RAP value is computed by plugging the IVC diameter and collapsibility values 

into Eq. (2).

LVID, SWT, and PWT Calculation:  To compute LVID, the sub region or segment where 

the leaflet tips of MV are located should be determined. Therefore, we track these points 
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within the segmented LV region. We then create a line passing through the major axis of 

that sub region and extending in both directions as shown in Fig. 8. We compute LVID, 

SWT, and PWT by finding the intersection points between the line and cardiac boundaries 

followed by computing the Euclidean distances between these points. For example, SWT 

is calculated by computing the Euclidean distance between P1 and P2 in Fig. 8. Finally, 

we convert the computed distances into mm unit using Eqs. (13) and (14). Similar to IVC 

analysis, we construct the curves for LVID, SWT, and PWT by plotting their values over 

frames and smooth the signals using the Savitzky-Golay filter. These signals show the values 

at ED and ES and provide information about the mechanics of cardiac chambers.

Doppler Calculation:  To compute the maximum velocities from the Doppler flows, we 

detect the peaks of the delineated envelopes as shown in Fig. 8. We first convert the 

delineated boundary into 1D signal followed by smoothing the signal. Next, we find all local 

maxima and select the k maximum values of all detected local maxima as our maximum 

velocities.

Ejection Fraction:  After segmenting the LV from A4C view, LV tracings are used to 

calculate the volumes. These volumes are then plugged into Eq. (1) to compute EF. The 

computed EF values are then compared with the manual EF obtained by human experts.

4. Results and discussion

We evaluate the performance of the proposed system, which consists of echo retrieval, 

cardiac region segmentation, and quantification. The performance of classification is 

reported using accuracy, precision, recall, F-score, Area Under the Curve (AUC), and the 

Matthews correlation coefficient (MCC), while the performance of segmentation is reported 

using intersection over union (IoU) and Dice (F1) scores; finally, the performance of indices 

quantification is reported using Pearson correlation coefficient (CC) and Bland-Altman plot. 

We also reported the computational complexity and frames per second (FPS).

For all models, the Talos toolbox1 is used for selecting the model hyperparameters. We 

conducted all experiments using Py-torch and performed training and inference on NVIDIA 

GTX1080Ti GPU.

4.1. Real-time echo retrieval

Prior to training for echo retrieval, we used the self-supervised echo-specific representation 

to learn low-level features that are common among all echo tasks. Then, the shared 

representation was truncated at the deepest convolutional layer and appended with two 

heads, one for view classification and another for quality assessment. We then initialized the 

model (encoder + two heads) with the pretrained (echo-specific) weights and fine-tuned it 

using the datasets presented in Section 2.

Specifically, the set that is used for fine-tuning the retrieval model contains 80% of IVC 

dataset, 80% of PLAX dataset, 80% of Doppler dataset, and 16% of EchoNet-Dynamic 

1 https://github.com/autonomio/talos 
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dataset. This fine-tuning set is further divided into training and validation using 10-fold 

cross validation. To enlarge the training set and introduce diversity, we applied the following 

operations: random rotation (−15° to +15°), horizontal and vertical shift (−0.25, 0. 25), scale 

[0.75, 1, 1.25], and horizontal and vertical flip. Finally, the fine-tuned model is evaluated 

using an independent test set that contains the remaining 20% of IVC, PLAX, and Doppler 

datasets as well as 4% of EchoNet-Dynamic dataset.

To evaluate the performance of our echo retrieval model, we compared the performance of 

the view classification head and the quality assessment head with the state-of-the-art models 

(i.e., VGG16 and ResNet18). We performed two ablation experiments to validate the impact 

of fuzzy pooling and echo-specific weights on the performance.

Ablation for fuzzy pooling: To evaluate the impact of the fuzzy operation on the 

classification, we performed an ablation experiment in which we used: (1) classification 

models (proposed, VGG16, and ResNet18) with average pooling, (2) classification models 

(proposed, VGG16, and ResNet18) with max pooling, and (3) classification models 

(proposed, VGG16, and ResNet18) with fuzzy pooling. Table 1 showsthe performance 

of these three cases in terms of accuracy, precision, and sensitivity. The results in Table 

1 demonstrate that the use of fuzzy pooling out- performs other pooling operations in 

both tasks (view classification and quality assessment). We refer the interested reader to 

Diamantis and Iakovidis (2020) for detailed theoretical description of how the proposed 

fuzzy operation tackles the uncertainty (caused by speckle noise) naturally propagated from 

the input to the feature maps.

Ablation for echo-specific representation: In the second ablation experiment, we 

wanted to evaluate the impact of the echo-specific representation on classification. To 

do this, we initialized all models with echo-specific, random, and ImageNet weights. 

We reported the performance for all cases in Tables 2 and 3 for view classification 

and quality assessment, respectively. From this experiment, we have two observations. 

First, the echo-specific weights increase the classification performance in most models as 

compared to random and ImageNet weights. This improvement is attributed to the positive 

transfer of relevant knowledge from the echo-specific representation to the target echo 

tasks. Second, the proposed MobileNetV2-s based classification achieved comparable, if not 

better, performance as compared to the state-of-the- arts while having significantly lower 

computational complexity. As shown in Table 4, our MobileNetV2-s based model has the 

lowest training and parameters as well as the smallest memory size.

These results demonstrate the superiority, in terms of performance and computations, of the 

proposed echo retrieval model, which contains a shared encoder and two heads for view 

classification and quality assessment. Note that our retrieval model only uses the first frames 

(chosen empirically as an odd number to pre- vent a tie vote) to determine the input view 

and quality. After classifying the input echo, the bad quality echoes are excluded from 

further analysis and the good quality echoes are sent to the segmentation network.
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4.2. Real-time echo segmentation

We fine-tuned four TaNet networks, which are (TaNetIVC) for IVC dataset, (TaNetPLAX) 

for PLAX dataset, (TaNetDoppler) for Doppler dataset, and (TaNetA4C) for EchoNet dataset. 

Prior to fine-tuning these networks, we initialize them with the echo-specific weights. We 

then fine-tuned them using 80% of IVC dataset, 80% PLAX dataset, 80% of Doppler 

dataset, and 16% of EchoNet dataset (subject-wise). The sets are further divided into a 

training set for coarse segmentation (20%) and a training set for fine segmentation (60%). 

To enlarge the training sets and add diversity, we applied the following operations: random 

rotation (−15° to +15°), horizontal and vertical shift (−0.25, 0.25), scale [0.75, 1, 1.25], and 

horizontal and vertical flip.

The fine-tuned TaNet networks are then evaluated using the remaining of the datasets. 

Note that we did not provide comparison, in terms of semantic segmentation metrics, for 

TaNetA4C because EchoNet-Dynamic dataset does not provide ground truth masks for LV. 

However, we gauge TaNetA4C performance by comparing the automated EF extracted based 

on the segmented LV with the manual EF. We performed two ablation experiments to 

validate the impact of TaNet components, namely STN for localization and HP for textural 

representation. We also compared the performance of TaNet with the state-of-the-art models 

for segmentation including the baseline BiSeNet (Yu et al., 2018), FCN (Long et al., 2015), 

and UNET (Ronneberger et al., 2015).

Ablation for localization module: To evaluate the impact of STN on the segmentation 

performance and speed, we integrated STN module to the baseline Bisenet (Yu et al., 

2018), FCN (Long et al., 2015), and UNET (Ronneberger et al., 2015) and reported the 

segmentation results for each cardiac region as shown in Table 5 (IVC dataset), Table 6 

(PLAX dataset), and Table 7 (Doppler dataset). We reported the results using the average 

IoU and F1 score, which are averaged over the test samples.

As observed from Table 5 (IVC), Table 6 (PLAX), and Table 7 (Doppler), integrating 

STN into segmentation models slightly decreases the inference speed. It, however, improves 

cardiac region segmentation in most cases. Note that the improvement in segmentation is 

especially higher in case of the PLAX dataset (Table 6). This can be attributed to the simpler 

structure of IVC and Doppler images, which contain a single region and the background, as 

compared to PLAX images with relatively overlapping cardiac regions. Nonetheless, these 

results demonstrate STN’s ability to increase the segmentation performance by focusing the 

attention of segmentation on the desired region while learning the relationship of different 

regions in the image.

Ablation for LBP-encoded layers: To evaluate the impact of integrating LBP-encoded 

kernels on segmentation, we replaced the classical kernels in FCN8, UNET, and BiSeNet 

with LBP-encoded convolutional kernels. Table 5 (IVC), Table 6 (PLAX), and Table 

7 (Doppler) show that using LBP-encoded layers achieved comparable, if not better, 

performance as compared to the classical convolutional kernels while increasing the 

inference speed. Note how using LBP-encoded layers improves the performance of the wall 

(SW and PW) regions (Table 6). Due to the similarity between LV anterior and posterior 
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walls, the accurate segmentation of LV walls is challenging. These results suggest that 

(1) LBP-encoded kernels extract a different set of features than the traditional kernels and 

(2) the ability of LBP-encoded kernels to better differentiate small differences in texture 

at the boundaries between complex regions with challenging separation. These results are 

consistent with previous works (e.g., Tang et al. (2020)) that discuss the discriminative 

power of LBP and suggest to fuse its features with the traditional CNN features to boost the 

classification performance.

The last rows of Tables 5–7 present the performance of TaNet (STN, SP, HP, CP) as 

compared to the baseline BiSeNet, FCN-8, and UNET (Ronneberger et al., 2015). As shown 

in the last rows of these tables, the use of STN-based localization and the combination of 

the textural and low-level features improved the performance even further. The green cells 

indicate that the proposed TaNet achieved significantly (p < 0.05) higher performance as 

compared to the baseline models. Note that TaNet has a slightly lower speed as compared 

to BiSeNet (Yu et al., 2018) due to the integration of the localization module (STN) and 

handcrafted pathway along with the spatial and context pathways. However, this speed 

is still efficient for real-time medical image analysis. Fig. 9 shows the GT masks and 

predicted masks (TaNet) for images from IVC, PLAX, and Doppler datasets. Fig. 10 shows 

segmentation examples generated by the baseline models and TaNet for IVC (1st row), 

PLAX (2nd − 4th rows), and Doppler (5th − 7th rows). From the figures, we can visually 

observe that TaNet outperforms all models in segmenting all cardiac regions.

4.3. Comparison with the state-of-the-arts

This work presents a system that performs echo retrieval and segmentation tasks, and hence, 

the performance of each task with the state-of-the-art methods need to be reported. Most 

current methods for echo classification rely on VGG16 (Zhang et al., 2017; Madani et 

al., 2018; Vaseli et al., 2019; Ghorbani et al., 2020), ResNet18 (Vaseli et al., 2019), and 

DenseNet161 (Vaseli et al., 2019) while the majority of segmentation methods rely on 

different extensions of UNET (Zhang et al., 2017; Leclerc et al., 2019), FCN (Chen et al., 

2020), and Res-U (Ali et al., 2021).

Table 8 provides a performance summary of the state-of-the- art classification models on our 

datasets. From the table, we can observe that our MobileNetV2-s model has significantly 

faster inference time, and it achieved high classification performance with the lowest 

memory size. Similarly, we compared TaNet to the state-of-the-art segmentation models 

and reported the results in Table 9. From the table, we can observe that our TaNet achieved 

the best average IoU for IVC, PLAX, and Doppler datasets with relatively small memory 

footprint and fast inference time. From Tables 8 and 9, we can conclude that the proposed 

approach outperforms current ones for echo classification and segmentation, and achieves 

excellent performance with fast inference speed and relatively small memory size.

4.4. Real-time echo quantification

After the segmented regions are cleaned and delineated, we extract different cardiac 

biomarkers. The extracted biomarkers are then used to create cardiac curves to provide 

information about the mechanics of cardiac chambers as shown in Fig. 11. From such 
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curves, we can estimate the absolute maximum value (highest peak) of a biomarker and the 

absolute minimum value (lowest Valley). We can also estimate the average maximum and 

average minimum by averaging the curve’s peaks and valleys.

To assess the agreement between the automated values and those estimated by experts, we 

used Pearson correlation coefficient and Bland-Altman analysis. The first row of Fig. 12 

shows correlation and Bland-Altman plots for automated IVC as compared to the manual 

IVC. From the figure, we can observe that the IVC extracted by the system is highly 

correlated with the values calculated by human experts. To estimate RAP, we first measured 

the collapsibility of IVC using Eq. (15). Next, we plugged the absolute IVC value and the 

percentage of collapsibility into Eq. (2) to estimate RAP. To assess the agreement between 

the automated RAP values and those estimated by experts, we presented the confusion 

matrix in the second row of Fig. 12. From the confusion matrix, we can conclude the ability 

of the proposed system to accurately estimate RAP values based on the segmented IVC 

region.

In addition to IVC, we measured the agreement between the automated and manual SWT 

and PWT using correlation and Bland-Altman plots. As shown in Fig. 13, the values 

extracted by our system highly correlate (rSWT = 0.99 and rPWT = 0.908) with the wall 

thickness values estimated by the experts. The lower correlation value of PWT can be 

attributed to the substantial overlapping be- tween PW and surrounding regions as compared 

to SW region. In case of echo Doppler, we also measured the agreement between the 

automated and manual Doppler velocities. The first, second, third, and fourth rows of Fig. 

14 show these plots for TR velocity, MV E velocity, MV A velocity, and MA E’ velocity, 

respectively. These plots show strong agreement between the experts’ velocity values and 

the ones extracted by our system. Finally, we measured the agreement between the manual 

and automated EF and reported the results in Fig. 15. As shown in the figure, the EF values 

extracted by our system are highly correlated with the GT values provided by experts.

5. Conclusion

The automated interpretation of echo has the potential to change clinical practice through 

fast, low-cost, portable, and accurate assessment of cardiac structure and function. This 

work proposed a novel end-to-end system for robust real-time echo retrieval, segmentation, 

and quantification. The proposed system, which was evaluated using four echo datasets, 

achieved superior performance in retrieving good quality echo from individual views, 

segmenting cardiac chambers with complex overlaps, and extracting cardiac measures/

indices that highly agree with expert’s scores. Further, the proposed system significantly 

enhanced computational eiciency as compared to the state-of-the-arts. The high efficiency 

and performance of our framework would facilitate its deployment and production in real-

world applications for bedside echo examination and point-of-care ultrasound.
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Appendix A.: LBP-encoded Convolutional Kernels

LBP (Pietikäinen, 2010) is a theoretically simple and computationally efficient method for 

summarizing the texture of an image. This method computes the texture pattern around a 

central pixel in a local neighborhood by comparing the intensity of the neighborhood pixels 

(pi) with the central pixel (pc), and assigning a value of 1 if pi > pc and 0 otherwise. Then, 

LBP code is computed by mapping the binary digits to a decimal number using a base of 2. 

These aggregated LBP codes characterize the image’s texture. Mathematically, the standard 

LBP is formulated as follows:

ymap = ∑
i = 1

8
σ bi ∗ χvec (A.1)

where xvec is the vectorized input image, bi are the 2-sparse filters, σ is the non-linear 

binarization function (e.g., Heaviside step), and ymap is the resulting LBP feature map. This 

formulation has all the components of the standard convolutional layers. Hence, it can be 

used to formulate a LBP block with two convolutional layers (Juefei-Xu et al., 2017). The 

first layer has m fixed convolutional filters with non-learnable anchor weights while the 

second layer has learnable convolutional filters of size 1 × 1 to compute the weighted sum of 

the activations from the first layer.

The first layer is used to generate LBP feature maps as follows. First, the input image (xvec) 

is processed by m predefined convolutional filters (anchor weights) bi, i ∈ [m] to generate m 
difference maps; i.e., m represents the number of LBC filters. Then, these maps are activated 

using differentiable and non-linear activation functions (e.g., ReLU) to generate m bit maps. 

Finally, the generated bit maps are linearly combined to generate the final LBP feature map. 

Mathematically, this can be expressed as:

ymap =
i = 1

m
∑ bi*xvec ⋅ vi (A.2)

where ymap and xvec are the output and input images or feature maps, respectively; b i is 

the 2-sparse convolutional filters, m is the number of predefined convolutional filters, σ is 

the non-linear activation function (ReLU), and Vi is the learnable weights. To compute the 

weighted sum of the activations in Eq. (A.2), we used a convolution operation with filters of 

size 1 × 1 in the second layer; i.e., this convolution layer has a learnable weights and it is 

used to compute the weighted sum of the activations from the first layer.

Therefore, each LBP block has two layers, where the first layer has m unlearnable 

convolutional filters followed by learnable filters (1 × 1) in the second layer. Each 

LBP block has a smaller number of learnable parameters as compared to the standard 

convolutional layer (Juefei-Xu et al., 2017). Specifically, the number of learnable parameters 

in the LBP layer (with 1 × 1 convolutions) are significantly less than those of a standard 

convolutional layer for the same size of the convolutional kernel and number of input and 
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output channels. As shown in Juefei-Xu et al. (2017), the number of learnable parameters in 

LBP encoded layers are reduced by a factor of 9, 25, 49, 81, 121, and 169 for 3 × 3, 5 × 5, 7 

× 7, 9 × 9, 11 × 11, and 13 × 13 convolutional filters, respectively.
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Fig. 1. 
Proposed pipeline for echo analysis. (a) echo-specific representation or MobileNetV2-s 

based autoencoder trained to learn low-level echo features using the publicly available 

EchoNet-Dynamic dataset, (b) lightweight model to identify echo views and exclude low-

quality cases, (c) novel segmentation model, and (d) quantification to extract biomarkers 

from the segmented regions. The models of both b and c are initialized with the echo-

specific weights learned in a.
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Fig. 2. 
IVC subcostal view. The diameter of the IVC is measured perpendicular to IVC long axis 

approximately 2.0 cm from RA.
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Fig. 3. 
PLAX echo view. SWT and PWT are computed perpendicular to the LV long axis, at the 

level of mitral valve tips. LVID stands for LV internal diameter.
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Fig. 4. 
Echo retrieval. The blue boxes represent the encoder part of MobileNetV2-s-based 

autoencoder. The dashed box represents the structure for each block in the encoder. FGAP 

and FC are fuzzy global average pooling and fully connected layers, respectively.
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Fig. 5. 
TaNet for cardiac region segmentation. TaNet has two main components: STN for ROIs 

localization and segmentation with 3 pathways, spatial (detail) path (SP), handcrafted path 

(HP), global or context path (GP). STN focuses the segmentation attention on different 

ROIs. The numbers in the segmentation cubes are the size ratios to the resolution of the 

input. In the fusion module, the feature maps from all pathways are aggregated as shown in 

Fig 6. Down, up, and ⊗ represent downsampling, upsampling, and element-wise product, 

respectively.
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Fig. 6. 
Pathways Fusion. OSP, OHP, OCP are the output from the spatial pathway, handcrafted 

pathway, and context pathway, respectively. Oconcat. and vconcat. represent the concatenation 

into a single vector and the weight vector, respectively. bn, ⊗, and + are batch 

normalization, element-wise product, and addition, respectively.
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Fig. 7. 
Pre-training steps. The black arrows indicate the first step of training a coarse segmentation 

model. The red arrows indicate the second pre-training step.
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Fig. 8. 
First column: estimation of LV walls thickness based on the delineated boundaries and the 

major axis. Second column: estimation of maximum velocities based on the peaks of the 

delineated boundaries.
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Fig. 9. 
IVC (1st row), PLAX (2nd row), and Doppler (3rd row) segmentation: original image (1st 
column), ground truth mask (2nd column), and mask predicted by TaNet (3rd column).
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Fig. 10. 
Segmentation for IVC (1st row), PLAX PW (2nd row), PLAX LV (3rd row), PLAX SW (4th 
row), Doppler MV (5th row), Doppler TR (6th row), and Doppler MA (7th row). Ground 

truth contour (red) and the automated contour (green) generated by FCN8 (1st column), 

UNET (2nd column), BiSeNet (3rd column), and TaNet (4th column).
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Fig. 11. 
Wall thickness for IVC over frames. The curve shows the largest (peaks) and smallest 

(valleys) values. It can be used to find the value at a specific frame (e.g., ED) and monitor 

changes in the motions or patterns.
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Fig. 12. 
IVC dataset. First row: correlation and Bland-Altman plots for GT and automated IVC 

values. Second row: normalized confusion matrix for RAP; 5, 10, 15, and 20 represent 

different RAP scores.
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Fig. 13. 
PLAX dataset. First row: correlation and Bland-Altman plots for GT and automated 

septal wall thickness (SWT). Second row: correlation and Bland-Altman plots for GT and 

automated posterior wall thickness (PWT).
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Fig. 14. 
Doppler dataset. First row: correlation and Bland-Altman plots for GT and automated TR 

velocity values. Second row: correlation and Bland-Altman plots for GT and automated MV 

(E) velocity values. Third row: correlation and Bland-Altman plots for GT and automated 

MV (A) velocity values. Fourth row: correlation and Bland-Altman plots for GT and 

automated MA (E’) velocity values.
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Fig. 15. 
EchoNet-Dynamic dataset. Correlation and Bland-Altman plots for GT and automated EF 

values.
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Table 4

Comparison of computational complexity.

Model Param. ≈ Size ≈ Training

MobileNetV2-s Based 55,620 1.2 MB 12.45

VGG16 138 MM 528 MB 110.64

ResNet18 11 MM 44 MB 45.20

Med Image Anal. Author manuscript; available in PMC 2022 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zamzmi et al. Page 47

Table 5

Results of ablation experiments to evaluate the impact of STN and LBP-encoded convolutional kernels on 

IVC segmentation. The results are reported on the testing set of IVC dataset. The green cells mean that TaNet 

performance is significantly (p < 0.05) higher than the baseline FCN8, UNET, and BiSeNet models.

Model IVC FPS

IoU F1

Baseline 0.83±0.01 0.91±0.07 9

FCN8 w/ STN 0.86±0.17 0.93±0.22 7

w/ LBP 0.84±0.25 0.92±0.16 12

Baseline 0.86±0.12 0.93±0.05 10

UNET w/ STN 0.88±0.08 0.93±0.15 7

w/ LBP 0.87±0.09 0.93±0.12 13

Baseline 0.92±0.11 0.95±0.17 105

BiSeNet w/ STN 0.94±0.05 0.97±0.07 98

w/ LBP 0.94±0.09 0.96±0.11 124

TaNet STN & LBP 0.96±0.03 0.98±0.05 94
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Table 8

Summary of the state-of-the-arts classification models. Inference time is reported on NVIDIA GTX1080Ti 

GPU.

Model Task AUC F1 Size Time

MobileNetV2-s View 0.985 0.974 ≈ 1.2 MB ≈2.11 ms

(our) Quality 0.962 0.945 ≈1.45 ms

VGG-16 View 0.958 0.954 ≈ 528 MB ≈5.58 ms

Quality 0.951 0.933 ≈4.25 ms

ResNet18 View 0.951 0.936 ≈ 44 MB ≈7.45 ms

Quality 0.933 0.912 ≈5.90 ms

DenseNet161 View 0.963 0.948 ≈ 110 MB ≈10.62 ms

Quality 0.947 0.925 ≈6.75 ms
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Table 9

Summary of the state-of-the-arts segmentation models. FPS range is reported on NVIDIA GTX1080Ti GPU.

Model mIoUIVC mIoUPLAX mIoUDoppler FPS

TaNet 0.964 0.927 0.943 ≈ 85–96

BiSeNet 0.923 0.854 0.906 ≈ 100–113

Res-U 0.866 0.836 0.857 ≈ 2–9

UNET 0.884 0.854 0.896 ≈ 5–10

FCN 0.833 0.831 0.883 ≈ 6–9
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