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Abstract
Diabetic cardiomyopathy (DCM) is a serious complication of type 2 diabetes mellitus (T2DM) that contributes to 
cardiovascular morbidity and mortality. However, the metabolic alterations and specific biomarkers associated 
with DCM in T2DM remain unclear. In this study, we conducted a comprehensive metabolomic analysis using 
liquid chromatography–mass spectrometry (LC-MS) to investigate the plasma metabolite profiles of T2DM patients 
with and without DCM. We identified significant differences in metabolite levels between the groups, highlighting 
the dysregulation of various metabolic pathways, including starch and sucrose metabolism, steroid hormone 
biosynthesis, tryptophan metabolism, purine metabolism, and pyrimidine metabolism. Although several metabolites 
showed altered abundance in DCM, they also shared characteristics of DCM and T2DM rather than specific to DCM. 
Additionally, through biomarker analyses, we identified potential biomarkers for DCM, such as cytidine triphosphate, 
11-ketoetiocholanolone, saccharopine, nervonic acid, and erucic acid. These biomarkers demonstrated distinct 
patterns and associations with metabolic pathways related to DCM. Our findings provide insights into the metabolic 
changes associated with DCM in T2DM patients and highlight potential biomarkers for further validation and clinical 
application. Further research is needed to elucidate the underlying mechanisms and validate the diagnostic and 
prognostic value of these biomarkers in larger cohorts.

Keywords: diabetic cardiomyopathy; type 2 diabetes mellitus; metabolomics; biomarkers; liquid chromatography–mass 
spectrometry; plasma metabolite profiling

Introduction
Diabetes mellitus, particularly type 2 diabetes mellitus 
(T2DM), is a global health issue affecting millions of 
individuals worldwide, with its prevalence continually 
escalating (1). T2DM is associated with a multitude 
of complications, including cardiovascular diseases, 
neuropathy, nephropathy, and retinopathy, further 
exacerbating the burden on public health (2). Among 
these, diabetic cardiomyopathy (DCM), characterized by 

ventricular dysfunction and heart failure independent 
of coronary artery disease and hypertension, has 
been increasingly recognized as a significant diabetic 
complication (3). Despite intensive research, the 
pathophysiology of DCM remains complex and poorly 
understood, involving multifactorial processes such 
as metabolic disturbances, myocardial fibrosis, and 
inflammation (4). The early detection and treatment 

313

23-0384

230384

Received 11 September 2023
Accepted 5 January 2024

Available online 5 January 2024
Version of Record published 25 January 2024

Endocrine Connections (2024) 13 e230384
https://doi.org/10.1530/EC-23-0384

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

http://orcid.org/0000-0002-8113-5710
mailto:201500080004@xmmc.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Endocrine Connections (2024) 13 e230384
https://doi.org/10.1530/EC-23-0384

R-Q Xiong et al.

of DCM are challenging due to the lack of specific 
symptoms and effective biomarkers (5). Although 
several biochemical and imaging markers are employed 
in clinical practice, their sensitivity and specificity in 
diagnosing DCM are not satisfactory (6, 7, 8). Hence, there 
is an urgent need to identify new and reliable biomarkers 
for DCM to improve its early detection and intervention.

Significant efforts have been made to elucidate the 
complex pathophysiological mechanisms underlying 
DCM, and numerous studies have highlighted 
the importance of metabolic derangements in its 
development and progression (9, 10). Imbalances in 
metabolic pathways, such as lipid metabolism, glucose 
metabolism, and amino acid metabolism, have been 
linked to the onset of DCM (11). Meanwhile, several 
studies have identified potential biomarkers for DCM, 
including blood-based markers, imaging markers, and 
even genetic markers, providing valuable insights into 
the disease's pathology (12, 13, 14).

In recent years, metabolomics, an emerging field of 
‘omics’ research, has shown great promise in identifying 
novel biomarkers for various diseases, including DCM 
(15). Metabolomics provides a comprehensive analysis 
of small molecule metabolites in a biological sample, 
offering the potential to uncover novel pathways 
implicated in disease pathogenesis (16, 17). There have 
been a few studies utilizing metabolomics to explore 
heart failure, revealing unique metabolic profiles 
associated with the disease (18, 19). In the context of 
DCM, several metabolites have been identified using 
metabolomics, implicating various metabolic pathways 
in the pathogenesis of the disease (20, 21). However, the 
metabolomic landscape of DCM is still far from fully 
elucidated, and further investigations are warranted 
to confirm these findings and discover new potential 
biomarkers.

In this study, we employed an LC-MS-based  
metabolomics approach to investigate the plasma 
metabolite profile of T2DM patients with and without 

DCM. We aim to identify novel plasma biomarkers for 
DCM in T2DM patients and shed light on the metabolic 
alterations associated with this complication.

Materials and methods

Study design and participant information
This study was conducted at the Second Affiliated 
Hospital of Xiamen Medical College, Xiamen, China. 
Participants were recruited in May 2022. A total of 43 
volunteers were recruited for the study and classified 
into three groups based on their clinical profiles. Table 1 
provides a detailed summary of the average age, gender 
distribution, and key clinical parameters, such as blood 
glucose, cholesterol, and triglyceride concentrations, 
among the three groups. The table elucidates significant 
differences in age between the normal group and the 
T2DM/DCM groups, while gender distribution, cholesterol 
concentrations, and blood glucose levels exhibit distinct 
patterns across the cohorts. The normal group was 
participants without a history of diabetes. The T2DM 
group was individuals diagnosed with type 2 diabetes 
mellitus, but demonstrated normal cardiac function 
with no signs of cardiomyopathy. The DCM group was 
participants diagnosed with type 2 diabetes mellitus 
and concurrent cardiomyopathy. Primary symptoms 
exhibited by these individuals included reduced left 
ventricular diastolic function, high voltage in sinus 
rhythm left ventricle, ST-segment changes in some leads, 
T-wave changes in some leads, and low voltage in the 
left chest lead. The purpose of this study was to examine 
the distinct metabolite profiles of plasma among these 
groups using liquid chromatography–mass spectrometry 
(LC-MS) to identify potential biomarkers and metabolic 
pathways associated with diabetic cardiomyopathy 
in patients with type 2 diabetes. This study was 
approved by the Medical Ethics Committee of Xiamen 
Medical College (Approval number 20211207008). All 
procedures performed in studies involving human 

Table 1 Demographic and clinical characteristics of the three study groups. The data include the number of participants (n); the 
gender distribution (male/female); age; levels of blood glucose, cholesterol, and triglycerides; diabetes history; and signs of 
cardiomyopathy. 

Groups n Male/female Age
Blood glucose 

(mM)
Cholesterol 

(mM)
Triglyceride 

(mM)
Diabetes 
history Signs of cardiomyopathy

Normal 16 8/8 46.3 ± 8.7c 5.1 ± 0.3a 5.0 ± 0.5 1.3 ± 0.6b None None
T2DM 12 6/6 48.5 ± 9.3 8.2 ± 2.8 4.6 ± 0.6 1.7 ± 1.0 Type 2 None
DCM 15 9/6 52.0 ± 6.7 8.3 ± 2.0 3.7 ± 1.0a 2.0 ± 0.9 Type 2 Reduced left ventricular diastolic 

function, high voltage in sinus 
rhythm left ventricle, ST-segment 
changes in some leads, T-wave 
changes in some leads, and low 
voltage in the left chest lead.

Statistical analysis was conducted using the t-test.
aSignificant differences compared to the other two groups with P < 0.01; bSignificant differences compared to the DCM group with P < 0.05; cSignificant 
differences compared to the DCM group with P < 0.01.
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participants were in accordance with the Ethical 
Standards of the Institutional and/or National Research 
Committee and with the 1964 Helsinki Declaration and 
its later amendments or comparable ethical standards.  
Informed consent was obtained from all individual 
participants included in the study. The authors  
did not have access to information that could identify 
individual participants during or after data collection.

Sample collection
Blood samples were collected into heparinized 
anticoagulant tubes from all participants. To obtain 
plasma, the blood samples were immediately centrifuged 
at 1100 g for 10 min at 4°C. From the resulting plasma,  
100 μL were extracted and mixed with 400 μL of  
methanol to ensure homogeneity. The mixture was then 
disrupted using an ultrasonic disruptor, followed by 
centrifugation at 10,000 g for 10 min at 4°C to separate 
the supernatant. The supernatant was collected and 
dried using a nitrogen blow dryer. The dried samples 
were then reconstituted in 100 μL of a solution of 
acetonitrile (ACN) and water mixed in a 1:1 ratio. After 
reconstitution, samples were centrifuged again at  
10,000 g for 10 min at 4°C, and the supernatant was 
collected for metabolomic analysis. All samples were 
stored at −20°C until ready for use.

Metabolomic analysis
Metabolomic analysis was performed using a Waters 
Xevo G2-XS QToF mass spectrometer. Chromatographic 
separation was conducted using a 1.7 µm ACQUITY 
UPLC BEH C18 column. The injection volume was set at 
2 μL, with a flow rate of 0.4 mL/min. The mobile phase 
consisted of 0.1% formic acid in water (phase A) and ACN 
with 0.1% formic acid (phase B). A 30-min gradient was 
applied as follows: 90% A (0–2 min), a linear gradient 
from 90% A to 0% A (2–20 min), maintaining at 0% A 
(20–25 min), a swift change from 0% A to 90% A (25–26 
min), and then maintaining at 90% A (26–30 min). For the  
mass spectrometry conditions, the ESI source was 
operated in positive ion mode. The capillary voltage 
was set at 3125 V. Cone gas flow was at 60 L/H, 
desolvation temperature was set at 500°C, and the source  
temperature was maintained at 100°C. Desolvation 
gas flow was set at 600 L/h. The mass spectrometer 
was set to scan over the range of 50–1200 m/z, and 
data were collected in centroid mode. Raw data were 
collected using Masslynx 4.1 software. To ensure the  
mass accuracy during data acquisition, an independent 
lock-mass ion, leucine enkephalin ([M+H]+ = 556.2771), 
was used.

Data processing and 
metabolite identification
Raw data collected from the LC-MS were analyzed 
using Progenesis QI software. This software was used to  

perform alignment and peak picking for the data. 
Metabolites were selected based on a fold change 
greater than 2.0 and a P-value less than 0.05 
(determined by ANOVA), which signified statistically 
significant changes in metabolite levels between the 
different groups (Supplementary Data 1, see section 
on supplementary materials given at the end of this 
article). Metabolite identification was performed by 
comparing the mass spectra of the selected peaks with 
the endogenous metabolites database of the Human 
Metabolome Database (HMDB). Both primary (exact 
mass) and secondary (MS/MS fragmentation pattern) 
spectral data were used for the identification process  
(Supplementary Data 2 and 3).

Statistical and pathway analysis
Statistical analysis was performed using the online 
platform MetaboAnalyst. The data filtering was  
based on the interquartile range, with 40% of the data 
filtered out. Normalization was performed using the 
auto-scaling method, which scales the data so that the 
variance of each metabolite is equal. Significantly 
different metabolites in the DCM group were identified 
using a one-way ANOVA test. A P-value of less than 0.05 
was considered statistically significant. Subsequently, 
pathway analysis was performed using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database.

Results
Metabolomic analysis of plasma samples 
from DCM patients
The metabolomic analysis of plasma samples using 
LC-MS and subsequent data processing yielded a 
total of 27,143 ions. Among these ions, 4771 exhibited 
statistically significant differences (P < 0.05, ANOVA) 
and fold changes greater than 2 among the three study 
groups (normal, T2DM, and DCM). To further investigate 
the metabolic differences between the groups, the 4771 
ions were subjected to analysis using MetaboAnalyst 5.0. 
A partial least squares-discriminant analysis (PLS-DA) 
was performed, and pairwise score plots for the top five 
components were generated (Fig. 1A). The 2D scores 
plot comparing components 1 and 2 (Fig. 1B) clearly 
demonstrated distinct separation among the normal, 
T2DM, and DCM groups, with a significant difference 
observed between the normal group and the other two 
groups. The 4771 ions were also compared against the 
HMDB using Progenesis QI software, resulting in the 
identification of 361 endogenous metabolites.

After data filtering in MetaboAnalyst 5.0, the  
remaining 361 metabolites were subjected to one-
way ANOVA and post hoc tests, with a P-value (false 
discovery rate (FDR)) cutoff of 0.05. This analysis 
revealed 160 significant metabolites (red dots) and 164  
insignificant metabolites (green dots) (Fig. 1C). 
Additionally, a significance analysis of metabolomics 
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Figure 1

Metabolomic analysis of plasma samples from DCM group. (A) Pairwise score plot for the top five components obtained from PLS-DA analysis, 
demonstrating distinct clustering of normal, T2DM, and DCM groups. (B) 2D scores plot comparing components 1 and 2, further illustrating the 
separation among normal, T2DM, and DCM groups. (C) Data filtering and one-way ANOVA analysis identified 160 significant metabolites (red dots) and 
164 insignificant metabolites (green dots) among the 361 endogenous metabolites. (D) Significance analysis of metabolomics revealed 105 metabolites 
exceeding the specified threshold as significant features. (E) Pathway analysis of the significant metabolites. The analysis identified significantly altered 
metabolic pathways (P < 0.05) in DCM plasma.
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was performed, with a delta value (FDR control) set at 
2 (Fig. 1D).
In Fig. 1E, we performed pthway analysis using the 
significant metabolites identified in Fig. 1C. This  
analysis was conducted using the KEGG metabolic 
pathways as the backend knowledgebase. The results 
revealed several significantly altered metabolic 
pathways (P < 0.05) in the plasma of DCM patients. 
The metabolic pathways that showed significant  
differences in DCM plasma included steroid hormone 
biosynthesis, purine metabolism, tryptophan 
metabolism, pyrimidine metabolism, lysine degradation, 
and starch and sucrose metabolism.

Metabolites with significant abundance 
changes in DCM group
Based on the results of the one-way ANOVA, metabolites 
with an F value > 4, a P value, FDR < 0.05, and an 
abundance greater than 1000 in the mass spectrometry 
data were selected. In the DCM group, the metabolites 
with the highest abundances were identified as 
3-hydroxytetradecanedioic acid, 17α-ethynylestradiol, 
phytanic acid, erucic acid, nervonic acid, 
methylguanosine, 19,20-DiHDPA, thromboxane B3, dCTP, 
N8-acetylspermidine, and 11-β-hydroxyandrosterone-
3-glucuronide. On the other hand, the metabolites 
with the lowest abundances in the DCM group were 
identified as CTP, glucose 6-phosphate, saccharopine, 
uridine diphosphate glucose, 11-ketoetiocholanolone, 
inosinic acid, 3-methylcrotonylglycine, aldosterone,  
and docosapentaenoic acid (Table 2).

Biomarker analyses between the T2DM and 
DCM groups
In further analysis of the differential metabolites  
between the T2DM and DCM groups, we employed ROC 
curve-based biomarker analyses to identify specific 
biomarkers that could distinguish DCM from T2DM. 
Figure 2 presents the five metabolites with an area under 
the curve (AUC) greater than 0.75, which indicates their 
potential as specific biomarkers for DCM. The selected 
biomarkers and their corresponding ROC curves are 
as follows: CTP (Fig. 2A), 11-ketoetiocholanolone (Fig. 
2B), saccharopine (Fig. 2C), nervonic acid (Fig. 2D), and  
erucic acid (Fig. 2E). The left panel of each figure shows 
the ROC curve of an individual biomarker, while the 
right panel displays the box plot depicting the relative 
abundances of the selected feature between the two 
groups within the dataset.

Discussion

Our study aimed to identify potential plasma  
biomarkers for DCM in T2DM patients and investigate 
the associated metabolic alterations. Although we 
identified several compounds that exhibited the highest 

or lowest levels in the DCM group compared to the 
normal group (Table 2), most of these compounds were 
shared characteristics between DCM and T2DM, rather 
than unique to DCM. For example, we observed lower 
levels of aldosterone, docosapentaenoic acid, inosinic 
acid, glucose 6-phosphate, and uridine diphosphate 
glucose in both the DCM and T2DM groups compared to 
the normal group. Conversely, we found higher levels of 
N8-acetylspermidine, 3-hydroxytetradecanedioic acid, 
17α-ethynylestradiol, phytanic acid, methylguanosine, 
11-β-hydroxyandrosterone-3-glucuronide, 19,20-DiHDPA, 
thromboxane B3, and dCTP in both the DCM and 
T2DM groups (Table 2). These metabolites may be 
associated with the progression of diabetes; however, 
they are not sufficient to serve as specific markers for 
DCM in our statistical model. The altered metabolites 
identified in our study are involved in various metabolic  
pathways, including starch and sucrose metabolism, 
steroid hormone biosynthesis, and tryptophan 
metabolism (Fig. 1E).

Biomarker analyses using ROC curves identified 
several potential biomarkers for DCM, including CTP, 
11-ketoetiocholanolone, saccharopine, nervonic acid, 
and erucic acid (Fig. 2). Notably, the decreased level of 
CTP, which is associated with pyrimidine metabolism 
(Fig. 1E), was found in the DCM group. Additionally, 
the downregulation of inosinic acid (Table 2) was 
associated with purine metabolism pathway (Fig. 1E). 
Disorders of purine and pyrimidine metabolism have 
been extensively studied (22, 23, 24), particularly in the 
context of hyperuricemia and gout (25).

Saccharopine, an intermediate in the metabolism  
of the amino acid lysine, exhibits significantly higher 
levels in individuals with DCM compared to those with 
T2DM and normal subjects (Table 2 and Fig. 2C). The 
altered abundance of saccharopine is closely associated 
with disruptions in the lysine degradation pathway 
(Fig. 1E). It is noteworthy that saccharopine has been 
identified as a mitochondrial toxin, and its abnormal 
accumulation can lead to defective mitochondrial 
dynamics and impaired function in experimental 
models (26, 27, 28). The lysine degradation pathway is 
clinically relevant, as it has been implicated in severe 
neurometabolic disorders such as pyridoxine-dependent 
epilepsy and glutaric aciduria type 1 (29). The significant 
elevation of saccharopine levels in DCM suggests a 
potential link between lysine metabolism, mitochondrial 
dysfunction, and the pathogenesis of DCM.

11-Ketoetiocholanolone, a metabolite of cortisol, 
has been widely employed as a stress biomarker in 
various vertebrate species (30, 31). Although its precise 
physiological significance remains unclear, our findings 
suggest that decreased levels of 11-ketoetiocholanolone 
may serve as a potential marker for DCM. The observed 
reduction in 11-ketoetiocholanolone levels in DCM 
patients implies alterations in the cortisol metabolism 
pathway or stress response mechanisms associated with 
the development and progression of DCM.
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Nervonic acid is a very long-chain fatty acid primarily 
found in mammalian nerve tissues. Its significance 
extends beyond its structural role, as emerging research 
has identified its potential as a biomarker for various 
disorders. For instance, studies have indicated that 
plasma nervonic acid levels hold promise as a potential 
biomarker for major depressive disorder. Furthermore, 

the presence of nervonic acid has been associated 
with important physiological processes, including 
myelination and neuroinflammation (32, 33).

The presence of erucic acid, a fatty acid, has been 
associated with the inhibition of mitochondrial  
oxidation of other fatty acids, particularly in cardiac 

Figure 2

ROC curve-based biomarker analyses between the T2DM and DCM groups. (A) Cytidine triphosphate (CTP). (B) 11-Ketoetiocholanolone. (C) Saccharopine. 
(D) Nervonic acid. (E) Erucic acid. The left panel of each subfigure shows the ROC curve, which assesses the performance of the individual biomarker. The 
sensitivity is on the y-axis, and the specificity is on the x-axis. The area under the curve (AUC) is in blue. The right panel displays the box plot, depicting the 
relative abundances of the selected feature between the T2DM and DCM groups within the dataset. A horizontal line is in red indicating the optimal cutoff.
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tissues. This inhibition can lead to the accumulation 
of triglycerides in the hearts of rats fed rapeseed oil 
(34, 35). These findings suggest that erucic acid and its 
mitochondrial metabolites play a significant role in 
modulating lipid metabolism and cardiac function. In 
the context of DCM, further investigation is necessary to 
explore the potential involvement of erucic acid and its 
metabolites in the pathogenesis of DCM. Understanding 
the impact of erucic acid on cardiac lipid metabolism 
may contribute to the development of novel therapeutic 
strategies targeting lipid dysregulation in DCM.

In conclusion, our study identified potential plasma 
biomarkers and metabolic alterations associated with 
DCM in T2DM patients. The findings contribute to the 
understanding of the complex metabolic changes in 
DCM and highlight the need for further research to  
validate these biomarkers and explore their clinical 
applications. Continued efforts in elucidating the 
metabolic pathways and mechanisms involved in 
DCM may ultimately lead to improved early detection, 
risk stratification, and therapeutic strategies for this 
debilitating complication of T2DM.
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