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Abstract: Accurate measurements of thermal properties is a major concern, for both scientists and
the industry. The complexity and diversity of current and future demands (biomedical applications,
HVAC, smart buildings, climate change adapted cities, etc.) require making the thermal character-
ization methods used in laboratory more accessible and portable, by miniaturizing, automating,
and connecting them. Designing new materials with innovative thermal properties or studying
the thermal properties of biological tissues often require the use of miniaturized and non-invasive
sensors, capable of accurately measuring the thermal properties of small quantities of materials.
In this context, miniature electro-thermal resistive sensors are particularly well suited, in both ma-
terial science and biomedical instrumentation, both in vitro and in vivo. This paper presents a
one-dimensional (1D) electro-thermal systemic modeling of miniature thermistor bead-type sensors.
A Godunov-SPICE discretization scheme is introduced, which allows for very efficient modeling
of the entire system (control and signal processing circuits, sensors, and materials to be character-
ized) in a single workspace. The present modeling is applied to the thermal characterization of
different biocompatible liquids (glycerol, water, and glycerol–water mixtures) using a miniature
bead-type thermistor. The numerical results are in very good agreement with the experimental ones,
demonstrating the relevance of the present modeling. A new quasi-absolute thermal characterization
method is then reported and discussed. The multi-physics modeling described in this paper could in
the future greatly contribute to the development of new portable instrumental approaches.

Keywords: thermal conductivity measurements; miniature NTC thermistor; self-heating methods;
systemic modeling; Godunov discretization scheme; SPICE

1. Introduction

The miniaturization of electro-thermal sensors consists of designing and manufac-
turing ever smaller measuring devices, in order to characterize very limited quantities of
material, under a wide variety of operating conditions. This miniaturization has opened
up new perspectives in many scientific and technical fields, particularly in medicine, where
it has enabled in vivo thermal characterization of biological tissues, that is of crucial
importance, for example, in the focal treatment of tumors by magnetic hyperthermia [1].

If some attempts of thermal systems miniaturization at the microscopic scale have been
successfully achieved, particularly with the development of labs on a chip, they mainly
concern the detection of micro objects [2], thermal imaging, or heat transfer enhancement
in micro-fluidics [3]. The precise measurement of the thermal properties of materials is still
mainly carried out today at centimeter or millimeter scales [4,5]. Therefore, in this paper,
we refer to miniature sensors as sensing elements whose main dimensions are in the order
of the millimeter to a few hundred micrometers.

It is clear that the miniaturization of electro-thermal sensors brings undeniable ad-
vantages, such as: a lower thermal inertia; a limited invasiveness of the system to be
characterized, which is, therefore, less disturbed by the sensor; and the possibility of using
small quantities of material, that is highly desirable in nanotechnologies, for example,
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where the products to be characterized can be very expensive. However, the miniaturiza-
tion of electro-thermal sensors can also have drawbacks, the most delicate being certainly
the problem of the increasing influence of boundary-effects, mainly due to electrical con-
nections. These connections represent unavoidable heat sinks for the sensor, systematically
imposing a precise and delicate calibration before any use [6,7]. It is mainly this aspect that
makes it very difficult to design new measuring systems using miniature electro-thermal
sensors. Under these conditions, it is very desirable to be able to develop systemic model-
ings, allowing for describing, as accurately as possible, the real operation of thermal sensors
in their measurement environment. Thus, a one-dimensional (1D) systemic modeling using
a Godunov-SPICE discretization is presented in this paper, in the case of miniature bead
-type thermistor sensors with negative temperature coefficient (NTC). This approach allows
for a very efficient model of the sensor, its control, and signal processing circuits, as well
as the thermal interactions with the material to be characterized, and this within a single
workspace (systemic modeling).

There are a large number of thermal characterization methods (depending on the
nature of the materials to be characterized), which can be classified mainly into two
categories [8–10], without being exhaustive:

• the transient methods, among which we can mention: the pulse-decay method [11]; the
temperature step methods [6,12–14]; the transient hot wire (THW) and the transient
hot strip (THS) methods; flash methods; transient plane source methods (TPS); 3ω
harmonic methods [15,16];

• the steady-state methods, such as the guarded hot plate and the heated thermocouple
methods.

These techniques can be implemented using a wide variety of different thermal sensors
(temperature or heat flow), such as: thermocouples, negative temperature coefficient (NTC)
thermistors, resistance temperature detectors (RTDs), and radiative sensors.

In the present paper, we will focus on the transient mode use of miniature resistive
electro-thermal sensors, for thermal characterization of solid or liquid materials, in the
laboratory or in everyday use conditions. These sensors can be classified into two main
categories: the hot metal wires (HMW) or hot metal films (HMF) made of pure metal
resistors (RTD), such as platinum or nickel; and the negative temperature coefficient (NTC)
thermistors, generally composed of semiconducting metal oxides. All these sensors share
the same operating principle: the time evolution of their electrical resistance R(t), due
to a controlled self-heating, depends on the physical properties (thermal conductivity,
density, specific heat, fluid flow) of the material to be characterized, in which the sensor is
immersed.

Among these resistive electro-thermal sensors, bead-type thermistors have the ad-
vantages of spherical or quasi-spherical symmetry, being non-traversing and small in size,
unlike wire sensors (which are traversing or large in size) and hot film sensors (which
are usually non-symmetrical composite structures [17]). In contrast, RTDs have the great
advantage of obeying a law of variation of the resistance as a function of temperature
which is linear with a very good approximation, while NTCs obey a non-linear law of
variation. The linearity property of RTDs greatly simplifies the development of signal
processing circuits and allows a wide variety of applications, ranging from thermal charac-
terization of materials (THW method, 3ω method) to flow measurement (hot wire or hot
film anemometry).

In contrast, the non-linearity of NTCs has certainly been a major obstacle to the devel-
opment of various thermal characterization methods using them. If NTCs are indeed used
for transient thermal characterization of pulse-decay or temperature step types, however,
we do not find in the literature any use in harmonic method of 3ω type for example. Thus,
main objective of this paper is to propose an accurate 1D systemic multi-physics modeling
of bead-type thermistors, which are non-linear but very easy to implement sensors. This
systemic modeling should, on the one hand, help in the development of new thermal
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characterization methods using miniature bead-type NTCs; on the other hand, it should
help to better understand the operating mode of existing methods.

The implementation modes of miniature resistive sensors used in material characteri-
zation can be classified into two main categories:

• the source/sensor(s) mode [18–20], which implements separate heat source and sen-
sors. This operating mode requires an accurate and reproducible positioning of the
sensor(s) relative to the heat source; and

• the self-heating mode [10], in which the sensitive element serves as both a heat source
and a temperature sensor. The basic principle of this mode of operation is that the
less heat conducting the surrounding materials to be characterized, the greater the
self-heating of the sensor element. Thus, the average temperature Tc(t) of the sensor
and the electrical power Pe(t) it dissipates are, in most situations, the basic informative
signals considered in electro-thermal methods used for thermal characterization.

While the 1D systemic modeling proposed in this work allows the simulation of both
characterization modes, it is the self-heating mode that will be mainly exposed here.

Simulation has become an essential tool in the development of electronic circuits.
In electronics, the SPICE (Simulation Program with Integrated Circuit Emphasis) code,
developed at Berkeley in the early 1970s [21], has been widely adopted and has indeed
become a true industrial standard. While SPICE excels at solving the ordinary differential
equations (ODEs) that describe the temporal operation of electrical circuits, it lacks the
intrinsic ability to solve the partial differential equations (PDEs) that describe heat transfers
and spatiotemporal evolutions of the temperature within the sensor and the material
being characterized. To correct this deficiency, it is necessary to develop accurate models
of electro-thermal sensors, which integrate interactions between thermal quantities and
electrical signals. In reference [22], Heyd et al. used the capability of SPICE for fast and
accurate Laplace transform inversion to solve the unsteady heat equation in a hot wire
heated by Joule effect and submitted to a fluid flow (hot wire anemometer). In this context,
time and position were treated as continuous variables, allowing almost unlimited accuracy
in the simulation of the different modes of operation of hot-wire anemometers. Other
approaches are possible [23–29], which generally implement, on the one hand, a spatial
discretization of the medium to be characterized (and possibly also of the sensor) and uses,
on the other hand, an analogy to transform this discretization into an analogous electrical
circuit. This analogous circuit is then coupled to the electrical control signals.

A hybrid approach is used in the present work. The material to be characterized and
the composite bead-type NTC (core and sheath) are all discretized in spherical symmetry
(1D equivalent model) using a Godunov-type numerical scheme [30], while the electri-
cal connection wires of the thermistor are modeled using thermal resistors. The results
obtained using this numerical model in SPICE are then compared with the experimental
results obtained with pure glycerol at rest. Then, different effective parameters of the 1D
equivalent model are adjusted to allow the best possible reproduction of the experimental
measurements.

2. Materials and Circuits
2.1. Glycerol

In order to avoid natural convection as much as possible during the development of
the 1D systemic NTC model, glycerol, a non-ionic liquid with high viscosity, was chosen as
test fluid.

Because of the high hygroscopicity of glycerol, only fresh liquid (Sigma-Aldrich, St,
Saint-Quentin-Fallavier, France) was used, and sealing precautions were taken to avoid
dissolution of atmospheric water vapor into the liquid during measurement and storage.

2.2. NTC Bead-Type Thermistor

Accurate and reproducible determination of the thermal properties of materials using
a miniature NTC bead-type thermistor requires a good understanding of the different heat
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exchanges that take place within the system. It is difficult, if not impossible, to consider
absolute measurements of thermal conductivity and diffusivity using NTC thermistors,
without a precise knowledge of their internal structure and of the influence of electrical
contacts.

2.2.1. Composition—Electrical Properties

The sensor used in this work is a miniature high precision epoxy encapsulated bead-
type thermistor of type 44004 from Omega, whose resistance at a temperature of 25 ◦C is
equal to 2252 Ohms (2252@25; see Figure 1a). This type of high precision thermistor was
chosen both for its quasi-spherical shape and small size and, on the other hand, for its
interchangeability. To avoid electrical conduction problems in ionic solvents, such as water,
a thin layer of insulating varnish has been applied to the NTCs copper connecting wires.

(a)

de

connecting wires

active core

protective sheath
electrode

(b)

Figure 1. (a) Precision miniature epoxy encapsulated bead-type 44004 NTC thermistor (2252@25)
from Omega and (b) its schematic composition. The length of the connecting copper wires is equal to
L = 76 mm in the present case.

Miniature NTC thermistors of bead-type generally consist of an active core (see Figure 1),
composed of a semiconducting metal oxide with negative temperature coefficient, protected
by a glass, nylon or epoxy sheath. While the active core can sometimes have a spherical
shape, it is, rather, usually in the shape of a slab (see Figure 1b). In order to allow the
circulation of an i(t) electric excitation current through the core, two small metal electrodes
are deposited on it, also allowing for measurement of its electric resistance R(T), which
depends on the core average temperature T.

The external shape of the NTC is usually a prolate spheroid, whose characteristic
dimension de is of the order of the millimeter or less (2.4 mm in the case of 44004 model).
Two small diameter copper wires (in the order of a few hundred micrometers: 180µm for
44004) ensure the electrical connection of the active core with the control and processing
circuit of the electro-thermal signal.

To measure the temperature T of the NTC active core, it is necessary to be able to
relate T to the value of the NTC electrical resistance R(T). There are several common laws
used to describe the variations in the electrical resistance R (in Ω) of the active core as a
function of its equilibrium temperature T (in K). One of the most used is certainly the law
of Steinhart and Hart [31]:

1
T

= c0 + c1 ln(R) + c3 ln(R)3, (1)

where the constants c0, c1, and c3 are obtained by a precise calibration (at least three points)
of the thermistor considered, in the temperature range visited experimentally. In the
case of thermistor 2252@25, for example, the values of R(T) (taken from the “Thermistor
Resistance vs. Temperature” table provided by Omega) in the range [−80, 120] ◦C allow
the following coefficients to be found (in K−1): c0 = 1.47× 10−3, c1 = 2.38× 10−4, and
c3 = 1.04× 10−7.

Simpler models can also be used [32], with only two coefficients. For example:

R(T) = exp
(

1
b1T
− b0

b1

)
= R(Tref) exp

[
β

(
1
T
− 1

Tref

)]
, (2)
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where Tref is typically chosen equal to 298.15 K. In the case of the 2252@25 thermistor,
we have obtained Rref = R(Tref) = 2252 Ω and β = 3864.5 K. This kind of two-factor
relationship being less precise than (1); therefore, it is recommended to experimentally
determine the coefficients (b0, b1) or (Rref, β) in the range of temperatures investigated
during the thermal characterization.

We now review the main energy transfers that take place within the thermistor and its
surrounding environment. During a typical liquid thermal characterization experiment, the
average electrical power Pe dissipated by the thermistor is in the range of 1 to 10 mW. The
corresponding temperature variations ∆T involved are then in the order of a few Kelvins,
thus generally being much lower than the working temperatures.

Considering the 2252@25 Omega thermistor used in this work, having an average
external radius ae ≈ 1.2 mm, typically traversed during ∆t = 30 s by an electric current
Ie = 2 mA, this corresponds to an average dissipated electric power Pe ≈ 10 mW. When this
thermistor is immersed in pure glycerol (at rest), at the working temperature T0 = 294 K,
the maximum temperature variations in the active core are about ∆Tc = Tc − T0 ≈ 1.3 K
and ∆Te = Te − T0 ≈ 0.8 K for the outer surface of the protective sheath. Considering these
orders of magnitude typical of a thermal characterization experiment, we can now analyze
the main sources of thermal losses and poor thermal contacts:

• Radiative heat losses Pr at the external surface of the NTC: These losses can be
estimated using Stefan–Boltzmann’s law: Pr = σεΣe(T4

e − T4
0 ) ≈ 4σεΣeT3

0 (Te − T0).
Under the working conditions presented above, and considering a maximal emissivity
ε = 1, we obtain Pr ≈ 0.1 mW. Therefore, it is justified to neglect Pr in front of Pe.
Under the typical working conditions described in this work, it can be assumed
that radiation losses have a negligible influence on the thermal characterization of
materials using a miniature bead-type thermistor.

• Thermal losses PL at the electrical contacts between the thermistor and the control
circuit: It is difficult to precisely estimate these heat losses because they are closely
linked to the nature of the experimental system implemented: electrical insulation
of the connecting wires (using a varnish or silicone) and length L of the connecting
wires; use of metal or plastic mounting probe.
Under the operating conditions described above, and for varnish insulated copper
wires, with a diameter dw = 0.18 mm and a length of L = 1 cm, immersed in pure
glycerol at rest, a finite element modeling has led to heat losses typically in the order
of 3 mW.
Therefore, heat losses via the electrical connections are considerable and can in no
way be neglected in the modeling of the thermistor.

• Convective losses Pc when the material to characterize is a fluid: Convective losses
always lead to an additional heat extraction from the sensor and are at the origin of an
overestimation in the measurement of the conductivity of the fluid to be characterized.
Therefore, it is essential to limit these convective losses if we want to correctly estimate
the thermal conductivity of the fluid to be characterized. This requirement dictated
the choice of glycerol as a test liquid for 1D systemic modeling of NTCs. The thermal
power evacuated from the thermistor to the fluid can be evaluated in the presence
of natural convection, from the Churchill correlation [33], which gives the following
Nusselt number expression, valid for natural convection around a sphere:

Nu = 2 +
0.589 Ra1/4

de[
1 + (0.469/Pr)9/16

]4/9 , (3)

where Pr = ν/α > 0.5 is the Prandtl number of the fluid, and Rade = gβd3
e ∆Te/να <

1011 is the Rayleigh number for the bead-type thermistor, with: g = 9.81 m · s−2 the
acceleration of gravity; ν = η/ρ the kinematic viscosity of the fluid (m2/s); α = k/ρc
its thermal diffusivity (m2/s); and β its volumetric expansion coefficient (K−1). Note
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that, in the absence of natural convection (Rade = 0), the Nusselt number takes the
limiting value Nu = 2, which corresponds to pure thermal conduction through the
liquid at rest. Typical values (at 20 ◦C) of water physical properties are collected in
Table 1. Typical values of glycerol properties at 20 ◦C can be found for example in [34].
Using the values of Table 1 for ∆Te = 0.8 K, we find in the case of glycerol that
Nu ≈ 2.5, which remains close to the value obtained in the absence of natural convec-
tion, and Pc = 0.8 mW, which is negligible compared to Pe. It can be concluded that it
is acceptable, for temperature variations ∆Te 6 1.0 K near room temperature, to ne-
glect the contribution of natural convection around the NTC in the case of immersion
in glycerol.
In contrast, in the case of NTC immersion in water, considering a temperature dif-
ference ∆Te = 0.5 K (thermistor heating is less here than in the case of glycerol) near
room temperature, we find that Nu ≈ 3.7, which is quite different from the values
obtained in the absence of natural convection, and Pc = 3.8 mW, which can no longer
be ignored.

• Poor thermal contacts: There are two main sources of poor thermal contact here: the
thermal contacts between the active core of the NTC and its protective sheath and
between the sheath and the surrounding medium to be characterized. If the latter is a
fluid (which is the case in the present study), we can assume that the corresponding
sheath/fluid thermal contact resistance is negligible. In contrast, the contact resistance
Rc between the sheath and the core is potentially significant, unknown and a priori
different from one sensor to another and will be taken into account in the 1D systemic
modeling proposed in this study.

Table 1. Typical physical properties values water (at 20 ◦C and 24 ◦C, from reference [35]) at atmospheric pressure. The
units of α and β are given in the text.

k (W ·m−1 ·K−1) ρ (kg/m3) c (kJ · kg−1 ·K−1) η (Pa · s) α/10−8 β/10−4

Water (20 ◦C) 0.598 998.2 4.19 1.00× 10−3 14.3 2.1
Water (24 ◦C) 0.605 997.3 4.18 9.11× 10−4 14.5 2.5

2.2.2. Heat Transfer through NTC and Surrounding Medium

Despite its small size, a miniature bead-type NTC is a complicated object from a heat
transfer point of view. Indeed, the presence of both metallic electrodes and connecting
wires, but also of an active core that can be slab-shaped and surrounded by a prolate
spheroid protective shell, does not strictly allow for attribution of particular simplifying
symmetries to the T(M, t) system temperature field. As a result, an exact description
of the thermal behavior of the “Fluid+ NTC + control circuits” multi-physics system
would require a three-dimensional (3D) modeling of heat transfers within the system.
Unfortunately, the complexity of such a 3D finite element modeling is a significant obstacle
to the development of an efficient and fast systemic modeling of NTCs used in thermal
characterization.

However, and given the small size of the miniature bead-type thermistor relative to
the volume of fluid to be characterized, the heat transfers outside the active core depend
very little on its shape (sphere or slab), as illustrated by the finite element modeling results
presented in Figure 2. These results were obtained by using the same constant and uniform
heating power density q̇e in both cases. The effective radius ac of the equivalent spherical
active core (see Figure 2b) was adjusted here to obtain the same core temperature as in the
slab-shaped core case (see Figure 2a). Note that, in this case, the volume Vc =

4
3 πa3

c of the
equivalent sphere is equal to the volume of the slab.
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(a) Slab-shaped active core. (b) Spherical active core.

Figure 2. Finite elements modeling of heat transfers through the multi-physics system: NTC + Fluid,
with: (a) a slab-shaped active-core; (b) a spherical active core. In both cases, the same materials
were considered for the sheath (epoxy, external radius as = 1 mm), the active core (semiconductor
material), and for the surrounding fluid (radius a f = 5 mm) to be characterized.

Based on the results presented in Figure 2, it can be concluded that, regardless of the
shape (sphere or slab) of the NTC active core, it is possible to propose an approximate 1D
modeling of a miniature bead-type NTC, which uses an equivalent spherical active core of
effective radius ac. This simplification allows us to propose a quasi-1D modeling of the
NTC, with spherical symmetry. Note that, in the case of spherical core NTCs, the effective
radius ac can be identified with the exact radius of the active core.

2.2.3. Mathematical Modeling

An elementary mathematical model, that is frequently used to describe the thermal
behavior of a miniature NTC of bead-type, consists of assimilating the whole composite
sensor to a single sphere of temperature Tc(r, t), with an effective radius a, and constant
effective thermal properties: k (thermal conductivity) and α (thermal diffusivity) [12]. The
self-heating of the sensor by the Joule effect is usually modeled by a uniform power density
q̇e = Pe(t)/ 4

3 πa3
c , where Pe(t) is the electrical power supplied by the driving circuit to the

active core of the NTC. The heat transfers through the NTC thermistor, being solely of a
diffusive nature, and its temperature Tc(r, t), thus, obeys the following heat equation in
spherical symmetry [36], with r being the distance to the center of the sphere:

1
r2

∂

∂r

[
r2 ∂

∂r
Tc(r, t)

]
+

q̇e(t)
k

=
1
α

∂

∂t
Tc(r, t) 0 ≤ r ≤ a, (4)

with Tc(0, t) finite and Tc(r, 0) = T0.
According to the results and discussions of Section 2.2.2, it is also considered in the

present work that the thermistor is spherical in shape, of radius as, but it is decomposed
into two concentric parts (see Figure 3): the active semiconducting core (Figure 3c) of
effective radius ac < as, thermal conductivity kc, and temperature Tc(r, t); the insulating
protective sheath (s) of effective thickness es = as − ac, thermal conductivity ks � kc ,
density ρs, specific heat cs, and temperature Ts(r, t). As in the case of the model proposed
by Balasubramaniam et al. [12], the present ideal model does not take into account at this
stage the losses due to the connecting wires. These defects will be modeled later using
appropriate thermal resistances.



Sensors 2021, 21, 7866 8 of 29

ac
as a fsheath

ks, ρs, cs fluid
k f , ρ f , c f

δT(r, t)

r

active core

Figure 3. Ideal 1D effective model of a miniature bead-type NTC, immersed in a fluid at rest (with
thermal conductivity k f , density ρ f , and specific heat c f ). The red curve represents effective variations
of the δT = T(r, t)− T0 temperature through the system, as a function of r, at a given time t.

Due to the usual high value of the thermal contrast (or thermal ratio kc/ks) between
the core and the sheath of the NTC, the temperature Tc(r, t) = T0 + δTc(r, t) of the high
thermal conductivity core can be considered as uniform to a very good approximation (see
Figure 2). Numerical simulations made with the multi-physics finite element solver Flex-
PDE have shown that, in all the cases under study here, the spatial variations in the tem-
perature δTc(r, t) of the core were absolutely negligible: 1− |δTc(0, t)/δTc(ac, t)| < 0.1%.
Thus, it is possible to consider here that the temperature δTc only depends on the time
t. Therefore, the energy balance of the highly conductive core can be written, using the
spherical symmetry of the equivalent 1D model, as:

4
3

πa3
c ρccc

dTc

dt
=

4
3

πa3
c q̇e + 4πa2

c ks

(
∂Ts

∂r

)
r=ac

, (5)

where ρc and cc are the density and the specific heat of the active core, respectively, and Ts
is the temperature of the sheath, at the interface with the active core at r = ac.

On the other hand, the temperature Ts(r, t) of the sheath obeys a diffusive heat
equation without source term, which is written, still using the spherical symmetry of the
equivalent 1D model, as:

1
r2

∂

∂r

[
r2 ∂

∂r
Ts(r, t)

]
=

1
αs

∂

∂t
Ts(r, t) ac < r < as, (6)

where the thermal diffusivity αs of the sheath is supposed to be constant. The thermal
contact between the solid sheath (s) and the solid core (c) being a priori not perfect, we can
only assume here the continuity of the heat flow at the interface r = ac between (c) and (s):

kc

(
∂Tc

∂r

)
r=ac

= ks

(
∂Ts

∂r

)
r=ac

. (7)

The surrounding material (f) to be characterized is assumed to be homogeneous, at
rest, of semi-infinite extent and constant thermal conductivity k f and diffusivity α f . Two
situations are often considered, depending on the physical nature of the surrounding
material, delimited by the radius r = a f :

• (f) is an inert (non-biological) material at rest, with no heat source term. In this case,
its temperature Tf (r, t) also obeys a diffuse heat transfer equation, with spherical
symmetry:

1
r2

∂

∂r

[
r2 ∂

∂r
Tf (r, t)

]
=

1
α f

∂

∂t
Tf (r, t) as < r < a f , (8)
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• (f) is a biological material, which obeys a differential equation of the Penne type
(bioheat transfer equation), for example [37,38]:

1
r2

∂

∂r

[
r2 ∂

∂r
Tf (r, t)

]
+

q̇ f

k f
+

ωρbcb
k f

(
T0 − Tf

)
=

1
α f

∂

∂t
Tf (r, t) as < r < a f , (9)

where q̇ f and ωρbcb(T0 − Tf ) are the metabolic and the perfusion heat source terms,
respectively. The perfusion term describes the heat transfer between the medium
(f) (biological tissues) and blood (b) flowing through the veins and arteries, with a
volumetric mass flow ρbω (kg·m−3·s−1) and blood specific heat cb.
The initial condition to be considered for the partial differential Equation (8) or (9) is
Tf (r, 0) = T0. The boundary condition to consider at r = a f depends on the thermal
characterization apparatus that is used. We suppose here that the medium to charac-
terize is in perfect thermal contact at r = a f with a thermostat at the temperature T0:

Tf (a f , t) = T0. (10)

While both situations (8) and (9) can be studied in the same way with the systemic
modeling presented in this work, it is the (8) case that will be presented here in detail,
both from a numerical and an experimental point of view.
Finally, a perfect thermal contact is assumed between the thermistor sheath and the
medium to be characterized (fluid at r = as), the following continuity relationships
must then be satisfied at all times:

Ts(as, t) = Tf (as, t) and ks

(
∂Ts

∂r

)
r=as

= k f

(
∂Tf

∂r

)
r=as

. (11)

The simultaneous solving of the (PDEs) partial differential Equations (5), (6)
and (8) (or (9)), together with the boundary conditions (7), (10), (11), and the initial condi-
tion Tc(0) = Ts(0, t) = Tf (0, t) = T0, allows for determination of the temporal evolution of
the core temperature Tc(t), which depends both on the medium to be characterized and
the electrical power Pe(t) used to excite the thermistor.

Thus, the 1D systemic approach presented in this work consists of solving the PDEs
of the equivalent system, while, at the same time, taking into account the operation of the
electronic circuits used to provide the power Pe(t) to the thermistor.

The electronic circuit that was used for both the experimental measurements and the
systemic modeling is described in detail in the following paragraph.

2.3. Electronic Circuit

The electronic circuit shown in Figure 4 was used for both experimental measurements
and systemic modeling. This is a typical example of an amplified voltage divider bridge
circuit, quite versatile, which can be adapted according to the implemented resistive sensor
(NTC or RTD) and can be used both in transient and frequency modes.

A Measurement Computing (MC) USB-2537 multi-functions data acquisition board
has been used for measurements, providing one 16 bits DAC output and two 16 bits ADC
inputs (ADC0 and ADC1). The following precautions must generally be observed when
implementing transient thermal characterization methods with the circuit shown in Figure 4:

• Since the temperature variations due to self-heating are generally of small amplitude
(a few Kelvins at most), it is necessary to use an analog-to-digital converter (ADC)
with a resolution of at least 14 bits. Moreover, as thermal phenomena are generally
relatively slow (with time constants typically in the order of a few tenths of a second
or more), a sampling period of around 10 ms or more is, therefore, sufficient in most
cases. A digital-to-analog converter (DAC) with a resolution of 12 bits or better can
be used to provide the excitation signal ve(t) for transient methods. If the sensing
element is to be excited in current rather than voltage, a voltage-to-current converter
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(of the Howland source type) can be used instead of the non-inverting amplifier
shown in Figure 4.

• The inputs ADC0 and ADC1 must have a sufficiently large input impedance Ze

(typically, Ze > 105 Ω. In the case of USB-2537: Ze = 107 Ω) to not load the circuit.
If necessary, a high impedance buffer (voltage follower) can be used to isolate the
control circuit from the influence of the ADC.

• The operational amplifiers (OA) used in circuit Figure 4 must operate in the linear
regime. If the self-heating of the sensor requires an electric current with an intensity
i(t) > 10 mA, then, the use of an operational amplifier capable of delivering high
currents should be considered. This could be the case, for example, with low-resistance
platinum wires, whose value is close to 1 Ω. In this case, a typical average electrical
power Pe = 10 mW requires about 100 mA electrical excitation current.
To make the set-up as versatile as possible, a power OA of type L272 (delivering
currents up to 1 A without significant harmonic distortion) was systematically used.

• The working (or baseline) temperature T0 must be precisely regulated, usually by
means of a temperature controlled bath. The variations ∆T0 of the working tempera-
ture must be negligible in front of the maximal temporal variations of the sensor core
temperature δTc(t), due to self-heating. An accuracy of ∆T0 ≈ 0.01 K is sufficient in
most cases.

measurement cellT0

××

−

+

OA

DAC/AWG

ve(t)

Ra

Rb

v0(t)

ADC0
R0

v1(t)
ADC1

i(t)

R(Tc)

Figure 4. Amplified divider bridge circuit used both to control the self-heating of the NTC bead-type
thermistor and measure the time variations of its electrical resistance R(Tc). This circuit can be used
in both transient and frequency modes. ADC0 and ADC1 are two inputs of an Analog to Digital
Converter (ADC). The circuit can be excited either by using a Digital To Analog Converter (DAC) or
by using an Arbitrary Waveforms Generator (AWG).

3. 1D Systemic Modeling

As mentioned before, an approximate 1D systemic modeling of a bead-type NTC is
considered in this work, which consists essentially of assuming that heat transfers through
the NTC present the spherical symmetry. This 1D systemic modeling of a bead-type NTC
relies first on a suitable spatial discretization of the heat Equation (6) in the sheath and (8)
or (9) in the medium to be characterized.

The discretization process of the present thermal problem, as well as different elemen-
tary applications of this discretization, is introduced in the present paragraph.

3.1. General Approach

In all cases considered in the present study, we are dealing with (equivalent) domains
having the shapes of spherical shells, for which the discretization schemes are, therefore,
perfectly similar. Therefore, we choose to discretize the partial differential Equation (9),
which has the most general expression here. This PDE is then rewritten in the following
general self-explanatory form:
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1
α

∂

∂t
T(r, t) =

1
r2

∂

∂r

[
r2 ∂

∂r
T(r, t)

]
+

q̇
k
+

ωρbcb
k

(T0 − T) a1 < r < a2, (12)

where α = k/ρc is the thermal diffusivity of the physical domain (Ω) = (a1, a2). The
PDE (12) can be rewritten in the following form:

ρc
∂

∂t
T(r, t) = k

∂2

∂r2 T(r, t) +
2k
r

∂

∂r
T(r, t)− hω(T − T0) + q̇, (13)

where hω = ωρbcb > 0. The domain (Ω) is spatially discretized into M slices of equal
thickness δr = (a2 − a1)/M (see Figure 5).

r
a1

Tn
0

r1

Tn
1

. . .

. . .
rm−1

Tn
m−1

m− 1
2

(m) slice

m+ 1
2

rm

Tn
m

rm+1

Tn
m+1

. . .

. . .
rM−1

Tn
M−1

a2

Tn
M

Figure 5. Spatial discretization of the spherical shell (Ω) = (a1, a2) into M slices of equal thickness
δr = (a2 − a1)/M.

Using explicit discretization schemes centered on the node rm = a1 + mδr, the discrete
version of (13) can be written as follows:

ρcδr
Tn+1

m − Tn
m

∆tn
=

k
δr

(
Tn

m−1 − Tn
m
)
− k

δr

(
Tn

m − Tn
m+1

)
− k

rm

(
Tn

m−1 − Tn
m+1

)
− hω(Tn

m − T0)δr + q̇n
mδr,

(14)

where Tn
m is the absolute temperature of the node (rm) at time tn = tn−1 + ∆tn with n > 1;

m ∈ [1, M − 1]. Equation (14) can now be rewritten as a thermal energy conservation
relation (Godunov conservative form), where the electro-thermal analogies gathered in
Table 2 were used:

ith
m− 1

2
+ ithq̇m − ith

m+ 1
2
− ithm − ithhωm − ithCm = 0. (15)

Table 2. Analog electrical and thermal current densities (in W ·m−2).

Thermal Electro-Thermal
k
δr

(
Tn

m−1 − Tn
m
)

ith
m− 1

2
k
δr

(
Tn

m − Tn
m+1

)
ith
m+ 1

2
k

rm

(
Tn

m−1 − Tn
m+1

)
ithm

q̇n
mδr ithq̇m

hωδr(Tn
m − T0) ithhωm

ρcδr
Tn+1

m −Tn
m

∆tn
ithCm

Thus, it is possible to give an electro-thermal representation of the slice (m), which is
composed of five ideal controlled current sources and one capacitor (see Figure 6). Note
that the additional ideal voltage source guarantees an initial temperature of node (rm)
equal to T0. Moreover, the capacitance Cth of the analog electro-thermal capacitor is given
by Cth = ρcδr.
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Tn
m−1

Tn
m Tn

m+1

ith
m− 1

2

ith
m+ 1

2

it
h

m
i thq̇

m

ithCm

−
+T 0

i thh
ω m

slice (m)

Figure 6. Electro-thermal modeling of a slice (m) of a material obeying the partial differential
Equation (12).

To test the relevance of the Godunov electro-thermal analogy proposed in this work,
we first solved Equation (12) in the case where q̇ = 0 and hω = 0, considering the following
initial and boundary conditions: δT(r, 0) = T(r, 0)− T0 = 0, δT2 = T(a2, t)− T0 = 0, and
δT1 = T(a1, t)− T0 = 10 K (Dirichlet conditions). The considered system is a spherical shell
of inner radius a1 = 10−3 m and outer radius a2 = 2× 10−3 m, with the following physical
properties: k = 1.0 W ·m−1 ·K−1; ρ = 1.9× 103 kg ·m−3 and c = 1.5× 103 J · kg−1 ·K−1.
The spherical shell is discretized into M = 12 slices of equal thickness (see Figure 7a).
Figure 7b shows the results obtained with the present systemic modeling (symbols) when
t→ ∞ (steady state), for which case there is an analytical solution, given by:

δT(r) = T(r)− T0 =
a1(a2 − r)δT1 + a2(r− a1)δT2

(a2 − a1)r
, (16)

It can be seen from Figure 7b that the numerical results are in very good agreement
with the analytical results (solid line).

Figure 7c shows the variations of temperature δT(rm, t) as a function of time at differ-
ent points rm throughout the shell. The results obtained with the present modeling match
remarkably well with those provided by a numerical resolution using the finite elements
method (FlexPDE 6.0).

The case of a constant heat volumetric source q̇ = cste was also computed, with
the other properties being identical to those used previously. There is still an analytical
steady-state solution in this case, and, considering the same Dirichlet boundary conditions
as used previously, one gets:

δT(r) =
(r− a2)

(
6a1kδT1 + a3

1q̇
)
+ q̇
[
a1
(
a3

2 − r3)+ a2r
(
r2 − a2

2
)]

6(a1 − a2)kr
. (17)

Figure 8a (steady state profile) and Figure 8b (temporal variations at different points)
show the results obtained with the present approach for q̇ = 108 W ·m−3 and M = 12.
Figure 8a compares the results obtained with the present electro-thermal analogy to the
analytical solution (17) for the case of steady state profile, while Figure 8b compares the
results of the electro-thermal analogy to those obtained by a finite elements solver. In both
cases, it can be seen that the correspondence between the two approaches is excellent.
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(a)
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T1 T2

shell

Thermal system

⇔

Electro-thermal analog

−
+T1 −

+ T2

shell

M=12

(b)
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Analytical

(c)
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Electro-thermal analogy
Finite elements

Figure 7. (a) Electro-thermal modeling of a shell subjected to Dirichlet’s boundary conditions,
without heat volumetric source. (b) Stationary temperature profile through the shell. (c) Temperature
variations as a function of time at different points throughout the shell.

(a)
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(b)

0 0.5 1 1.5 2
0
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t (s)

δT
(r

m
,t
)

(K
)

Electro-thermal analogy
Finite elements

Figure 8. Electro-thermal modeling of a shell subjected to Dirichlet boundary conditions, with a con-
stant heat volumetric source. (a) Steady state temperature profile through the shell. (b) Temperature
variations as a function of time at different points throughout the shell.

Using current sources at the boundaries rather than voltage sources (see Figure 9a), it
is also possible to simulate Neumann-type boundary conditions: Φ(ai) = (∂rT)r=ai

. In the
case of a Dirichlet boundary condition at r = a1 and a Neumann boundary condition at
r = a2, there is an analytical expression of the steady state solution, which is given here by:

δT(r) =
q̇
[
r
(
a3

1 + 2a3
2
)
− a1

(
2a3

2 + r3)]+ 6ka1rδT1 + 6Φ(a2)ka2
2(r− a1)

6a1kr
. (18)

The numerical resolution being more demanding with this kind of boundary condition,
it is generally preferable to use a more precise discretization in this case. Figure 9b (steady
state profile) and Figure 9c (temporal variations at r = a2) compare the results obtained
for q̇ = Φ(a2) = 0 using the present approach with M = 32, to those obtained by a finite
elements solver, with the other properties being identical to those used previously. In both
cases, it can be seen that the correspondence between the two approaches is still very good.
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Thermal system

⇔

Electro-thermal analog

−
+T1 Φ(a2)

shell

M=32

(b)
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(c)
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Finite elements
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Figure 9. (a) Electro-thermal modeling of a shell subjected to Dirichlet boundary condition (δT1 =

10 K) at r = a1 and homogeneous Neumann condition at r = a2: Φ(a2) = (∂rT)r=a2
= 0. (b) Steady

state temperature profile through the shell. (c) Temperature variations as a function of time at r = a2.

Finally, solving the bioheat Equation (13) is also considered, with T0 = 0 K and using
Dirichlet boundary conditions: T(a2, t) = T2 = 0 K and T(a1, t) = T1 = 1 K. Usual values
of the physical parameters were chosen from Bergman et al. [38] for human tissues and
blood: q̇ = 700 W ·m−3, hω = 1800 W ·m−3 ·K−1, ρ = 1000 kg/m3, c = 3600 J · kg−1 ·K−1,
and k = 0.5 W ·K−1 ·m−1. Note that an analytical expression also exists here for the
steady-state temperature, which is given by:

T(r, ∞) =
e−βr(

e2βa1 − e2βa2
)
hωr
×
[(

eβ(2a1+r) − eβ(2a2+r)
)

q̇r

+a1

(
eβ(a1+2r) − eβ(a1+2a2)

)
(hωT1 − q̇)

+ a2

(
eβ(2a1+a2) − eβ(2r+a2)

)
(hωT2 − q̇)

]
, (19)

where β =
√

hω/k.
Figure 10a compares the results obtained by the present electro-thermal analogy with

M = 28, to the analytical solution (19) for the case of steady-state profile. The maximum
relative error between numerical and analytical solutions is in this case less than 6× 10−4.
On the other hand, Figure 10b compares the variations of T(a1 + δr, t) as a function of
time, given by the electro-thermal analogy, to the variations obtained by a finite elements
solver. In both cases, it can be seen that the correspondence between the two approaches is
still excellent.
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Figure 10. Electro-thermal modeling of bioheat transfer through a shell subjected to Dirichlet
boundary conditions and constant heat volumetric source. (a) Steady state temperature profile
through the shell. (b) Temperature variations as a function of time at r = a1 + δr.

3.2. NTC Bead-Type 1D Systemic Modeling

The previous examples have shown that the approach developed in this work can
handle a wide variety of spherically symmetric heat transfer problems, close to the problem
of thermal characterization of materials using a bead-type NTC. Thus, we are now ready to
propose a 1D systemic modeling of a bead-type NTC, immersed in a fluid at rest.

3.2.1. Ideal NTC Bead-Type 1D Systemic Modeling

We first consider the ideal case for which the thermal contact between the active core
and the sheath is perfect, and the thermal losses along the connecting copper wires are
not taken into account. In order to be consistent with the electro-thermal current densities
gathered in Table 2, the energy balance (5) of the active core is divided by the effective
surface area of the equivalent spherical core Sc = 4πa2

c :

(5)/Sc ⇒
ac

3
ρccc

dTc

dt
=

ac

3
q̇e + ks

(
∂Ts

∂r

)
r=ac

. (20)

In the case of an ideal thermal contact between the active core and the sheath, the
second term of the right-hand side of (20) is already taken into account in the discretization
of the sheath (see Figure 6, node m = 1). In this case, Tc(tn) ≡ Tn

0 and the electro-thermal
circuit shown in Figure 11 can be used to describe the temporal evolution of the ideal active
core uniform temperature Tc(t).

wires

R(Tc)

q̇e = R(Tc)i2(t)/Vc

i(t)

⇔

slab-shaped
active core

ac

wires

R(Tc)

q̇e = R(Tc)i2(t)/Vc

i(t)

⇔

−
+ T0

Cth
c = ac

3 ρccc

Tc ≡ Tn
0

ithq̇e
= R(Tc)i2(t)/Sc

ith1/2 sheath

ideal active
core model

1D equivalent
core model

Figure 11. One-dimensional electro-thermal systemic modeling of an ideal NTC active core with
electrical resistance R(Tc) given by Equation (1) or (2). Recall that the effective radius ac is chosen so
that the volume Vc of the equivalent spherical core is equal to that of the slab.

We have found that simulating thermal characterization of materials by self-heating
mode, using the ideal NTC core equivalent model shown in Figure 11 led to a systematic
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and significant overestimation of the thermistor active core temperature rise. This overes-
timation is due to the fact that the ideal model does not take into account thermal losses
along the copper wires which connect the active core at temperature Tc to the measurement
and control circuit at working temperature T0 < Tc. In practice, these thermal losses limit
considerably the temperature rise of the thermistor core, so they must be taken into account
if an acceptable systemic modeling of the NTC is to be obtained.

3.2.2. Realistic NTC Bead-Type 1D Systemic Modeling

The ideal model shown in Figure 11 has been corrected by introducing an additional
thermal path going from the thermistor core to the measurement circuit. This thermal
path has been modeled here by the mean of a thermal resistance RL, whose value has
been adjusted using experimental results obtained from the thermal characterization of
pure liquid glycerol at rest (see Section 4.2). The NTC active core and its insulating shell
being both solid bodies, the thermal contact between these two components cannot be
strictly ideal. So, a thermal contact resistance Rc between the core and the sheath has,
therefore, also been introduced into the model. The value of Rc, which was found to be
much less critical than the value of RL, was also deduced from the thermal characterization
of pure glycerol.

Finally, the complete 1D systemic model proposed in this work is represented in
Figure 12. It takes into account the following physical properties and phenomena: an
uniform temperature of the active core, heat transfers between the core and the sheath
and between the sheath and the fluid to be characterized, the spatial discretization of
the insulating sheath and of the fluid (in spherical symmetry), thermal paths due to the
connecting wires, the contact thermal resistance between the sheath and the active core,
and interactions between the NTC and electrical control circuits (through the electrical
current i(t) and the electrical resistance R(Tc)).

In order to adequately model the experimental conditions, Dirichlet boundary condi-
tion (BC) Tf = T0 was imposed on the fluid at r = a f . The sheath and the fluid elements
of Figure 12 were both discretized using the electro-thermal model of Figure 6 and the
electro-thermal current densities of Table 2.

fluid

control circuit, T0

Tf = T0

i(t)

⇔1D

RL

−
+ T0

Cth
c = ac

3 ρccc

ithq̇e
= R(Tc)i2(t)/Sc

Tc
Rc ith1/2

sheath

ac as as a f

fluid

−
+ T0

active
core

thermal
path

Dirichlet
BC Tf = T0

Figure 12. One-dimensional electro-thermal systemic modeling of a bead-type 44004 NTC immersed
into a liquid at rest.

Note that it would also be possible to propose a more elementary 1D model than
the one developed here. In this more basic model, the active core would be assumed to
be punctual, and the heat transfer through the sheath would be modeled using a simple
thermal resistance Rs. The other elements of this point model would be similar to those
used in the present 1D model.
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4. Results

In this last part, experimental results obtained with different 44004 type NTCs are
compared to the numerical results provided by the 1D systemic modeling developed in the
previous paragraphs.

Glycerol has been chosen here as a reference liquid in order to determine the values of
the different effective parameters needed by the 1D NTC spherical equivalent model.

4.1. Presentation

As mentioned in Section 2.1, high dynamic viscosity (η f = 1.48 Pa · s at 20 ◦C [34])
and thermal conductivity close to that of most biological fluids (k f = 0.285 W ·m−1 ·K−1

at 20 ◦C [34,39]) made liquid glycerol a good candidate to set the values of the physical
parameters entering the 1D systemic modeling of a self-heated NTC used in thermal
characterization mode. We recall that a thin layer of insulating varnish has been applied to
the NTCs copper connecting wires.

Since NTC manufacturers give very little information about the physical properties of
the materials used to produce their thermistors, typical starting values were assigned to a
number of unknown parameters used in the model. These values were further refined by
minimizing the following quantity, over a large number of tests (Ntest > 20):

δTrms
c =

√√√√ 1
N f

N f

∑
n=1

(Tcom
c,n − Tmea

c,n )2, (21)

where: Tcom
c,n and Tmea

c,n are the computed and measured active core temperatures, respec-
tively, at time tn = tn−1 + δtn; N f is the number of experimental samples recorded during
one test.

The model parameters values leading to the minimization of δTrms
c for the entire set

of tests performed are gathered in Table 3.

Table 3. Optimal parameters values deduced from glycerol thermal characterization tests. The units
of the two volumetric heat capacities ρccc and ρscs are given in J ·K−1 ·m−3.

Rc (m2 ·K/W) ρscs ρccc ac (mm) as (mm) ks (W ·K−1 ·m−1)

3.0× 10−4 6.72× 106 3.56× 106 1.04 1.17 0.95

Note that:

• the model does not require the knowledge of the active core thermal conductivity kc
because the core temperature Tc is assumed to be uniform (kc � ks);

• the values of ks and ρscs shown in Table 3 are compatible with usual epoxy values; and
• the value of the shell external radius as was determined using a caliper. The NTC

being a prolate spheroid, an average value was considered.

4.2. Glycerol Thermal Characterization

A number of tests have been carried out with glycerol, which have led to the values
shown in Table 3. The tests presented in this paper concern the immersion length of the
NTC copper connecting wires.

4.2.1. Immersion Length Tests

In order to test the relevance of the loss resistance RL, which is a key parameter of
the present systemic model, we have studied the temporal variations of the active core
temperature Tc(t) considering four different immersion lengths Li of the same thermistor
in the same liquid (glycerol) at rest: Li = 0.0, 0.1, 5.0 and 10.0 mm (see Figure 13). The
immersion of the NTC in the liquid was carried out using the mobile arm of a digital
Vernier caliper providing a precision to 0.01 mm. A miniature digital microscope (with



Sensors 2021, 21, 7866 18 of 29

magnification ×10 to ×300) was used to accurately determine the position of the top of
the NTC relative to the free surface of the liquid being characterized. The control circuit
is that of Figure 4, using the following values: R0 = 1497.0 Ω, T0 = 298.7 K, and different
constant excitation voltages v0.

××

Li = 0.0 mm

T0

××

Li = 5.0 mm

T0

××

Li = 10.0 mm

T0

Figure 13. Different immersion lengths Li in glycerol.

Three thermistors from the same lot were tested, namely: NTC1, NTC2, and NTC3.
Figure 14a,b show typical experimental results (red, green, and blue curves) and numerical
results (solid and dashed black curves) obtained when NTC1 is immersed with zero
immersion length (Li = 0.0 mm) in pure glycerol at rest, using two different constant
excitation voltages, v0 = 7.63 V and v0 = 6.70 V, respectively. A working temperature
T0 = 25.0 ◦C was considered here. As shown by the dashed black curves, the ideal model
(see Figure 11, where RL = ∞) does not allow for adequate description of the self-heating
of the active core (measurements curves 1 to 3), regardless of the excitation voltage used.
In contrast, the introduction of a finite loss resistor in the core model (see Figure 12, where
RL < ∞) has systematically allowed a very adequate and realistic description of the
thermistor active core self-heating, as shown by the black solid curves, which well describe
the experimental evolutions of the temperature Tc(t).

Thus, it can be seen from the curves of Figure 14 that introducing a finite loss resistance
RL in the 1D systemic model of the NTC is crucial to properly describe the evolution of the
core temperature as a function of time.
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Figure 14. Evolution of the active core temperature δTc(t) = Tc(t)− T0 as a function of time t when
the self-heated thermistor NTC1 is immersed with zero immersion length (Li = 0.0 mm) in pure
glycerol at rest, considering a working temperature T0 = 25.0 ◦C and constant excitation voltages
(a) v0 = 7.63 V and (b) v0 = 6.70 V. Measurements were conducted using the control circuit of
Figure 4.

Note that very similar experimental and numerical results were also found at other
operating temperatures (ranging from 20.0 ◦C to 40.0 ◦C), other excitation voltages (ranging
from 5.50 V to 8.50 V), and other immersion lengths (Li = 0.1, 5.0 and 10.0 mm), for each
of the three NTCs tested in this study.

Figure 15a shows the influence of the immersion length Li (and, thus, of the loss
resistance RL) on the self-heating of the thermistor NTC3 when immersed in glycerol at rest,
at the working temperature T0 = 25.0 ◦C. The values of the loss resistance corresponding
to each length Li (see Figure 15b) and the value of the contact resistance Rc (see Table 3)
were determined by minimization of (21), using the same number of samples N f = 300 for
each set of measurements. From the modeling point of view, both the equivalent insulating
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sheath and the fluid domain were discretized with the numerical scheme exposed in
Section 3.1, using the same number M of layers (M = 28) in both cases. The radius a f of
the fluid domain was chosen equal to that of the measurement cell: a f = 4.5 mm. The
values of the other parameters required for the numerical modeling (except RL) were those
indicated in Table 3.
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Figure 15. Influence of the immersion length Li on the self-heating of NTC3 immersed in glycerol at
rest, at a working temperature T0 = 25.0 ◦C. A constant excitation voltage v0 = 6.90 V was used to
heat the NTC. (a) Active core temperature evolution as a function of time and length Li. The solid
black curves correspond to the results given by the 1D electro-thermal systemic modeling while
the colored curves correspond to the experimental data. (b) Evolution of the loss resistance RL as a
function of the immersion length Li.

As it can be seen from the curves shown in Figure 15a, the self-heating of the thermistor
core is greater the shorter the immersion length, all other factors being equal. This clearly
indicates that there are heat exchanges between the connecting wires and the liquid to be
characterized and that these exchanges are greater the longer the length of wire immersed,
as expected. However, the non-linearity of the variations of RL with Li (see Figure 15b)
reflects the great complexity of the thermal exchanges between the connecting wires and
the fluid to be characterized. Moreover, the fact that RL is not infinite when Li = 0.0 mm
also reflects the existence of thermal transfers between the NTC core and the connector
system which connects the electrical control circuit to the NTC copper wires, which are
acting as thermal paths.

The heat sink property of the connecting wires is also well illustrated by the results
gathered in Table 4. When Li > 0.0 mm, it can be seen from this table that the thermal
power current ithL , which is evacuated via the connection wires, represents more than 50%
of the total thermal power ithq̇e

supplied by the control circuit to the NTC at t = t f and
is, therefore, not used for the thermal characterization of the fluid. However, it can also
be observed from this table that the thermal power fraction ithC , that only serves to raise
the active core temperature, has become negligible at t = t f , whatever the value of Li.
Meanwhile, the fraction ithS+F+T0

of the thermal power that passes through the sheath,
then the fluid, and, finally, reaches the thermostat is considerable and allows, despite the
losses, for adequately probing the fluid to be characterized, as well as for the four Li values
considered in this study.
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Table 4. NTC3 self-heating 1D modeling results, when immersed at Li in glycerol at rest, at
T0 = 25.0 ◦C and v0 = 6.90 V. The thermal power current densities values (in W ·m−2) were
computed at t f = 30 s and r = ac. The values of δTrms

c were calculated from the results shown in
Figure 15a.

Li (mm) RL (m2 ·K/W) δTrms
c (mK) ith

q̇e
ith
L ith

C ith
S+F+T0

0.0 80.0× 10−4 18.3 567.2 144.4 7.7 415.1
0.5 26.5× 10−4 19.6 568.5 289.4 2.5 276.6
5.0 18.0× 10−4 18.6 569.9 345.8 1.5 222.6
10.0 15.8× 10−4 24.0 571.7 365.3 1.2 205.2

Note that the low values of δTrms
c gathered in Table 4 confirm the relevance of the

modeling proposed in this paper.
In conclusion, we found in this study that the value of the loss resistance RL considered

in the systemic model was highly dependent on the immersion length Li. This dependence
has a considerable influence on the results provided by the modeling and, thus, on the
good correspondence between numerical and experimental results (see Figure 14a,b, for
example). In the context of the present approach, therefore, it is essential to access to the
value of the loss resistance with a high degree of accuracy. Unfortunately, the value of
the loss resistance corresponding to a given immersion length Li 6= 0 depends on the
nature of the considered liquid to be characterized. Therefore, when Li 6= 0, it is impossible
to determine both RL and another unknown characteristic of the fluid (such as thermal
conductivity, for example). Therefore, it is generally recommended, on the one hand, to
limit as much as possible thermal exchanges between the connection wires and the liquid to
be characterized (for example, by limiting the immersion length of the connecting wires or
by highly isolating them) and, on the other hand, to ensure a very precise and reproducible
positioning of the NTC (because of the high value of the slope of RL(Li) when Li → 0).

Among the four immersion lengths considered in this study, we noted that the length
Li = 0.0 mm was the most relevant, which is consistent with the previous discussion.
Indeed, it can be seen from Table 4 that this specific length allows, on the one hand, for
obtaining the lowest thermal losses; on the other hand, it leads to the highest fluid probing
thermal current ithS+F+T0

, which is in favor of good thermal characterizations. Moreover,
the heat exchanges between the fluid to be characterized and the connecting wires are
negligible in the case where Li = 0.0 mm. Therefore, the value of the loss resistance
becomes fluid independent in this particular case, which is a great advantage for thermal
characterization, as mentioned previously.

4.2.2. Thermal Power Balance and Characteristics Times

The 1D systemic modeling introduced in this paper also allows access to quantities
that are difficult or impossible to measure, such as the various thermal current densities
that flow through the system during thermal characterization.

The analysis of the temporal variations of the thermal powers exchanged during the
thermal characterization of glycerol provides useful information about the operation of a
NTC in thermal characterization mode. Figure 16 shows the evolution of the thermal power
current densities (in W/m2) calculated at position r = ac as a function of time t ∈ [0, 30] s.
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Figure 16. Evolution of the different thermal current densities as a function of time t ∈ [0, 30] s,
calculated at r = ac, in the case of NTC3 immersed in pure glycerol at rest, when: Li = 5.0 mm,
v0 = 6.90 V, and T0 = 25 ◦C.

Analyzing the curves shown in Figure 16 reveals the existence of mainly three different
temporal domains, delimited by two characteristics times tc1 and tc2 for which we get
ithC (tc1) ≈ ithS+F+T0

(tc1) and ithC (tc2)� ithS+F+T0
(tc2), respectively. The operation of the NTC

on each of these three temporal domains can be described as follows:

• when 0 6 t < tc1, time domain (I): only the thermal current density ithC is significant,
and the thermal power supplied by the electrical control circuit mainly serves here to
raise the temperature Tc of the NTC active core. This time domain cannot be used to
characterize the fluid surrounding the NTC because the evolution of Tc(t) between
0 and tc1 is mainly influenced here by the physical properties of the active core and
not by the physical properties of the surrounding fluid to be characterized, that is
not yet probed by the thermal waves emitted by the NTC. In addition, we can see in
Figure 15a that the curves giving the experimental temporal evolution of Tc coincide
with t ∈ [0, tc1) and this, whatever the value of Li and, thus, of RL. This observation
confirms that the evolution of Tc(t) over the interval [0, tc1) mainly reflects the physical
properties of the thermistor active core only.
Therefore, it is this particular time domain that was used in the present systemic
modeling to determine the optimal values of the effective ac and ρccc parameters, by
minimizing (21) on [0, tc1) (see Table 3).

• When tc1 < t < tc2, time domain (II): in the case of Figure 16, the three thermal current
densities ithC , ithL , and ithS+F+T0

have comparable values; therefore, the thermal charac-
terization of the surrounding fluid using the time evolution of the core temperature
will be influenced by both the properties of the core, of the insulating shell and by
the thermal losses via the connecting wires. Given these various influences, the usual
transient methods of thermal characterization (which do not use systemic modeling)
based on bead-type NTCs should avoid the use of domain (II) data.

• When t > tc2, time domain (III): in this case, the thermal current density ithC has become
negligible in front of ithL and ithS+F+T0

, and it can be supposed that the properties of
the core are then without any significant influence on the temporal evolution of its
temperature Tc. Consequently, it is this time domain that should be used preferably for
thermal characterization of materials by using bead-type NTCs self-heating methods.
However, since thermal losses and the insulating sheath still have an influence on
the temporal evolution of Tc in the (III) domain, thermal characterization methods
that do not use systemic modeling must imperatively resort to a prior calibration of
the measuremen device by using several reference fluids, such as glycerol, ethanol,
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water–glycerol mixtures, and gelled water (using agar-agar, for example).
Note that, in this work, the characteristic time tc2 has been calculated using the
following relation: ithC (tc2) ≈ 3 · 10−2 × ith,max

C , where ith,max
C = ithC (0+).

The 1D systemic modeling proposed in this work allowed to highlight the existence
of two characteristic times of the thermal transfers, when bead-type NTCs are used for
thermal characterization of materials by self-heating methods. The knowledge of these
characteristic times can help to a better understanding of the operation of bead-type NTCs
used for thermal characterization of materials, as it will be illustrated in the following
paragraph.

4.2.3. Constant Voltage Excitation Signal Processing

Various kinds of possible electrical excitations can be consider to heat the NTCs used in
transient thermal characterization methods: current step through the NTC (using a precise
current source) and resistance step (used in constant temperature heating techniques
(CTHT)), and voltage step (using a divider bridge). From the point of view of the control
circuit, thermal characterization using a constant voltage excitation is relatively easier to
implement than CTHT; thus, it is very common to use a voltage step to heat NTCs in
transient thermal characterization. Several signal processing methods can be considered in
order to extract the thermal conductivity from the temporal variations of Tc(t) in the case
of a voltage step excitation.

For example, Kharalkar et al. proposed to write the quantity Pe(t)/δTc(t) in the
following form [11]:

Pe(t)
δTc(t)

= D0 + D1t−1/2. (22)

They then proposed to express the thermal conductivity k f of the fluid to be charac-
terized as k f = 1/(a1D−1

0 + a2), where a1 and a2 are empirical coefficients depending on
both the thermistor considered and the thermal losses. These coefficients are determined
by a precise calibration, at given voltage excitation, temperature, and immersion length,
using at least two reference materials with thermal conductivities close to the one being
measured.

In the present paragraph, we consider the processing of the experimental data shown in
Figure 15a, obtained when Li = 5.0 mm. As can be seen from Figure 17a, the model proposed
by Kharalkar et al. (solid black line) applies well to the experimental measurements, provided
only instants t > tc2 are considered (i.e., time domain (III) in Figures 15a, 16 and 17a).
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Figure 17. Signal processing of the experimental thermal signals obtained by constant voltage
excitation in the case of NTC3 immersed in pure glycerol at rest, when Li = 5.0 mm, v0 = 6.90 V, and
T0 = 25 ◦C: (a) Kharalkar et al. signal processing; (b) CTHT-type signal processing. Fitting curves
(straight lines) were calculated using data belonging only to time domain (III).

Other signal processing can also be considered. As can be seen from Figure 17b,
a modeling in the form of a CTHT type law Pe(t) = Pe,βt−1/2 + Pe,Γ also provides an
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acceptable description of the experimental measurements, even in the case of constant
voltage heating, provided only data of time domain (III) are considered.

4.3. Liquids Thermal Conductivity Measurements

In this paragraph, a new method of thermal conductivity measuring is introduced,
which we describe as quasi-absolute, since it requires the use of only one reference liquid.

4.3.1. Electro-Thermal Systemic Modeling (ESM) Method

The present 1D electro-thermal systemic modeling (ESM) approach was applied to the
determination of the thermal conductivity k f of three different water/glycerol mixtures,
using the following water mass ratios: 100% water (100W0G), 50% water (50W50G), and
40% water (40W60G). Thermistor NTC3 was used in constant voltage heating mode (using
the circuit of Figure 4), with Li = 0.0 mm.

The implemented protocol was as follows:

1. Determination of the model parameters values as, ac, ρccc, ρscs, ks, Rc, and RL
from the thermal characterization of pure glycerol at rest, when Li = 0.0 mm (see
Section 4.2).
The model parameters values obtained from the glycerol thermal characterization
(see Tables 3 and 4) were used in this work for the determination of the thermal
conductivities of the three water/glycerol mixtures.

2. Voltage step excitation of the NTC (using the circuit of Figure 4) precisely immersed
at Li = 0.0 mm in the liquid to characterize, at constant working temperature, T0.
The experimental time variations of the NTC core temperature Tmea

c (t) were ex-
tracted from the v0(t) and v1(t) voltages, recorded using a data acquisition board (see
Section 2.3).

3. Determination of the measured thermal conductivity value kmea
f by minimization of

δTrms
c , given by Equation (21), as a function of the thermal conductivity value k f used

in the systemic model. The values of the fluid density ρ f and its specific heat c f are
supposed known.

4.3.2. Pure Water Liquid (100W0G)

In the case of pure water (100W0G), a small amount of agar-agar powder has been
added to 100W0G samples in order to limit the influence of free convection.

Figure 18a shows typical experimental (blue line) and 1D ESM computed (black and
red lines) time evolutions of the NTC active core temperature δTc = Tc − T0, when the
thermistor is immersed at Li = 0.0 mm in pure water at rest, at a working temperature
T0 = 24.0 ◦C and using a voltage step excitation v0 = 8.46 V. The electrical circuit used
to both excite the NTC and record the data is that shown in Figure 4, using the same
settings as those chosen for the thermal characterization of glycerol (see Section 4.2.1).
The correspondence between the experimental measurements (blue curve) and systemic
modeling (black curve) is very good when the value of k f is set in the model to kmea

f =

0.586 W ·K−1 ·m−1, as reflected by the low value of δTrms
c in this case. In addition, note

that the very good correspondence between calculated and experimental curves over the
time domain [0, tc1] confirms the relevance of the NTC core effective physical parameters
values obtained from the thermal characterization of pure glycerol.
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Figure 18. Experimental and 1D ESM computed thermal signals in the case of pure water at rest.
These signals were obtained using a voltage step excitation v0 = 8.46 V at a working temperature
T0 = 24.0 ◦C and immersion length Li = 0.0 mm: (a) measurements and electro-thermal systemic
modeling results; (b) computed thermal current densities when the fluid thermal conductivity k f is

set to the value kmea
f = 0.586 in the ESM model. Thermal conductivities k f are given in W ·K−1 ·m−1.

The red dashed curves shown in Figure 18a illustrate the δTrms
c minimization steps.

By gradually varying the value of k f used in the systemic model (from k f = 0.5 to
0.7 W ·K−1 ·m−1, for example), all other quantities being held constant, δTrms

c is varied
accordingly (see Figure 19). Thus, the value of k f that gives the smallest value of δTrms

c is
the measured value kmea

f of the thermal conductivity of the fluid.
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Figure 19. Principle of the determination of pure water thermal conductivity kmea
f by the present 1D

electro-thermal systemic modeling (ESM) approach. The values of pure water density ρ f and specific
heat c f at T0 = 24.0 ◦C used in the systemic modeling are given in Table 1.

Finally, the curves presented in Figure 18b show in the present configuration (pure
liquid water at rest, v0 = 8.46 V, and Li = 0.0 mm), when t > tc2, that the thermal current
density ithS+F+T0

is quite larger here than both ithL and ithC . Thus, it can be concluded that
bead type NTC self-heating methods are in the present configuration quite adequate for
thermal characterization of pure water at rest.

4.3.3. Glycerol–Water Mixtures 50W50G and 40W60G

The same measurements as in Section 4.3.2 were reproduced both in the case of
40W60G and 50W50G mixtures, under the same conditions as in the case of pure water.
The electrical circuit used to both excite the NTC and record the experimental data was that
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shown in Figure 4, using the same settings as those chosen for the thermal characterization
of pure glycerol at rest.

The values of the glycerol–water mixtures densities ρ f and specific heats c f used in
the 1D systemic modeling were taken from the open-source thermophysical properties
library CoolProp [40].

Glycerol–Water Mixture 40W60G

Figure 20a shows typical experimental (blue line) and ESM computed (black lines)
time evolutions of the NTC active core temperature δTc, when the thermistor is immersed
at Li = 0.0 mm in 40W60G mixture at rest, at a working temperature T0 = 24.0 ◦C and
using a voltage step excitation v0 = 8.39 V. The correspondence between the experimental
measurements (blue curve) and the electro-thermal systemic modeling (black curve) is
very good here when the value of k f is set to kmea

f = 0.384 W ·K−1 ·m−1 in the model, as
reflected by the low value of δTrms

c obtained in the present case.
Finally, as in the case of pure water thermal characterization, the curves presented

in Figure 20b show that the thermal current density ithS+F+T0
is quite larger here than both

ithL and ithC when t > tc2. Therefore, it can, thus, be concluded that methods based on
self-heating of bead-type NTCs are quite adequate for thermal characterization of 40W60G
mixtures.
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Figure 20. Experimental and 1D ESM computed thermal signals in the case of water–glycerol mixture
40W60G at rest. These signals were obtained using a voltage step excitation v0 = 8.39 V at a working
temperature T0 = 24.0 ◦C and immersion length Li = 0.0 mm: (a) measurements and ESM results;
(b) computed thermal current densities when the fluid thermal conductivity k f is set to the value

kmea
f = 0.384 in the ESM model. Thermal conductivities k f are given in W ·K−1 ·m−1.

Glycerol–Water Mixture 50W50G

Figure 21a shows typical experimental (blue line) and ESM computed (black lines)
time evolutions of the NTC active core temperature δTc, when the thermistor is immersed
at Li = 0.0 mm in 50W50G mixture at rest, at a working temperature T0 = 22.0 ◦C and
using a voltage step excitation v0 = 8.39 V. The correspondence between the experimental
measurements (blue curve) and the electro-thermal systemic modeling (black curve) is
very good here when the value of k f is set to kmea

f = 0.414 W ·K−1 ·m−1 in the model, as
reflected by the low value of δTrms

c obtained in the present case.
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Figure 21. Experimental and 1D ESM computed thermal signals in the case of water–glycerol mixture
50W50G at rest. These signals were obtained using a voltage step excitation v0 = 8.39 V at a working
temperature T0 = 22.0 ◦C and immersion length Li = 0.0 mm: (a) measurements and ESM results;
(b) computed thermal current densities when the fluid thermal conductivity k f is set to the value

kmea
f = 414 in the ESM model. Thermal conductivities k f are given in W ·K−1 ·m−1.

As in the case of pure water and 40W60G mixture thermal characterizations, the
curves presented in Figure 21b show that the thermal current density ithS+F+T0

is again quite
larger here than both ithL and ithC . Therefore, it can still be concluded here that methods
based on self-heating of bead-type NTCs are quite adequate for thermal characterization of
50W50G mixtures.

4.3.4. Synthesis

The series of measurements exposed in the previous paragraphs (Sections 4.3.2 and 4.3.3)
were repeated N = 12 times for each of the three liquids studied in the present work. A
statistical analysis was then applied to these measurements, leading to the results collected
in Table 5.

Table 5. Determination of the thermal conductivities of several liquids (pure water and water–
glycerol mixtures) by the present 1D ESM approach, with: k the mean value of measurements,
δk = σk/

√
N − 1 the standard error of measurement, σk the standard deviation of measurements,

and kref the reference thermal conductivity value (all these quantities are given in W ·K−1 ·m−1).

Liquid T0 (◦C) k δk δk/k (%) kref

∣∣∣kref/k−1
∣∣∣ (%)

Water (100W0G) 24.0 0.607 0.014 2.3 0.605 0.3
50W50G 22.0 0.4114 0.0049 1.2 0.4189 1.8
40W60G 24.0 0.3905 0.0027 0.7 0.3876 0.7

The results gathered in Table 5 show that the 1D ESM approach introduced in this
paper gives very suitable results for each of the three liquids that were characterized
in the present study. Although this new approach uses only one reference liquid (pure
glycerol here), it can be seen from Table 5 that this method allows acceptable measurements
of thermal conductivities of liquids with large thermal contrasts (e.g., pure water and
40W60G mixture), as well as liquids with fairly close thermal conductivities (e.g., 40W60G
and 50W50G mixtures).

However, it is also observed from Table 5 that the standard error of measurement δk
decreases with increasing glycerol content. This decrease is probably due to the fact that it is
glycerol that has been used here as the reference liquid. Despite this tendency, it was found
in all cases that the measurements were quite accurate. Even in the worst case (pure water
here), where the value δk/k = 2.3 % was obtained, it was found that the measured value
k = 0.607 W ·K−1 ·m−1 was very close to the reference value kref = 0.605 W ·K−1 ·m−1.
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5. Concluding Remarks and Perspectives

A new method for measuring the thermal conductivity of liquids, with the advantage
of requiring only one reference liquid, has been introduced and described in this work.
This new quasi-absolute approach has proved to be easy to implement, fast (each series of
measurements typically takes less than one minute), and quite accurate, regardless of the
thermal conductivity range covered during the measurements.

The development of this new thermal characterization method was made possible
through the use of a realistic 1D electro-thermal systemic modeling of the whole system
(Fluid/Sensor/Connectics/Control electrical circuit), based on a Godunov-SPICE type
discretization scheme. This systemic modeling has allowed to highlight two characteristic
times of heat transfers within a self-heated thermistor, allowing for better understanding
of the operating of bead-type NTCs when they are used for thermal characterization of
liquids at rest.

The discretization scheme and the 1D systemic modeling (including the NTC sensor,
the electrical control circuit and the materials to characterize) used in the present study
were fully described and documented in the paper. Note that the different computer codes
(written in Python 3.8) used for the control of the electrical circuit and the processing of the
experimental measurements, as well as the SPICE scripts used for computing the systemic
modeling numerical results, are available upon request from the author.

The perspectives of this work are numerous. First, from the point of view of thermal
characterization, other viscous reference materials (such as pastes and gels) will be tested,
and the method will be applied to the measurement of a wide range of thermal conduc-
tivities, as a function of temperature. We believe that the precise positioning of the NTC
sensor at the specific immersion length Li = 0.0 mm can quite easily be automated. This
precise and automated positioning of the sensor could allow the present method to access a
wide variety of fields, such as the thermal characterization of biological materials (in-vitro
and in-vivo) and nanofluids, in the laboratory or in industrial processes. We believe that
this approach is also of interest in the case of dynamic processes, such as the drying of
complex suspensions, where the thermal conductivity and the level of the free surface of
the suspension can change over time.

By changing the boundary condition considered in the present 1D systemic modeling
(at the interface between the insulating shell and the fluid), it will also be possible to
consider the application of the present approach to the measurement of fluids thermal
characteristics when they are flowing.

Systemic 1D modeling of positive temperature coefficient (PTC) silicon thermistors
(silistor) is also considered as a possible extension of the present work.
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Abbreviations

The following abbreviations are used in this manuscript:

HVAC Heating, Ventilation, and Air Conditioning
SPICE Simulation Program with Integrated Circuit Emphasis
THW Transient Hot Wire
THS Transient Hot Strip
TPS Transient Plane Source
NTC Negative Temperature Coefficient
HMW Hot Metal Wire
HMF Hot Metal Film
RTD Resistance Temperature Detector
ODE Ordinary Differential Equation
PDE Partial Differential Equation
ESM Electro-thermal Systemic Modeling
ADC Analog to Digital Converter
DAC Digital to Analog Converter
OA Operational Amplifier
BC Boundary Condition
CTHT Constant Temperature Heating Technique
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