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Obstructive sleep apnea (OSA) is a frequent disease mainly affecting obese people and caused by repetitive collapse of the upper
airways during sleep. The increased morbidity and mortality of OSA are mainly thought to be the consequence of its adverse effects
on cardiovascular (CV) health. In this context, oxidative stress induced by nocturnal intermittent hypoxia has been identified to
play a major role. This is suggested by biomarker studies in OSA patients showing excessively generated reactive oxygen species
from leukocytes, reduced plasma levels of nitrite and nitrate, increased lipid peroxidation, and reduced antioxidant capacity.
Biopsy studies complement these findings by demonstrating reduced endothelial nitric oxide synthase expression and increased
nitrotyrosine immunofluorescence in the vasculature of these patients. Furthermore, oxidative stress in OSA correlates with
surrogate markers of CV disease such as endothelial function, intima-media thickness, and high blood pressure. Continuous
positive airway pressure therapy reverses oxidative stress in OSA. The same may be true for antioxidants; however, more studies

are needed to clarify this issue.

1. Introduction

Obstructive sleep apnea (OSA) is the most common form
of sleep-disordered breathing (SDB) and represents a major
public health problem. It is caused by repetitive collapse
of a narrow upper airway during sleep [1]. The main risk
factors of the disease are obesity, male gender, and advanced
age [2] but it may also occur in lean subjects, women, and
children. Earlier studies have reported that OSA affects 2%
and 4% of middle-aged women and men, respectively [3].
However, owing to the global obesity epidemic, these features
might even underestimate the actual prevalence of OSA as
suggested by more recent data from epidemiological studies
(4].

The episodes of OSA are terminated by arousals. These
events disturb normal sleep architecture and can lead to
excessive daytime sleepiness in many patients. Furthermore,
the risk of traffic accidents is increased. Finally, OSA is
linked to enhanced cardiovascular (CV) morbidity and
mortality [5]. The gold standard in the diagnosis of OSA
is polysomnography and the mainstay of its treatment is

continuous positive airway pressure (CPAP) therapy. By
creating a pneumatic splint, CPAP rapidly eliminates upper
airway collapse and thereby also most sequelae of the disease
[6].

The aim of the current review article is to summarize
the evidence for oxidative stress being present in humans
with OSA and its relation to CV disease. Of note, this has
been paralleled by the results of animal studies evaluating
the effects of intermittent hypoxia (IH) on the CV system of
rodents. For further details, the interested reader is referred
to an earlier article we have published in this journal [7].

2. Clinical Spectrum of OSA-Associated
Cardiovascular Diseases

During the night, blood pressure (BP) surges can be observed
in both the systemic and pulmonary circulation [8]. Simi-
larly, cyclical variations of the heart rate emerge (i.e., sinus
tachycardia/bradycardia [9]). Furthermore, cardiac rhythm
disturbances may occur [10]. These include sinus arrests,
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atrioventricular conduction blocks, atrial fibrillation, and
ventricular arrhythmias. It is hypothesized that through these
arrhythmias OSA can cause sudden cardiac death; however,
the evidence for this is still somewhat circumstantial [11].

The deleterious effects of OSA on the CV system are
carried over into daytime hours. Thus, up to one half of
these patients suffer from arterial hypertension. The OSA-
associated arterial hypertension is characterized by a nondip-
ping 24-hour BP pattern and a high percentage of refractory
and masked hypertension [12-14]. Mainly through its pressor
effects, OSA increases the risks for stroke, heart failure,
and myocardial infarction [5]. In addition, this may lead to
more rapid expansion of aortic aneurysms [15]. OSA can
also cause pulmonary hypertension; however, this occurs
in a lower proportion of patients and usually is not very
pronounced [16]. Furthermore, it may be a risk factor for
thromboembolic disorders such as deep vein thrombosis and
pulmonary embolism [17]. Finally, otherwise healthy OSA
patients can already display more subtle CV changes such as
endothelial dysfunction and vascular remodeling [18, 19].

CV risk in OSA depends on the severity of SDB; that is,
those patients with an apnea-hypopnea-index exceeding 30
per hour of sleep are mainly affected [5]. Most studies eval-
uating CV morbidity and mortality in OSA have primarily
enrolled typical sleep laboratory cohorts, that is, middle-aged
obese men.

However, more recent data show that CV risk is also
increased in other subsets of OSA patients such as women
and the elderly [20, 21]. Of note, this is independent from
established CV risk factors such as advanced age, obesity,
smoking, and metabolic disorders.

It is well known that sleep characteristics such as sleep
duration and the ability to fall asleep or maintain normal
sleep can impact on CV health [22, 23]. Consequently, those
OSA patients who suffer from insomnia or excessive daytime
sleepiness have a higher CV risk than those who do not [24].

3. Pathophysiology of OSA-Associated
Cardiovascular Diseases

Over the last two decades, the intermediary pathways linking
OSA to CV disease have been further elucidated. The main
trigger of these metabolic and cellular changes is IH, that is,
the nocturnal hypoxia-reoxygenation events accompanying
OSA. Other OSA-associated stimuli such as hypercapnia,
arousals, and intrathoracic pressure swings may also play
significant roles; however, this has been less extensively
studied.

One major pathogenic mechanism of CV disease in
OSA is sympathetic activation [25]. It is mediated by
enhanced chemoreflex activity in the carotid body. Fur-
thermore, inflammatory changes within the vasculature and
the adipose tissue which are due to NF«B activation have
been described [26, 27]. Additional pathways include the
upregulation of hypoxia-sensitive endothelial-derived pep-
tides such as endothelin and vascular endothelial growth
factor, enhanced coagulation, and decreased fibrinolysis as
well as disturbed vascular repair mechanisms [28-31]. Finally,
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OSA is linked to insulin resistance and dyslipidemia which
may also contribute to the emergence of CV disease [32, 33].

Another potential mechanism of CV disease in OSA is
an increased oxidative stress. Under physiologic conditions,
there is a balance between aggressive and protective factors
influencing redox control. The term “oxidative stress” refers
to an imbalance between reactive oxygen species (ROS)
and reactive nitrogen species production and the system
of antioxidant defense resulting in a serious disorder of
redox homeostasis [34]. Oxidative stress has been reported
to underlie the process of aging and plays a role in the
pathogenesis of such different diseases as cancer, chronic
inflammatory, and neurodegenerative disorders [35]. Fur-
thermore, there is a strong correlation between oxidative
stress and CV diseases such as atherosclerosis, hypertension,
and endothelial dysfunction [36].

4. Evidence for Oxidative Stress in
Humans with OSA

In the following paragraphs, the various aspects of oxidative
stress in patients with OSA will be discussed in more
detail. For this purpose, a Pubmed search was performed
with the search terms “sleep apnea,” “cardiovascular” and
“oxidative stress” As can be seen from Figure 1 this search
yielded a growing number of publications dating back to
the late 1990s. Overall, a total of 292 entries were retrieved.
Only full-length original publications dealing with human
subjects with OSA were taken into consideration. With a few
exceptions, replication studies as well as those not evaluating
the effects of CPAP therapy on oxidative stress parameters
were excluded. Following this strategy, 36 publications were
selected for this review article.

4.1. Methodological Aspects of Studies. The studies exploring
oxidative stress in OSA have employed different method-
ological approaches. Most commonly, biomarkers of oxida-
tive stress were determined in peripheral venous blood
samples obtained after sleep. Other studies aimed to inte-
grate CV surrogate markers such as vasoreactivity and
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intima-media thickness (IMT). Finally, some investigators
have applied more invasive procedures, that is, vascular
biopsies.

Most studies enrolled patients with OSA and controls
without SDB and measured the aforementioned parameters
before and after CPAP therapy. The majority of these studies
had low patient numbers. Furthermore, most of them were
not randomized and uncontrolled; that is, they did not
have a treatment arm with, for example, sham CPAP (i.e.,
with subtherapeutical pressure). Finally, many earlier studies
recruited patients with comorbidities which might cause
oxidative stress by itself. Therefore, it is recommended to
restrict study participation to otherwise healthy, nonobese,
and nonsmoking OSA patients when performing investiga-
tions in this field.

It should be acknowledged that the studies evaluating
oxidative stress in OSA have not yielded unequivocal results.
This may be due to varying severities of IH in the patients
studied (i.e., frequency and extent of nocturnal oxygen
desaturations [37-39]). Patient characteristics as age, gender,
and body weight may also have an influence; however, this has
not yet been substantiated. Furthermore, as mentioned above
discrepancies in comorbidities may introduce some bias into
analyses of oxidative stress parameters in these patients.
Finally, differences in study design may play important roles
in this context (i.e., full-night polysomnography versus split-
night protocols [40]).

4.2. Enhanced Release of Superoxide from Leukocytes. The
first studies demonstrating the presence of oxidative stress
in humans with OSA were performed in our laboratory at
the University of Giessen Lung Center, Germany, and at
the University of Haifa, Israel, by the group of Lena and
Peretz Lavie [41, 42]. It was observed that circulating neu-
trophils and monocytes of OSA patients exhibited markedly
enhanced in vitro release of superoxide radical anions. This
was the case in response to different stimuli such as formyl-
methionylleucylphenylalanine and phorbol myristate acetate
but also in the unstimulated state. The increased oxidative
burst of leukocytes in OSA is due to an activation of NADPH
oxidase (NOX). The expression of this major superoxide-
generating enzyme is upregulated in leukocytes from OSA
patients. This was shown by measuring p22phox mRNA in
peripheral blood mononuclear cells [43]. Furthermore, the
serum levels of soluble NOX2-derived peptide, a marker of
NOX activation by blood cells, decrease after CPAP therapy
in patients with OSA [44].

4.3. Reduced Bioavailability of Nitric Oxide. Nitric oxide
(NO) is synthesized from the amino acid L-arginine by the
action of NO synthases (NOS). They occur in three different
isoforms: endothelial, inducible, and neuronal. Endothe-
lial NOS (eNOS) is the enzyme responsible for vascular
NO production [45]. Importantly, some naturally occurring
compounds can interfere with NO formation. For example,
asymmetric dimethylarginine (ADMA) inhibits eNOS and
arginase metabolizes L-arginine to L-ornithine and urea [46].

NO is the main endothelial-derived vasodilator. This
effect is mediated by its second messenger guanosine 3',5'-
cyclic monophosphate [47]. NO also possesses other vasopro-
tective properties such as inhibition of platelet aggregation
and adhesion molecule expression. The consequences of
NO deficiency are, for example, elevated BP and enhanced
atherosclerosis [48].

Through various pathways, oxidative stress can reduce
NO bioavailability. First, superoxide directly interacts with
NO resulting in the formation of peroxynitrite [49]. Second,
the degradation of the eNOS cofactor tetrahydrobiopterin is
accelerated [50]. Third, the activity of the enzyme dimethy-
larginine dimethylaminohydrolase is decreased, leading to
higher levels of ADMA [51].

Due to its very short half-life of only a few seconds,
it is challenging to measure NO itself. More feasible is the
determination of its oxidation products nitrite and nitrate. In
patients with OSA it was shown that serum levels of nitrite
and nitrate are reduced when compared with controls without
SDB [52-54]. The decreased nitrite and nitrate pool in OSA is
probably due to decreased NO biosynthesis. This is suggested
by the findings of increased plasma concentrations of ADMA
and arginase in these patients [55-57].

4.4. Increased Oxidation of Lipids, Proteins, and DNA. Exces-
sively generated ROS may lead to increased oxidation of
biological compounds such as lipids, proteins, and DNA.
Thus, OSA patients show evidence for increased lipid per-
oxidation as mirrored by elevated plasma concentrations of
thiobarbituric acid reactive substances [58, 59]. In addition to
inflammatory changes in response to IH, this may be respon-
sible for accelerated atherosclerosis in affected patients.

Moreover, increased concentrations of 8-isoprostane can
be found in exhaled breath condensate of OSA patients
[60]. The isoprostanes are prostaglandin-like compounds
formed in vivo from the free radical-catalyzed peroxidation
of essential fatty acids (primarily arachidonic acid [61]). They
enhance vasoconstrictor tone and may thus contribute to the
development of arterial hypertension in OSA.

Some authors have reported on higher plasma advanced
oxidation protein products in OSA versus non-OSA patients
[62, 63]. DNA oxidation also takes place in OSA as sug-
gested by the finding of increased urinary excretion of 8-
hydroxy-2'-deoxyguanosine in patients with severe versus
mild-to-moderate OSA [64]. In addition, the levels of DNA
damage in peripheral blood lymphocytes as assessed by the
cytokinesis-blocked micronucleus assay are increased in OSA
[65]. Finally, a significant decrease in mitochondrial DNA
copy number was observed in genomic DNA isolated from
whole blood of OSA patients [66]. The pathophysiological
significance of these changes in the context of OSA-associated
CV disease awaits to be determined.

4.5. Reduced Antioxidant Capacity. The effects of ROS may
be counterbalanced by antioxidant substances such as glu-
tathione and vitamins A, C, and E. Some studies suggest
that this defense line against oxidative stress is impaired
in untreated patients with OSA. Antioxidant capacity as



measured by the trolox equivalent antioxidant capacity assay
was found to be reduced in OSA [67]. Furthermore, plasma
total antioxidant status and levels of vitamins A and E were
lower in OSA patients versus controls [68]. Finally, the
antioxidant properties of serum albumin were shown to be
impaired in OSA [69].

Oxidative stress in OSA may also stem from reduced
activity of antioxidant enzymes. Thus, lower plasma levels
of superoxide dismutase (SOD) have been described in
OSA versus non-OSA patients [43, 70]. Similarly, a study
evaluating microarray measures of gene transcript levels
noted changes in genes encoding for antioxidant enzymes,
that is, SOD and catalase [71]. Finally, OSA patients exhibit a
decrease in paraoxonase-1, that is, an enzyme which protects
lipoproteins from oxidation and thereby exerts antiathero-
genic effects [59].

4.6. Vascular Biopsy Studies. Up to now, only a few studies
have directly evaluated oxidative stress in the vasculature
of OSA patients. This may be due to the reluctance of
patients to have biopsies performed and also to the limited
availability of these techniques. Jelic et al. harvested endothe-
lial cells by introducing vascular guidewires into forearm
veins. When compared to controls without SDB, the cells
obtained from OSA patients showed reduced expression of
eNOS and increased nitrotyrosine immunofluorescence [72].
Quite similar findings were later reported by Patt et al. who
investigated arterioles isolated from forearm subcutaneous
biopsies [73]. In a most recent study, endothelial tissue was
obtained from gluteal biopsies of OSA and control subjects
and eNOS uncoupling was identified as a novel pathway of
OSA-associated endothelial dysfunction [74].

4.7 Correlation of Oxidative Stress in OSA with Surrogate
Markers of CV Disease. OSA patients may exhibit endothelial
dysfunction, that is, a reduction of endothelial-dependent
vasorelaxation. This has been shown by various techniques
investigating vasoreactivity as, for example, venous occlu-
sion plethysmography and measurements of flow-mediated
vasodilation (FMD) of the brachial artery [18, 75]. Endothe-
lial dysfunction is a precursor lesion for both atherosclerosis
and arterial hypertension and can already be detected in OSA
patients without clinically overt CV disease.

Since endothelial-dependent vasodilation is mainly the
result of NO release, it is not surprising that OSA patients
with lower circulating levels of nitrite and nitrate have more
severely impaired FMD [76]. Furthermore, the expression of
eNOS correlates with FMD in these patients [72]. Finally,
inverse relationships between %FMD and circulating levels
of ADMA, soluble NOX2-derived peptide, and isoprostanes
have been found [76, 77]. Taken together, these data clearly
show that oxidative stress mechanisms underlie endothelial
dysfunction in OSA.

Ultrasonographic studies have shown that OSA patients
have greater IMT of their common carotid arteries when
compared with non-OSA control subjects and that this is
related to the degree of nocturnal hypoxia [19]. IMT reflects
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the early stages of atherosclerosis and predicts the risks of
future stroke and myocardial infarction. Up to now, there
is only one study which has investigated the correlation
between oxidative stress and IMT in OSA. Monneret et al.
found that the IMT of these patients was greater with higher
urinary levels of isoprostanes [78].

Likewise, there is a paucity of data on the relationship
between oxidative stress and BP in patients with OSA. Ip et
al. have reported that the serum levels of nitrite and nitrate
are inversely correlated with BP values in OSA [53]. Insofar,
the NO deficiency characteristic of OSA may constitute one
pathophysiological pathway for the development of arterial
hypertension in these patients; however, it is felt that more
investigations are required to support this hypothesis.

4.8. Effects of Therapeutical Interventions. As already stated,
many of the studies evaluating the effects of CPAP therapy
on oxidative stress in OSA had methodological drawbacks
such as low patient numbers, inclusion of patients with
comorbidities and observational design. Nevertheless, there
is no doubt that CPAP therapy ameliorates or even eliminates
oxidative stress in OSA. Thus, most changes in biomarker
studies were rapidly reversible after only some nights of
CPAP (Tablel). For instance, it was reported that CPAP
therapy decreases the release of superoxide from leukocytes
and increases circulating levels of nitrite and nitrate [41,
42, 52-54]. In addition, the immunohistochemical changes
in endothelial cells consistent with oxidative stress were
reversible after 1-3 months of CPAP therapy [72, 73]. These
findings argue for more structural effects of CPAP therapy
on the vasculature which may translate into a long-lasting
suppression of oxidative stress in affected individuals.

On the other hand, it must be realized that a significant
proportion of OSA patients is not able or willing to use CPAP
therapy. Pilot studies suggest that antioxidants may be used
to prevent or treat CV disease in such patients. We have
shown that intravenous administration of the antioxidant
vitamin C can acutely improve vasoreactivity in OSA [79].
This observation was later confirmed by another group [80].
Furthermore, it was found that the xanthine oxidase inhibitor
allopurinol when given orally over two weeks increases FMD
in OSA [81].

4.9. Prospects for Future Research. Despite the advancements
highlighted in this review, we believe that more research is
needed to ascertain a causal role of oxidative stress in OSA-
associated CV disease. Appropriate studies should either
investigate highly selected OSA patients (i.e., lean subjects
without any comorbidities) or large cohorts allowing for
statistical control of confounders. Furthermore, randomized
controlled designs as, for example, with sham-CPAP treat-
ment should be applied if possible.

One important area of future research certainly is the
correlation of oxidative stress biomarkers in OSA with CV
read-out parameters such as FMD, IMT, and BP. Long-term
studies could possibly also evaluate the association with more
robust CV endpoints such as the occurrence of myocardial
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TABLE 1: Overview of selected biomarker studies of oxidative stress in OSA.
Biomarker Author/year [reference OSA/n = Controls/n = Change of Effects of
investigated number] comorbidities yes/no comorbidities yes/no biomarker CPAP
PMN oxidative burst Schulz et al./2000 [41] 18/yes 10/yes and 10/no T l
PMN oxidative burst Dyugovske[lifg]et al./2002 18/yes 3l/yes T l
PMN p22phox .
MmRNA Liu et al./2009 [43] 107/yes 69/yes T n.a.
Serum NOX2 Del Ben et al./2012 [44] 91/yes 47/yes <—> l
Nitrite and nitrate Schulz et al./2000 [52] 21/yes 18/yes and 13/no l T
Nitrite and nitrate Ip et al./2000 [53] 30/yes 40/no 1 T
I . Alonso-Fernandez et
Nitrite and nitrate a./2009 [54] 31/no 15/no 1 T
ADMA Barcel6 et al./2009 [56] 23/yes and 18/no 13/no T n.a
Arginase Yiiksel et al./2014 [57] 41/yes and 10/no 15/no T n.a
TBARS Barcel6 et al./2000 [58] 14/yes 13/no T l
TBARS Lavie et al./2004 [59] 59/yes and 55/no 30/yes T l
Exhaled 8-isoprostane Carpagna;léoo]e tal/2003 18/no 12/no T l
Urinary 8-OHdG Yamauchi et al./2005 [64] 128/yes n.a. T na
Vitamins A and E Barcel6 et al./2006 [68] 47yes 37/no 1 o
SOD Wysocka et al./2008 [70] 41/no 39/no 1 n.a.
Paraoxonase-1 Lavie et al./2004 [59] 59/yes and 55/no 30/yes 1 n.a.

T:increase, |: decrease, and «<>: no change.
*Patients with severe versus mild-to-moderate OSA.
ADMA: asymmetric dimethylarginine.

n.a. = not available.

NOX: NADPH oxidase.

8-OHdG: 8-hydroxy-2'-deoxyguanosine.

PMN: polymorphonuclear neutrophils.

SOD: superoxide dismutase.

TBARS: thiobarbituric acid reactive substances.

infarction or stroke. This could, for instance, be accomplished
by enrolling those patients who are noncompliant with CPAP
therapy.

The same patient population may also help to establish
the role of antioxidants in the treatment of OSA-associated
CV diseases. In this context, it is an open question which
antioxidants should be given and at what dose and route
of administration. Regardless of these considerations, such
studies would need larger patient numbers and long-term
follow-up periods to delineate a therapeutic effect of antioxi-
dants in OSA.

In addition to these more clinically oriented questions,
research efforts should be undertaken to elucidate the basic
mechanisms of oxidative stress in OSA. One possibility to
accomplish this task is to go back from bench to bedside, that
is, to see if the results of animal studies can be extrapolated to
humans with the disease. In this context, numerous studies
in mice and rats have shown that an upregulation of NOX
underlies many of the CV sequelae of IH [7, 82]. Apart
from NOX and its different isoforms, one could also look
at other ROS-generating enzymes within the human body

as, for example, xanthine oxidase, uncoupled eNOS, and
mitochondrial respiratory chain enzymes. Finally, one should
try to decipher the interaction of oxidative stress with other
putative pathophysiological pathways of CV disease in OSA.
In this context, animal studies suggest that ROS can mediate
or aggravate sympathetic activation in response to IH [83].
Up to now, it is not known if this is also the case in patients
with OSA.

5. Conclusions

In summary, there is accumulating evidence from human
studies that untreated OSA causes oxidative stress and
that effective CPAP therapy can reverse these abnormali-
ties (Figure 2). Given the well-known role of ROS in the
pathogenesis of CV disease, the oxidative stress induced
by OSA may account for its associated CV morbidity
and mortality; however, more studies are clearly needed
in this area of research. In particular, the cardioprotective
role of antioxidants in those patients not tolerating CPAP
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expression of eNOS and its inhibition by ADMA. Finally, antioxi-
dant capacity is impaired in affected patients. ADMA: asymmetric
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nitric oxide; NOX: NADPH oxidase; ROS: reactive oxygen species;
SOD: superoxide dismutase.

therapy and the basic mechanisms leading to oxidative
stress in patients with OSA should be explored in more
detail.
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BP: Blood pressure

CPAP: Continuous positive airway pressure
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NO: Nitric oxide

NOS:  Nitric oxide synthase
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