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Abstract

Bacterial genomics studies are getting more extensive and complex, requiring new ways to envision analyses. Using the
Ray Surveyor software, we demonstrate that comparison of genomes based on their k-mer content allows reconstruction
of phenetic trees without the need of prior data curation, such as core genome alignment of a species. We validated the
methodology using simulated genomes and previously published phylogenomic studies of Streptococcus pneumoniae and
Pseudomonas aeruginosa. We also investigated the relationship of specific genetic determinants with bacterial population
structures. By comparing clusters from the complete genomic content of a genome population with clusters from specific
functional categories of genes, we can determine how the population structures are correlated. Indeed, the strain
clustering based on a subset of k-mers allows determination of its similarity with the whole genome clusters. We also
applied this methodology on 42 species of bacteria to determine the correlational significance of five important bacterial
genomic characteristics. For example, intrinsic resistance is more important in P. aeruginosa than in S. pneumoniae, and
the former has increased correlation of its population structure with antibiotic resistance genes. The global view of the
pangenome of bacteria also demonstrated the taxa-dependent interaction of population structure with antibiotic re-
sistance, bacteriophage, plasmid, and mobile element k-mer data sets.
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Introduction
Genomic data sets are continuously increasing in size and a
single study now contains hundreds to thousands of samples
that must be rigorously compared and clustered (Nasser et al.
2014; Walsh et al. 2016). Large-scale genomic projects such as
the 1,000 genomes project (Siva 2010), the Human
Microbiome Project (Integrative HMP [iHMP] Research
Network Consortium 2014) or any recent epidemiological
studies of outbreaks (Editor 2011; Snitkin et al. 2012; Gire
et al. 2014) rely on comparative genomics and large scale
phylogenies to uncover underlying biological patterns and
trends. Nowadays, sequenced genomes are compared based
on conserved genes, polymorphic positions and/or annota-
tions (16S rRNA, rpoB, atpB, etc.; Patwardhan et al. 2014). For
example, multilocus sequence analysis (MLSA) uses the
sequences of housekeeping genes to construct phylogenies
(Glaeser and K€ampfer 2015). On a larger scale, phylogenomics
often compare genomes using the conserved genes of the
population under study (Pennisi 2008). Another common
approach for whole genome comparison is the Average

Nucleotide Identity (ANI) that relies on sequence alignments
in order to determine the percentage of similarity between
genomes (Konstantinidis et al. 2006). Researchers are thus
often interpreting their results solely based on a comparison
of the shared features of their samples, an approach that may
omit important genomic determinants that could better
characterize and discriminate subpopulations or phenotypes
(Tu and Lin 2016). Indeed, the accessory or dispensable ge-
nome can be responsible for important phenotypes such as
antibiotic resistance, adaptation to specific environments or
colonization of different hosts (Medini et al. 2005). Genes
acquired by horizontal gene transfer (HGT) are not measured
by traditional methods that use conserved genes to compute
evolutionary distance between bacteria. Given the impor-
tance of the accessory genome in pathogen traits, such as
virulence and antibiotic resistance, it is of interest to have
analytical tools capable of comparing thousands of genome
sequences without reducing analysis to conserved features.

K-mer-based methodologies are not new and have
attracted researchers’ interest for quite a while now
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(Vinga and Almeida 2003; Song et al. 2014; Haubold 2014). It
is the gold standard for short read assemblies with De Bruijn
graphs (Compeau et al. 2011; Boisvert et al. 2012) and there
are several highly efficient k-mer counters, like
MSPKmerCounter (Li and Yan 2015), DSK (Rizk et al. 2013),
and KMC2 (Deorowicz et al. 2014). Alignment-free sequence
comparisons have been studied in numerous ways and are
competitive with alignment-based methods in terms of accu-
racy while being generally computationally more efficient
(Marçais and Kingsford 2011; Gardner et al. 2015; Ondov
et al. 2016). They have also been used for the comparison of
assembled microbiomes (Raymond et al. 2016b) and proved
to be an important tool in the phylogenetic analysis toolbox
(Qi et al. 2004; Wen et al. 2014). Comparison of k-mer content
can also be combined with machine learning algorithms to
predict phenotypes such as antibiotic resistance (Drouin et al.
2016).

In this work, we evaluated whether k-mers can be used to
rapidly and accurately compare large collections of genomes.
With this approach, genomes are clustered based on the sim-
ilarityoftheircompletesequencebycountingthetotalnumber
of shared k-mers, including the accessory genome. In addition,
we tested the hypothesis that it is possible to characterize
populations of genomes based on specific features using pres-
ence/absence of k-mers related to these features. To do so, we
filtered genome sequences by selecting only k-mers that were
also present in a reference sequence data set, and then com-
pared the clustering of whole genomes against the filtered
genomes. The purpose of the filtered data set is to establish a
functional set of genes with common characteristics. We then
suggest that if genome clustering based on specific gene func-
tions restores the population structure based on whole
genomes, this functional set of genes is linked to the structure
ofthepopulationunderstudy.Thissuggeststhatthefunctional
set of genes could have a conserved function in the population
and presumably a selective pressure similar to the whole
genomes, for example. On the basis of this logic, we explored
this relationship by comparing a large number of bacterial
genomes with several gene sequence data sets, each one rep-
resenting a different functional gene category. We used refer-
ence sequence data sets of antibiotic resistance genes (ARG),
insertion sequences, plasmids, bacteriophages and biosyn-
thetic gene clusters (BGC) and observed their relationship
with genome population structure for different bacterial spe-
cies. This approach is implemented in the Ray Surveyor soft-
ware, which is built on top of the scalable Ray framework
(Boisvert et al. 2012, 2010). The defining feature of Ray
Surveyor is the ability to compare whole genomes based on
their complete set of k-mers along subsets of their k-mers, fil-
tered with other sequence data sets. Ray Surveyor allowed us to
determine how the five genetic element categories tested are
linked with the population structure of 42 species of bacteria.

Results and Discussion

Validation with Simulated Genome Populations
To overcome possible uncertainties introduced by real ge-
nome data sets, we started by generating random

phylogenetic trees (Kuhner and Felsenstein 1994;
Guindon and Gascuel 2002; Boc et al. 2012) and simulating
genome sequences from these trees (Spielman and Wilke
2015). Three different branch lengths were used to simulate
tree structures in order to measure the impact of this param-
eter on the clustering methods used in Ray Surveyor analyses.
The branch lengths were computed using an exponential
distribution, which yielded an average depth of log2ðnÞ
with n being the number of genomes in the tree, 100 in
our case. For each average branch length, ten random trees
were computed to evaluate reproducibility. Sequences of one
million nucleotides were produced for each simulated ge-
nome in the phylogenies in the form of an alignment, using
Pyvolve (Spielman and Wilke 2015).

The three branch lengths we examined were chosen to
model bacterial populations of within-species genomes
(0.001), within-genera genomes (0.005), and interspecies
genomes (0.01). This assumption was based on the ANI of
all simulated trees. The ANI cutoff to distinguish bacterial
species is estimated to be between 93 and 96% ANI
(Rossello-Mora and Amann 2015). Consequently, trees with
an average branch length of 0.001 (average ANI¼ 98.3%) are
akin to intraspecies data sets and branch lengths of 0.01 (av-
erage ANI¼ 85.4%) to interspecies data sets. An average
branch length of 0.005 corresponds to an ANI of 92.1% be-
tween all pairs of genomes, with 56.5% of them being below
93%. Therefore, in trees with an average branch length of
0.005, half of the genomes belong to the same bacterial spe-
cies whereas the other half belongs to different species from
the same genera. Although these cut-offs do not apply to all
bacterial species, they generally reflect the current state of the
NCBI taxonomy and they allow the evaluation of the influ-
ence of strain diversity on comparative genomics methods.

To allow comparison of Ray Surveyor clusters with phy-
logenies, we took the distance matrices derived from the
simulated trees and generated a dendrogram by hierarchical
clustering with the UPGMA linkage method. Similarly, the
k-mer Gram matrices generated with Ray Surveyor were
transformed into distance matrices upon which hierarchical
clustering dendrograms were computed. Those dendrograms
are referred to as phenetic trees throughout the manuscript.
The cophenetic correlation coefficient (CCC; Sokal and Rohlf
1962) was then used to assess how Ray Surveyor phenetic
trees correlated with the simulated phenetic trees. The CCC
in our case measures how well two phenetic trees preserve
the pairwise distances between all pairs of genomes. We
tested the impact of four distance metrics on the transfor-
mation of the Ray Surveyor Gram matrix using Euclidean,
cosine, correlation and Canberra distances. Ray Surveyor anal-
yses were also performed with k-mer lengths ranging from 11
to 101 nucleotides to evaluate their impact on accuracy.

The cophenetic correlation results from Ray Surveyor
analyses were affected by the average pairwise phylogenetic
distance of genomes and the k-mer lengths used in the
analysis (fig. 1A). Indeed, CCCs were higher for intraspecies
genome populations (lower average pairwise distance) and
were only slightly affected by k-mer length or distance
metrics. When genome populations grew more distant,
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crossing the species boundary, CCCs decreased with in-
creasing k-mer length. By comparing distance metrics
used to construct phenetic trees based on Ray Surveyor
results, we observed that Euclidean, cosine, and correlation
distances behaved similarly on simulated genome popula-
tions (see Materials and Methods). The Canberra distance
provided lower CCC for more closely related genomes, but
it was less affected by more heterogeneous populations
when the k-mer lengths were increased. This result is likely
due to the fact that the Canberra distance is more tolerant
of low absolute values (the number of shared k-mers), as
observed by Loureiro et al. (2004). For a control, we pro-
duced alignment-based phylogenies of the simulated
sequences that had average CCCs of 0.98 for branch lengths
of 0.001, 0.97 for 0.005 and 0.99 for 0.01.

In order to test the capability of Ray Surveyor to restore
good topologies for phylogenetic trees, we also computed a
Neighbor-Joining tree for all the distance matrices. In this com-
parison, we used the original simulated phylogenetic tree
against those derived from Ray Surveyor. The Robinson–
Foulds (RF) metric allows a comparison of unrooted phyloge-
netic trees, essentially by measuring the number of changes
required to align two trees together by transforming one tree

into the other (Robinson and Foulds 1981). Similar to the
cophenetic correlation, the RF results varied with sequence
diversity and k-mer length (fig. 1B). For the intraspecies ge-
nome populations (branch length¼ 0.001, average
ANI¼ 98.3%) longer k-mer length performed better and
peaked with the 101-mers and the cosine metrics. At the
species boundary, the cosine distance metrics yielded the
best topological trees with 31-mers. When comparing
genomes of different species (branch length¼ 0.01, average
ANI¼ 85.4%), a k-mer length< of 31 yielded better topolog-
ical trees for the cosine, correlation and Euclidean metrics.

On the basis of these results and on the literature, the
choice of k-mer length can be seen as a trade-off between
sensitivity and specificity (Ondov et al. 2016). Evolutionarily
distant genomes require shorter k-mers to get a good signal
(sensitivity) whereas more similar genomes benefit from
larger k-mer lengths for more specificity. Moreover, previous
studies have shown the efficiency of 31-mers in genome clus-
tering (Melsted and Pritchard 2011) and the robustness in
bacterial metagenome profiling (Boisvert et al. 2012) when
this length of k-mer is used. For the following analyses on real
genome data sets, we selected a length of 31-mers, which
offers a compromise between sensitivity and specificity for

FIG. 1. Evaluation of simulated genome populations with Ray Surveyor. Colors and symbols represent the distance metrics used to transform the
Ray Surveyor’s Gram matrix into a distance matrix. Each column represents a different evolutionary distance between the genomes, based on the
average branch length and bacterial species definition. Ten replicates were performed for each point. First row (A) is the cophenetic correlation
between the reference phylogeny and the phenetic tree. Second row (B) is the Robinson–Foulds metric between the reference phylogeny and the
Ray Surveyor derived tree.
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both intraspecies and interspecies comparison. We also fo-
cused our analyses on the cophenetic correlation for the phe-
netic trees, since we needed to characterize genomes based
on specific genetic elements rather than finding their ances-
tral history.

Population Scale Genomics with k-mers
This section aims to benchmark the application of the Ray
Surveyor genome comparison in comparative genomics proj-
ects and to assess how it performs on microbial populations of
different scales. As a first step, we validated that k-mer-based
phenetic trees accurately reflected previously determined
phylogenies based on publicly available comparative genomic
studies of Streptococcus pneumoniae and Pseudomonas aeru-
ginosa (fig. 2). For P. aeruginosa, 387 genomes were taken from
a study by Kos et al. (2015; fig. 2A). For S. pneumoniae, a first
data set of 616 genomes from Croucher and collaborators was
used, along with a second data set comprising 173 genomes
previously studied by Hilty and collaborators to investigate
the difference between encapsulated and nonencapsulated
pneumococci (Croucher et al. 2013; Donati et al. 2010; Hilty
et al. 2014). Whole genome phylogenies were obtained from
the authors for the Kos and the Croucher data sets, while the
phylogeny for the Hilty collection was built using 602 con-
served genes. We calculated the cophenetic correlation be-
tween the phenetic trees (hierarchical cluster dendrograms)
created using Ray Surveyor and the derived phenetic trees
from the phylogenies for these three data sets (fig. 2A). All
four distance metrics (see Materials and Methods) performed
above 0.91 CCC on P. aeruginosa, with the Canberra distance
yielding the highest CCC of 0.97. Correlation distance had the
highest CCC (0.92) compared with other distance metrics
(<0.75) for S. pneumoniae. The Hilty and collaborators data
set of S. pneumoniae genomes was tested and provided 0.89
CCC between correlation distance based on k-mers and the
core genome phenetic tree. Heatmaps representing the clus-
tering based on the distance between isolates of the Croucher
and Kos data sets are shown in supplementary figures 1 and 2,
Supplementary Material online.

This approach can also be used to quickly add a new ge-
nome to an existing phylogeny. For example, we added the
recently sequenced genome of P. aeruginosa strain E6130952
to the Kos et al. genome collection (CP020603.1 [https://
www.ncbi.nlm.nih.gov/nuccore/CP020603; last accessed July
19, 2017]; supplementary fig. 3, Supplementary Material on-
line). This pathogenic strain was isolated from a patient with
respiratory failure and was resistant to all tested antibiotics,
including colistin (Xiong et al. 2017). The closest isolate in the
phylogeny (AZPAE14730) was also resistant to levofloxacin,
meropenem, and amikacin, but not to colistin (Kos et al.
2015). Both strains have a similar genome size and share
97% of their k-mers.

In epidemiological studies, genomes are often classified
based on experimentally derived categories such as multilo-
cus sequence typing or serotypes. The Fowlkes–Mallows in-
dex (FMI) allows calculation of the similarity between two
clusterings (Fowlkes and Mallows 1983) and can be used to
compare clustering based on k-mers or phylogeny to

categorical information of clinical relevance. Thus, we used
this metric to quantify the concordance between the clusters
generated with Ray Surveyor or with phylogeny to metadata
associated with genomes. Therefore, we calculated the FMI
between clustering based on the phylogenetic and phenetic
trees of P. aeruginosa and S. pneumoniae when compared
with MLST and serotype genome classification, for a range
of 2 to N clusters (fig. 2B). Phylogenetic genome comparison
and k-mer-based comparison provided similar results when
compared with MLST or serotype categorization. The highest
divergence in FMI between phylogeny and k-mers was <5%.
Similarity with MLST was higher (� 85%) than similarity with
serotype (� 67%), suggesting that MLST is more related to
complete genome phylogeny than serotype. Indeed, in S.
pneumoniae, the capsular operon can be modified through
capsular switching, a process that decouples serotypes from
the core and accessory genomes (Andam and Hanage 2015).
In the Hilty data set, genomes from different strain types
could be associated within the category of nonencapsulated
S. pneumoniae, thus explaining the low FMI of serotypes in
comparison to the near-perfect FMI obtained when bench-
marking against MLST results.

In order to explore Ray Surveyor’s capacity to work with a
large number of distantly related genomes, we created a data
set of 2,429 complete genomes from 30 phyla in the domain
Bacteria. The 2,429 bacterial genomes from which this data
set was derived were selected in order to limit the bias caused
by a relative overrepresentation of certain genomes in the
public database, such as laboratory strains of Escherichia coli
or clonal isolates from epidemiological studies. We compared
the phenetic tree built with these genomes using Ray
Surveyor to the 16S rRNA phylogenetic tree of these strains.
Canberra distance was the best performing metric (0.69 CCC
compared with<0.10 for other distance metrics) for the tree
of 2,429 bacterial genomes, most certainly because of the low
number of shared k-mers between distant genomes (fig. 3A).
We also used the FMI to compare 16S phylogenetic and Ray
Surveyor phenetic trees to the taxonomical classification of
genomes at the family rank based on the NCBI taxonomy.
Although the NCBI taxonomy may not always be in line with
other taxonomies, it provides a convenient way to perform
taxonomy-related analyses with genomic sequences obtained
from NCBI (Federhen 2012; Balvo�cit and Huson 2017). When
comparing the classification of 2,429 genomes from 262 bac-
terial families to genome-based clustering, the peak FMI was
67% for k-mers (469 clusters) compared with 68% for 16S
phylogeny (310 clusters; fig. 3B). While these methods had
similar correlations with current NCBI taxonomy at the family
rank, we also observed that the accuracy of clusters was
influenced by the number of genomes within each bacterial
family (fig. 3B). When considering only bacterial families rep-
resented by at least 20 genome sequences (39 families),
k-mers had a maximal FMI value of 78% (at 167 clusters)
compared with phylogeny which had a maximal value of
77% at 107 clusters. In contrast, when considering families
represented by<20 genomes (223 families), FMI was 62% for
k-mer analysis (378 clusters) compared with 71% for 16S
rRNA phylogenetic trees (451 clusters). The discrepancies
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between 16S rRNA phylogeny and k-mer-based clustering
were mainly associated with regions where only a small num-
ber of genomes were included in the analysis. Additionally,
the low count of shared k-mers between these small groups
of genomes and the rest of the taxa makes it hard to find
common ancestors and thus infer their correct placement in
the final dendrogram. Hence, efficient clustering of phyloge-
netically distant bacteria that share a nonsignificant amount
of k-mers would require more intermediate genomes to ef-
fectively drive the hierarchical clustering and a shorter k-mer
length to get more signal.

To investigate the relationship between traits and genome
clustering, quantitative and qualitative metadata can be plot-
ted against a phenetic tree. For example, supplementary fig-
ure 4, Supplementary Material online, plots a phenetic tree of
2,429 bacterial genomes versus their GC-content and their
taxonomic class rank. In this representation, differences in
GC-content seem related to the taxonomical classification.
Because phenetic trees do not rely on sequence alignments,
we cannot correct for GC-content or codon bias using

substitution models or other methods, as suggested in the
literature (Mooers et al. 2000). Therefore, we do not expect
branch lengths, generated using our k-mer approach, to be
representative of evolutionary distance. The clustering of high
taxonomic rank could also be biased by GC content (Mooers
and Holmes 2000). At the k-mer level, differences in GC-
content and codon usage should negatively affect k-mer sim-
ilarity. Indeed, k-mer similarity is expected to decrease quickly
as the number of mismatches increase. Previous studies have
shown that the type of environment and particular lifestyles
of the bacteria is related to genomic GC-content and codon
usage (Foerstner et al. 2005; Botzman and Margalit 2011;
Lassalle et al. 2015). Differences in ecological niches are also
reflected in the accessory genome, which can lead to large
differences in k-mer content (Medini et al. 2005).

Comparing Genomes Based on Specific Traits
Not all genes within a genome have the same association with
the evolutionary story of a species as inferred from phylogeny
(Land et al. 2015). For example, genes acquired by HGT may

FIG. 2. Comparison of phenetic trees created using Ray Surveyor to phylogenies calculated using conserved genomes or marker genes for
Pseudomonas aeruginosa and Streptococcus pneumoniae. (A) Cophenetic correlation between alignment-based phylogeny and phenetic trees
calculated using four different distance metrics. (B) Fowlkes–Marlows index comparing clustering done using Ray Surveyor (correlation distance
metric) and phylogeny compared with classification based on multiple locus sequence typing or serotypes.
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not be linked to the phylogeny of a species and may have
been acquired independently by different strains, for example,
genes from mobile elements, bacteriophages or plasmids
(Philippe and Douady 2003). Resistance genes as well as sec-
ondary metabolite operons (Dobrindt et al. 2004) can also be
disseminated by HGT (P€arn€anen et al. 2016).

In order to investigate HGT patterns in our data set, we
developed an approach to quantify how the phenetic tree
generated using a subset of k-mers reflected the tree gener-
ated using the total k-mer content of a genome. We hypoth-
esize that if the two trees are correlated, the group of k-mers is
linked to the phylogeny of the studied population.
Conversely, the absence of correlation indicates indepen-
dence between the whole genome population and the fil-
tered genome population. The first steps to conduct the
analyses are similar to the ones’ explained in the two previous
sections. We first calculated a Gram matrix of shared k-mers
for all pairs of genomes. For each population two Gram ma-
trices were produced, one with the total count of shared k-
mers between the genomes and the second containing only
the count of shared k-mers included in the filtering data sets.
We then generated a distance matrix for the complete and
filtered Gram matrices using the Canberra distance, which we
chose in order to reduce bias caused by samples with a lim-
ited number of filtered k-mers. Phenetic trees were then built
using UPGMA clustering on the distance matrices. We
aligned the heatmaps of the clusters based on the whole

genome phenetic tree to visualize its similarity with the fil-
tered phenetic tree. In addition, the correlation between phe-
netic trees based on complete k-mer content and filtered
k-mer sets was quantified using CCC. A coefficient of 0 indi-
cates the absence of correlation whereas a coefficient of 1
indicates perfect cophenetic correlation between selected
k-mers and complete genomes, thereby suggesting that these
k-mers are associated with the phylogeny of the population.

In our initial analysis, we further investigated genome pop-
ulations of S. pneumoniae and P. aeruginosa and the 2,429
bacterial genomes using subsets of k-mers that could be ac-
quired through HGT and may have an impact on the evolu-
tion of bacterial species. We used five filtering data sets:
mobile elements (insertion sequences), resistance genes, bac-
teriophages, plasmids, and BGC. The filtering analyses were
produced using the strict inclusion of k-mers from the filter-
ing data sets. However, for the plasmids filtering, we also
excluded the k-mers from the resistance genes and mobile
elements data sets as these genetic elements often co-appear
on plasmids and chromosomes. As represented in figure 4,
the coherence between the heatmaps based on filtering and
those based on complete genomes, also expressed quantita-
tively by the cophenetic correlation, is different between fil-
tering data sets and genome collections. Streptococcus
pneumoniae showed low (0.28 CCC) correlation between an-
tibiotic resistance k-mers and complete genome clustering.
BGC (0.48 CCC) and plasmids (0.52 CCC) had moderate

FIG. 3. Comparison of phenetic trees created using Ray Surveyor to phylogeny based on 16S gene sequence for 2,429 bacterial genomes.
(A) Cophenetic correlation between alignment-based phylogeny and phenetic trees calculated using four different distance metrics.
(B) Fowlkes–Marlows index comparing clustering done using Ray Surveyor (correlation distance metric) and phylogeny compared with
taxonomical classification at the family rank.
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FIG. 4. Comparison of the relationship between strains when genome sequences are filtered using one of five filtering data sets for Streptococcus
pneumoniae, Pseudomonas aeruginosa and the 2,429 representative bacterial genomes. The Heatmap represents the Canberra distance
between genomes collated on a subset of k-mers. The X and Y axis of the heatmap are genomes ordered based on hierarchical clustering of
the complete genome. The number in top left corner of heatmaps is the cophenetic distance, expressed in percentages, between filtered data sets
and whole genome phenetic tree. The darker the shade of blue, the higher the similarity between samples.
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correlation with complete genome clustering. The genomes
harbor on average 403 and 5,636 k-mers for BGC and plas-
mids, respectively, suggesting sequences from these origins
are not widely abundant in the species, although they are
correlated with the structure of the population. Streptococcus
pneumoniae does not frequently harbor plasmids, which is
reflected in the count of k-mers related to these genetic
elements (Romero et al. 2007). The lack of characterized
BGC from the species in the filtering data set could also
have an impact on the moderate correlation. In contrast,
the P. aeruginosa phenetic trees based on resistance genes
(0.98 CCC) and BGC (0.92 CCC) were highly correlated with
phenetic trees based on the whole genome. The number of
shared k-mers associated with the two filtering data sets was
on average 41,240 and 63,820 k-mers, respectively. Similar
results were obtained on 71 genomes of P. aeruginosa down-
loaded from the PATRIC database (Wattam et al. 2014),
which included some environmental samples, and on 500
P. aeruginosa genomes randomly selected from NCBI (sup-
plementary fig. 5, Supplementary Material online). In the case
of the 2,429 bacterial genomes data set, the whole genome
phylogeny was highly correlated with plasmids and BGC. The
overall relationship between representative taxa in the do-
main Bacteria was not distinctively defined by resistance
genes, which are broadly distributed in the microbial tree of
life and can be associated with HGT (Metcalf et al. 2014)

In order to dissect the relationship between bacterial
pathogens and the five filtering data sets, we applied the
methodology described above to 42 bacterial species for
which at least 100 genomes were available in the NCBI
RefSeq database (fig. 5). These taxa are associated with human
infections, with the exception of Lactobacillus plantarum
which is found in fermented food (van den Nieuwboer
et al. 2016). Our hypothesis is that high cophenetic correla-
tion of clustering between complete and filtered k-mer con-
tent is a good indicator of how the tested elements are related
to the phylogeny of the species.

The majority of the gammaproteobacteria had strong cor-
relations with the ARG data set, especially species from
Klebsiella, Escherichia, Enterobacter, Vibrio, Pseudomonas,
and Acinetobacter. This could be related to the large number
of intrinsic resistance determinants characterized in those
species, especially the drug efflux systems (Rodionov et al.
2001). Other studies have put into evidence the importance
of bacteriophages and plasmids in the ongoing evolution of
the Vibrio genus (Hazen et al. 2010), as reflected in figure 5.
Shigella flexneri is the Proteobacteria with the highest corre-
lation with bacteriophages (0.83 CCC). Indeed, their O-anti-
gens were often modified by serotype-converting
bacteriophages (Allison and Verma 2000; Sun et al. 2013).
To further investigate this question, we used alignments to
validate which bacteriophages used for filtering would be
found in the 147 Shigella genomes. Interestingly, we found
some specific prophage sequences that could delineate the
clusters seen with clustering based only on phage k-mers
(supplementary fig. 6, Supplementary Material online).
Polysaccharides-related BGC, which encode capsular antigens
and O-antigens, could thus explain the high CCC of BGC for

S. flexneri and Vibrio cholerae (Cimermancic et al. 2014). On
the other hand, E. coli has several characterized BGC in the
MIBiG database while showing moderate correlation with the
whole genome (0.49 CCC; Medema et al. 2015b). Comparison
of clustering between whole genome and BGC of E. coli indi-
cate that a portion of the population can be delineated by
BGC while others seem unrelated (supplementary fig. 7,
Supplementary Material online). The Francisella tularensis ge-
nome can contain over 100 insertion sequence genes (Larsson
et al. 2009), which could explain its high correlation with
mobile elements. In opposition to most of the tested species,
F. tularensis was also significantly correlated with plasmids.
This high correlation could be related to a misannotated
100 kb plasmid that is in fact part of the F. tularensis genome
(CP010448.1 which was replaced by CP010446.2). This large
chromosomal region could indeed have boosted the impact
of plasmids in the correlation observed, as it is integrated to
the genome. It is important to consider that for most
genomes in RefSeq, the plasmid sequences are found under
a different accession number than the genome, therefore it is
not considered in the clustering. In whole genome shotgun
sequencing, plasmid sequences are generally included in the
assemblies, thus plasmid filtering could prove useful to ex-
clude these sequences from whole genome comparisons.

Six species from the Firmicutes phylum had
correlation>0.70 CCC with ARG. Bacillus anthracis, B. cereus
and B. subtilis were all above 0.85 CCC for ARG. This high
correlation could originate from the chromosome-encoded
b-lactamases harbored by the species (Colombo et al. 2004;
Fenselau et al. 2008; Materon et al. 2003). The other members
of the phylum, Firmicutes having good correlation with ARG,
were Listeria monocytogenes 0.93 CCC, Enterococcus faecalis
0.82 CCC, and S. pneumoniae 0.70 CCC. The three Bacillus
species also had CCC >0.70 for BGC. Bacilli are known to
produce several types of secondary metabolites (Sansinenea
and Ortiz 2011). All the Firmicutes analyzed were below 0.55
CCC with the mobile elements data set. In Firmicutes, bacter-
iophages had best correlations with Streptococcus suis (0.87
CCC) and B. anthracis (0.98 CCC). The 500 S. suis genomes
had an important number of k-mers associated with phages
(18,642 in average), that along with the correlation, supported
the idea that prophage sequences in the species are linked to
the whole genome phylogeny. It was also shown in previous
observations that remnants of phage sequences are distrib-
uted throughout S. suis genomes (Tang et al. 2013). Bacillus
anthracis had a high correlation with bacteriophages com-
pared with the other Bacillus species, although shared k-mers
from the filtering data set were not numerous (3,936 in av-
erage). The correlation could be related to four defective and
conserved prophages harbored by the species as reported in
Sozhamannan et al. (2006). In agreement with our results,
they suggested that these prophages could be used as a chro-
mosomal signature of the species. Bacteriophages could also
be associated with ecological adaptation in B. anthracis
(Schuch and Fischetti 2009).

Overall, the interpretation of the results represented in
figure 5 supports our hypothesis that correlation between
filtered genomes and complete genomes indicates a

Phenetic Comparison of Prokaryotic Genomes . doi:10.1093/molbev/msx200 MBE

2723



relationship between selected k-mers and a species. In many
cases, we observed that a cophenetic correlation occurred in
species where potentially mobile genetic elements were inte-
grated in the genome. Thus, this methodology could poten-
tially indicate integration and conservation of these elements
in the genome of a particular species, or at least their phylo-
type dependence.

Conclusion
By comparing the k-mer composition of genomes, we were
able to reconstruct the phenetic tree of large bacterial epide-
miological genomics data sets, as we demonstrated with the
S. pneumoniae and P. aeruginosa data sets. We also evaluated
the accuracy of the methods on synthetic genome data sets
by testing different parameters that influence this kind of
analysis. The methodology is based on whole genome analysis
rather than on a subset of core genes, which has been shown
to introduce bias (Shapiro et al. 2012; Biek et al. 2015). The use
of k-mers allows comparison of genomes based on character-
istics that are either conserved or specific. We also applied the
method to a data set of 2,429 bacterial genomes spanning the

whole bacterial tree of life, without a selection of features such
as conserved genes or ribosomal RNA. This approach makes
Ray Surveyor an effective tool for scalable analyses in com-
parative genomics research, among other applications. Using
k-mers to build phenetic trees could be used to easily position
newly sequenced genomes in the microbial tree of life and
infer classification or to determine which branches of the tree
of life are not well represented in terms of genome sequences
relative to internal taxa diversity.

Analysis of population structures can further be parti-
tioned by filtering subsets of k-mers associated with gene
categories or functions. Our results demonstrate that com-
parison of genomes based on specific subsets of k-mers can
reveal their relationship at the population scale. Indeed, with-
out being specific about the genetic determinants involved,
the method allows easy determination of strain clusters with
similar potential regarding the functions of the filtered data
set, such as antibiotic resistance or HGT as shown in this
study. A limitation of the filtering approach is that it involves
the gathering of sequence data that adequately represents
the diversity of the genes or functional category under study.
For example, using only reference resistance genes instead of a

FIG. 5. Cophenetic distance between phenetic trees based on whole genome and filtered data sets for 42 bacterial species from RefSeq that
included at least 100 genomes. Intensity of heatmap represents the cophenetic correlation as shown in the legend. Numbers in the heatmap are
percentages of genomes with zero k-mers associated with relevant filtering data set.
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large collection of orthologs, paralogs, and variants would
underestimate the abundance of resistance genes in genomes
containing variants of the reference gene. Still, some sequence
types, such as bacteriophages or BGC, could be underrepre-
sented in the databases used in this study. Such sequences,
could have potentially resulted in more significant results,
provided the availability of a more exhaustive and diverse
sequence data set. As seen in figure 4 for the 2,429 bacterial
genomes, some clusters of genomes show high bacteriophage
signals in comparison to other regions of the heatmap.
Indeed, of the 262 bacterial families included in the 2,429
genome analysis, 147 families had� 100 k-mers associated
with phage sequences, suggesting that some families could
suffer from a lack of characterized phages in the database
used for profiling (EBI). This issue should be alleviated by
better filtering data sets as more sequences and better anno-
tations become available in public databases.

Ray Surveyor is a powerful tool that allows the reconstruc-
tion and interpretation of the phenetic relationships under-
lying populations of bacterial species. By taking into account
clinical or environmental context with the sequence filtering
capabilities, this method could allow an intuitive representa-
tion of population structures and the genomic features re-
lated to their differentiation or phenotype. It is thus a
hypothesis-generating tool that could be applied to investi-
gate the importance of specific gene categories not only in
pathogens but also in environmental microbial communities
and in the analysis of transcriptomic and metagenomic-based
research.

Materials and Methods

Theoretical Background and Software
Implementation
Ray Surveyor is built on top of the highly scalable Ray frame-
work, which includes the Ray assembler and RayPlatform
(Boisvert et al. 2012, 2010). It uses the message-passing inter-
face (MPI) to scale analysis on supercomputers. However,
depending on their size, data sets can be analyzed on smaller
servers or personal computers. Components of the software
include, among others, a sparse distributed hash table to store
the k-mers on each computer across a cluster, as well as a
graph coloring scheme that associates each k-mer vertex of
the de Bruijn graph with its profiling data sets. Ray Surveyor is
also based on the actor model (Hewitt 1977); each actor takes
care of its own task such as reading and k-merizing input
sequences, gathering k-mers into a store keeper, counting the
k-mers and building the Gram matrix. supplementary figure 8,
Supplementary Material online, provides further details on
the actors’ roles and their ways of communicating.

The first step of Ray Surveyor is to split the genome
sequences into k-mers and build a graph of the pangenome.
The k-mer length is set by the user. We recommend using a
length between 21 and 61 nucleotides, usually 31 for the
comparison of bacterial genomes. The workflow then pro-
ceeds with graph coloring, which assigns a virtual color for
each k-mer according to the combination of genomes or
functional data sets that carry it. The next step is to iterate

over each k-mer and increment the count of shared k-mers
between each pair of genomes of that color and store them in
the Gram matrix. Formally, each pair of genome comparisons
can be seen as a simple D2 statistic (Reinert et al. 2009; Wan
et al. 2010) with a binary count (presence/absence) of their k-
mers. Since our counts are dichotomic, we can formally define
the Ray Surveyor mechanics based on set theory.

Let Ai ¼ fk1; k2; . . .; klAg be the set of all the k-mers of
genome i, and similarly Bj ¼ fk1; k2; . . .; klBg the set of all the
k-mers of genome j. Then, the Gram matrix (K) is defined
such that ki;j ¼ jAi \ Bjj. Let Z ¼ fz1; z2; . . .; zmg be m fil-
tering data sets and Y ¼ [m

n¼1Zm their union. To filter in
(include only) the k-mer set Y, ki;j ¼ jAi \ Bj \ Yj and to
filter out (exclude) the k-mer set Y, then
kij ¼ jðAi \ BjÞnYj. The resulting matrix K is then normalized
to have values in the range [0, 1], with the diagonal entries
equal to 1. Consequently, the entries of the normalized matrix

K0 are given by k0i;j ¼
ki;jffiffiffiffiffiffiffiffiffi
ki;i�kj;j

p . However, when filtering is used,

we recommend division of the entries ki,j by the ki,i and kj,j of
the full k-mer matrix, rather than the filtered version. The
reason is that the diagonal of the filtered matrix no longer
represents the total number of k-mers per genome, but only
the number of filtered k-mers, a subset of the genome. This
renders the matrices more comparable, as they are all nor-
malized with respect to the same total k-mer content.

After normalization, the matrix is transformed into a
distance matrix with a chosen metric. We focused our
experiments on four metrics that are the cosine, correla-
tion, Euclidean and Canberra. Below, we formally define
the distance formulae by using u and v and the normal-
ized vectors of shared k-mers between a genome and all
the other genomes in the population. For instance, the
entry d1,2 in the distance matrix D, would be defined as

d1;2 ¼ 1� k01�k02
jjk01jj2jjk02jj2

for the cosine distance metric. With

the vectors u ¼ k01 and v ¼ k02, here are the formula of the
four distance metrics tested in our study:

• cosine:

1� u � v
jjujj2jjvjj2

(1)

• correlation:

1� ðu� �uÞ � ðv� �vÞ
jjðu� �uÞjj2jjðv� �vÞjj2

(2)

• Euclidean

jju� vjj2 (3)

• Canberra:

X

i

jui � vij
juij þ jvij

: (4)

An important limitation of the cosine and correlation dis-
tances is that they cannot be evaluated if one of the vectors
only contain zeros. This means that if a genome does not
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share any k-mer with all the other genomes, the two metrics
will fail with an undefined behavior due to the division by zero
(from kuk2 or kvk2). This may also happen when we filter the
comparison with a functional data set and there is one ge-
nome that doesn’t harbor any k-mer from it. The two other
metrics (Euclidean and Canberra) are robust to those outliers
without shared k-mers but their results are still influenced by
them. Hence, species with a large proportion of genomes
containing no k-mer of the filtering data set should not be
interpreted with this methodology. Undefined distances with
cosine and correlation metrics were set to zero in our experi-
ments. For this reason, in the manuscript, figures showing
cophenetic distance of filtered data sets used the Canberra
distance.

The matrix computation in Ray Surveyor uses the SciPy
python package (Jones et al. 2001). Computation of distance
metrics can also be performed with R software. Moreover, the
Ray Surveyor scripts allow computation of a Newick tree from
the distance matrix either with the Neighbor-Joining or
UPGMA method (unweighted pair group method with ar-
ithmetic mean) based on the scikit-bio and BioPython pack-
ages (Cock et al. 2009).

Phenetic and Phylogenetic Analysis

Simulated Data Sets
Simulated trees with three different average branch lengths
(0.001, 0.005, 0.01) were randomly produced to represent
different evolutionary distances of 100 genomes (Kuhner
and Felsenstein 1994; Guindon and Gascuel 2002). For each
of the three average branch lengths, we generated 10 trees to
evaluate reproducibility. Sequence alignments of 1,000,000
sites were derived from the 100 genomes’ trees based on a
simple nucleotide model (equal equilibrium frequencies and
equal mutation rates) from the Pyvolve python package
(Spielman and Wilke 2015). The sequences obtained from
the gapless alignments were used for subsequent Ray
Surveyor analyses. The four distance metrics (Euclidean, co-
sine, correlation, Canberra) were tested in our simulation to
transform Ray Surveyor’s similarity matrix into a distance
matrix. We also tested ten different k-mer lengths—ranging
from 11 to 101 with an increment of 10—to evaluate their
performance. To ensure the validity of our tree and sequence
models, an alignment-based phylogeny with the FastTree NT-
GTR model (Price et al. 2010) was made for all the trees. The
alignment-based phylogenies were also compared with the
reference phylogeny using the same methods as for Ray
Surveyor clusters (phenetic trees) or Neighbor-Joining trees.
Two evaluations were made to test how well our method
would replicate the reference simulated trees. First, the sim-
ulated tree distance matrices were compared with Ray
Surveyor’s distance matrices with the CCC using the ape
(Paradis et al. 2004) and dendextend (Galili 2015) R packages.
CCC indicates how similar the pairwise distances are between
two dendrograms obtained by hierarchical clustering from
the distance matrix. Secondly, the topology of the trees was
compared with the RF metric with the ETE3 python package
(Huerta-Cepas et al. 2016). RF counts the minimal number of

branch operations required to change one tree into the other.
The ANI was also computed for all the simulated alignment
sequences. The ANI statistics for all the trees are reported in
supplementary table 1, Supplementary Material online.

Real Prokaryotic Genome Data Sets
The phylogenies and metadata for the Croucher et al. S.
pneumoniae data set and the Kos et al. P. aeruginosa data
set were obtained from the authors (Croucher et al. 2013,
2015; Kos et al. 2015; Donati et al. 2010). The phylogeny of the
Hilty et al. S. pneumoniae data set was obtained using 602
conserved genes aligned with MAFFT v7.221 (Katoh and
Standley 2013). A maximum likelihood phylogeny was the
performed on the 602 concatenated genes with RAxML ver-
sion 8.1.20 (Stamatakis 2014). In order to compare phyloge-
netic trees with the clusters of Ray Surveyor, the trees were
converted from their Newick format into a cophenetic dis-
tance matrix using the R package: Ape (Paradis et al. 2004).
Hierarchical clustering was performed using the UPGMA (av-
erage) method. The 2,429 bacteria genome phylogenetic tree
was based on the 16S rRNA gene and taxonomical annota-
tion was based on the established NCBI taxonomy. Initially,
2,429 bacterial genomes were obtained from NCBI (see sup-
plementary table 2, Supplementary Material online for a list).
To build the phylogeny of the bacterial tree of life, the 16S
rRNA gene sequences were extracted from each genome.
Then, the 2,429 16S rRNA genes were aligned using MAFFT
v7.221 (Katoh and Standley 2013) and a maximum likelihood
phylogeny was produced with RAxML version 8.1.20
(Stamatakis 2014). CCC and FMI were calculated with the
dendextend R package (Galili 2015). Ray Surveyor was run
with a k-mer length of 31 to keep a high stringency in the
coloring of the graph (Boisvert et al. 2012). The 2,429 bacterial
genomes similarity matrix was produced with Ray Surveyor
on a computer cluster using four nodes of 48 cores with
256GB of RAM for a total compute time of <6 h.

Source of Tools and Data Sets
Ray Surveyor is freely available under the GPLv3 license at
https://github.com/zorino/ray (last accessed July 19, 2017). A
tutorial on how to run an analysis is available at https://
github.com/zorino/raysurveyor-tutorial (last accessed July
19, 2017). The 2,429 bacterial genomes were downloaded
from the NCBI GenBank (ftp://ftp.ncbi.nlm.nih.gov/
genomes/genbank/bacteria/; last accessed July 19, 2017) in
September 2015. Only the sequences marked either as a rep-
resentative or a reference genome in the assembly reports
were selected. The goal was to compute phylogenetic trees
and clustering from a limited number of genomes that rep-
resented a broad taxonomical overview of the domain
Bacteria. Since the NCBI GenBank genome database has an
inherent bias towards certain taxa (Tatusova et al. 2015), such
as clinically relevant pathogens, it allowed us to discard a large
number of similar genomes. The total number of nucleotides
analyzed in this data set was 11.4 billion with an average of 3.9
million per genome. The targeted analyses of S. pneumoniae
and P. aeruginosa were extracted from the literature
(Croucher et al. 2013; Kos et al. 2015) and downloaded
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from NCBI GenBank or ENA. The data sets of resistance genes
and mobile elements were taken from the MERGEM database
(http://mergem.genome.ulaval.ca; last accessed July 19, 2017;
Raymond et al. 2016a), the plasmids were taken from the
NCBI Plasmids collection in June 2015, the bacteriophage
from the EBI collection in June 2015 (http://www.ebi.ac.uk/
genomes/phage.html; last accessed July 19, 2017) and the
BGC from the MIBIG v1.0 database (Medema et al. 2015a).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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