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ABSTRACT

Objective: This study assesses whether neural networks trained on electronic health record (EHR) data can an-

ticipate what individual clinical orders and existing institutional order set templates clinicians will use more ac-

curately than existing decision support tools.

Materials and Methods: We process 57 624 patients worth of clinical event EHR data from 2008 to 2014. We

train a feed-forward neural network (ClinicNet) and logistic regression applied to the traditional problem struc-

ture of predicting individual clinical items as well as our proposed workflow of predicting existing institutional

order set template usage.

Results: ClinicNet predicts individual clinical orders (precision¼0.32, recall¼0.47) better than existing institu-

tional order sets (precision¼0.15, recall¼0.46). The ClinicNet model predicts clinician usage of existing institu-

tional order sets (avg. precision¼0.31) with higher average precision than a baseline of order set usage fre-

quencies (avg. precision¼0.20) or a logistic regression model (avg. precision¼0.12).

Discussion: Machine learning methods can predict clinical decision-making patterns with greater accuracy and

less manual effort than existing static order set templates. This can streamline existing clinical workflows, but

may not fit if historical clinical ordering practices are incorrect. For this reason, manually authored content such

as order set templates remain valuable for the purposeful design of care pathways. ClinicNet’s capability of pre-

dicting such personalized order set templates illustrates the potential of combining both top-down and bottom-

up approaches to delivering clinical decision support content.

Conclusion: ClinicNet illustrates the capability for machine learning methods applied to the EHR to anticipate

both individual clinical orders and existing order set templates, which has the potential to improve upon current

standards of practice in clinical order entry.
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LAY SUMMARY

Scientific advances have led to a wealth of advances in medicine, but

the escalating complexity makes it difficult for clinicians to learn

how to efficiently use all patient information and optimize practice

to the highest quality possible. In this study we develop ClinicNet, a

recommender algorithm that anticipates clinical items (medications,

procedures, consults, etc.) a clinician will order in the hospital based

on prior similar cases. This is similar to online recommender systems

that automatically anticipate your interests and needs. With Clinic-

Net, we can automatically generate lists of clinical order suggestions
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with greater accuracy than both conventional algorithmic

approaches and checklists manually produced by human commit-

tees. We further develop an algorithm application to automatically

guide clinicians toward existing decision support tools currently

available but often overlooked in hospital systems.

INTRODUCTION

Modern medicine is marked by undesirable clinical practice variabil-

ity due both to the intractability of manually assimilating vast bodies

of medical information and consistently applying such knowledge at

scale. High quality, up-to-date, and effective clinical decisions re-

quire a physician to understand a large and growing amount of med-

ical information.1 Expert knowledge is potent, but the difficulty of

maintaining and reproducing such expertise means that it is essen-

tially impossible to deliver it consistently and at scale without sup-

port systems.2 Without support systems and alternative information

sources, physicians will be left to rely on personal intuition in the

face of ever-escalating complexity of medical information.3–5

The United States has seen the widespread adoption of electronic

health records (EHRs) in over 80% of hospitals, especially after re-

cent reforms such as the HiTech act (2009) and Medicare Access

and CHIP Reauthorization Act of 2015.6,7 EHRs support new tools

such as computerized physician order entry (CPOE) that reduce

medication errors, increase efficiency, and save hospitals money

over the previous alternative of handwriting orders on paper.8–11

Though EHRs have provided many added benefits to patient

care,12,13 the increased screen time from using EHR and CPOEs

appears to be highly correlated with physician stress and burn-

out.14–16 This may lead to lower-quality care for patients.17,18 The

development of clinical decision support systems that provide physi-

cians with computerized assistance in clinical decisions19 are prom-

ising as they may help reduce screen time and prevent burnout

among physicians, while improving the consistency and quality of

care in the clinic.20,21

One common form of clinical order decision support used in

clinical practice is institutional order sets. For a given patient, clini-

cians can search for and select from a pre-defined order set that may

help inform what clinical items to order for different clinical scenar-

ios (eg, blood transfusion process, admission for pneumonia, routine

post-surgical care). These preformed templates consist of lab tests,

medications, procedures, and other orders as determined by clinical

committees.22 As clinical knowledge advances, order sets must be

manually updated to stay current with medical guidelines and the

availability of new orders, a process that is often inefficient and

delivers unsatisfactory results.23,24

The availability of electronic medical data has laid the founda-

tion for algorithmic approaches. In existing vendor-based CPOE

workflows, clinicians search for clinical orders and order sets by

name to retrieve a list of options to select from. Algorithmically gen-

erated recommendations may work within that same workflow, but

instead of awaiting the user’s manual input of search criteria, the

recommended orders and order sets can already be presented as

options based on the available patient-specific data, while still

allowing users to ignore those suggestions and proceed with their

usual manual search workflow.

Previous literature has demonstrated the efficacy of statistical

models, such as latent Dirichlet allocation probabilistic topic models

and machine learning models, to generate order recommendations

analogous to Netflix or Amazon.com’s product recommender.25–28

These methods are not only more accurate than current standard of

care clinical order set decision support templates, but also they are

more scalable and personalized than manually developing thousands

of custom order sets.29 These data-driven order sets demonstrate util-

ity in potentially reducing length of stay as well as reducing cognitive

workload.28,30,31 Deep neural networks in particular have made prog-

ress in speech recognition, object detection, financial forecasting, and

a variety of other domains.32–35 In medicine, in particular, these mod-

els perform well on tasks such as readmission, length of stay, triage,

diagnosis through image segmentation, and death.36–41 While deep

learning algorithms have been investigated to support clinical deci-

sions, further work is needed to understand their potential clinical

applications.42,43 Neural network algorithms may capture complex

non-linear relationships in the clinical order set prediction task that

are not as well captured in classical recommender approaches such as

association rules and matrix factorization.

Recent clinical user acceptability assessments express anxiety

with the use of clinical order recommendations generated from algo-

rithms especially due to difficult interpretability of many

approaches.44 In addition to predicting clinical items, our study pro-

poses an additional clinical application of recommending existing

order sets to users. This problem structure combines both top-down

and bottom-up approaches for the purpose of knowledge summari-

zation and dissemination. It has additional clinical workflow advan-

tages as clinicians are already more trusting and familiar with these

order set templates authored by institutional committees rather than

algorithms.44

We analyzed data from STAnford medicine Research data Re-

pository (STARR) which includes 57 624 patients from 2008 to

2014. Anytime a clinician orders an order set or a clinical item from

the EHR, we consider that an opportunity to anticipate or provide a

personalized recommendation within the clinician workflow. We

trained 2 artificial neural network models on a feature matrix con-

sisting of 35 million clinical item entries (across 57 624 patients) and

19 661 features to predict order set template usage as well as indi-

vidual clinical items, making use of information only provided prior

to the time of prediction. Anticipating ordering behavior for both

order sets and individual clinical items provide a personalized, data-

driven, and automated way to potentially improve patient outcomes

in comparison to existing institutional order sets.45

In this study, we aimed to determine whether machine learning

methods trained on EHR data can predict individual clinical order

decisions as well as the usage of order set templates more accurately

than existing clinical decision support tools (Figure 1).

MATERIALS AND METHODS

Data source
De-identified Stanford Health Care (SHC) inpatient data from 2008

to 2014 was extracted through STARR.46,47 We define elements of

the data repository as follows:

• Clinical item: Something that is associated with a patient in the

EHR. Includes medications ordered, lab tests that resulted, ICD9

diagnosis codes, treatment teams, demographics, etc.
• Clinical order: A type of clinical item that a physician can order

for a patient.
• Clinical item entry (event): A new record (row) that is generated

when a clinical item is recorded in the EHR for a patient.
• Order set: Pre-defined templates of clinical orders.
• Patient record: Timestamped sequence of clinical item entries.
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The data repository reflects the >74 000 patients hospitalized at

SHC during the study period, including records of >55 million clini-

cal item entries (events) drawn from >45 000 distinct clinical items

(event types). Each patient is represented by several rows of data,

where each of these rows corresponds to a single clinical item entry.

Our study processed a random sample of 57 624 patients (35 million

clinical item entries). The demographic makeup of the patients is

depicted in Supplementary Figure S1.

Data pre-processing and feature extraction
Clinical items were selected as follows. For medication clinical

items, medications were grouped according to RxNorm mappings

down to combinations of active ingredients and route.46 For exam-

ple, clinical orders for both Norco and Vicodin pills were repre-

sented as “Acetaminophen-Hydrocodone (Oral)” while injections of

metoprolol were represented as “Metoprolol (Intravenous)” regard-

less of dose or frequency. Information about a patient, such as race

or sex, were represented as one-hot encoded features. The ICD9

coding hierarchy was rebuilt up to 3 digits (eg, 786�05 would count

as 3 clinical items: 786�05, 786�0, and 786). Of the >45 000 result-

ing clinical items, we were only interested in clinical orders for the

response vectors. After excluding non-order clinical items (eg, diag-

nosis codes, lab results) and “Nursing orders” that mostly reflect

components of standard process templates like “Check vital signs”

that would not be of interest for a prediction or recommender

model, 14 914 clinical orders could be considered. In order to de-

crease the sparsity of our dataset we invoked the 80/20 power-law

distribution48,49 of clinical orders to only include clinical orders oc-

curring at least 256 times in the dataset, leaving 1639 clinical orders

to consider, while still representing >90% of the clinical order

events. For the order sets, a total of 610 order sets existed for the

patients in our dataset and for each time that an order set was used,

the order set identifier, the date the order set was used, and the pa-

tient on which the order set was used were recorded. For the features

that comprised the feature matrix, the aforementioned 1639 clinical

orders were used in addition to diagnosis codes, lab results, and

treatment teams, as well as time features (eg, month and hour of the

clinical item entry, which were sine- and cosine-transformed to rep-

resent the cyclical nature of these features), resulting in 6231 clinical

items for the feature matrix. The features and response vectors are

described in Supplementary Table S1.

Construction of feature matrix and response vectors
Each row of data represented a clinical item entry (event) that was

entered for a particular patient (eg, medication ordered, lab test

resulted). Patients who had more entries recorded in the hospital

comprised more rows of data than patients who had fewer entries.

Features consisted of clinical items binned 4 time points: within 1

day prior, within 7 days prior, within 30 days prior, and any time

prior. From the organization of the data described, each row in the

feature matrix contained information about a patient’s record up to

the point that the row was generated. Consider the following sce-

nario for a new patient:

1. Patient receives an order of acetaminophen. The newly added

row contains all zeroes because patient has no history at this

point.

Figure 1. Schematic illustrating the prediction task. Electronic health record data from 57 624 patients are processed into a 35M by 20K feature matrix. Using this

feature matrix, 2 different response vectors are created for order set usage and individual clinical items 24 hours after every instance an item is ordered. We then

train and evaluate neural networks to predict order set usage and individual clinical items.
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2. Patient receives another acetaminophen an hour later. This row

has the number “1” for 4 acetaminophen features: ordered

within 1 day prior (pre-1), 7 days prior (pre-7), 30 days prior

(pre-30), and any time prior (pre-any). These “1’s” reflect the

first order of acetaminophen.

3. Patient receives a third acetaminophen 10 days later. This row

is “0” for acetaminophen pre-1 and pre-7 and “2” for acet-

aminophen pre-30 and pre-any, reflecting the 2 prior acetami-

nophens.

4. Patient receives aspirin a few minutes later. This row is identi-

cal to the previous row.

5. Patient receives a second order of aspirin several minutes later.

In this row, all 4 aspirin features are “1” (in previous rows, the

aspirin features were “0”). The acetaminophen features, again,

would remain the same as in the previous 2 rows.

Each response variable was a binary variable representing

whether a physician ordered that clinical item or used that order set

within the next day (post-1). In the example scenario, row #3 would

be “1” for acetaminophen post-1 (note: the current order of acet-

aminophen is included) and “1” for aspirin post-1 but all remaining

response variables would be “0”.

Training, validation, and test sets
The data were partitioned into training, validation, and test sets by a

70/15/15 split such that no patient appeared in multiple datasets. In

order to prevent temporal leakage, the data splits were then subsetted

such that the training set only contained entries from before the year

2011, the validation set only contained entries from 2011, and the

test set only contained entries after 2011. For the order set prediction

task, to mitigate data sparsity, only entries that had at least 1 order

set used within the next 24 hours were retained. The partitioning of

the data is detailed in Supplementary Figure S2. All count data were

log2-transformed and all data were z-score standardized.

Baselines
Our technical baseline model consisted of a logistic regression model

trained with a binary cross-entropy loss function and a vanilla sto-

chastic gradient descent optimizer with a 0.01 learning rate. For

both the clinical item and order set prediction tasks, the model was

trained for 1 epoch on the entire dataset.

The study additionally implemented 2 baselines that serve as

heuristics for existing clinical decision support standard of care. For

individual orders, we compared our performance to the usage of

existing institutional order sets. For this comparison, we subsetted

our test set to contain any instance where an item is ordered from

within an order set. Our baseline was created using the full contents

of the order set as a prediction. When a single clinical item was or-

dered from 2 order sets, we excluded this from our comparison

(which only occurred for 0.8% of all orders).

For the order set prediction task, limited benchmarks exist in

standard clinical practice, thus we developed a baseline using readily

available EHR filters by admissions frequencies. We queried across

the entire 55 million rows of the dataset to count the number of

times an order set was ordered within 2 days for a given admission

diagnosis that was collapsed to 3 digits (eg, ICD9 008, ICD9 009,

ICD9 010). We used these counts to generate prediction probabili-

ties scaled to a range from 0 to 1. If a given admission diagnosis had

insufficient data with fewer than 50 total order set usages, then the

“bestseller” list of most common order sets was used as a replace-

ment (106 diagnoses were dropped out of 748 diagnoses and 18 930

order set usages were dropped out of 3 358 903 order set usages). If

a patient item in the test set did not have an associated admission

from our query, we replaced this with the bestseller list as well

(194 893 rows did not have a corresponding admission out of

3 657 826 rows in the test set prior to filtering for temporal leakage).

ClinicNet architecture
We developed all models using TensorFlow 2.0a and Python

3.6.48,50 ClinicNet architecture consists of a feed-forward neural

network. Feed-forward networks have advantages over traditional

machine learning approaches as they achieve full generality as well

as the universal approximation property.51–55 We performed a

hyperparameter search (Supplementary Table S2) on a random set

of 50 000 rows of training data. These hyperparameters included

batch normalization,56 number of hidden units, number of hidden

layers, dropout,57 weight value in loss function, and L2 regulariza-

tion. The ClinicNet models were all trained using Nesterov Adam

optimizer for 1 epoch. While Adam is RMSprop with momentum,58

Nesterov Adam is RMSprop with Nesterov momentum, which is an

often empirically superior form of momentum.59 This optimizer

appears to achieve quicker, more stable learning for most tasks com-

pared to Adam. We found that binary cross-entropy weighted by a

constant true value which served as a hyperparameter (Equation 1)

ultimately yielded the best results
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In the cross-entropy loss weighted by true value function, m is

number of training examples, w is the positive weight, y(i) is the true

label for a given clinical item post-24 hours, ŷ(i) is the predicted label

for a given clinical item post-24 hours, k is the L2 regularization

weight, L is the total number of layers in the neural network, and wl

are the weights of layer l in the model.

Evaluation
To summarize performance across a range of thresholds, we used

average precision60 and the area under the receiver operating char-

acteristics (AUROC).61 For the institutional order set baseline com-

parison used in the individual clinical order prediction task, we

thresholded ClinicNet and logistic regression models to binary val-

ues that achieve similar performance on recall to fairly compare F1

and precision to this baseline. For all reported metrics, we calculated

patient-level confidence intervals (CIs) and average scores (reported

values) through bootstrapping 10 000 rows per sample and 1000

iterations from the test set. Bootstrap sampling was randomized by

patient so we were able to get patient-level evaluation metrics such

that patients with more clinical item entries did not carry more

weight in evaluation. Graphs were generated using patient-level sta-

tistics as well. CIs here apply to our model’s performance on the test

set at the patient level, but because the rows in our test set are likely

correlated, they may be an overestimate of confidence.

Ethics
All research performed and methods described herein were approved

by the Stanford University School of Medicine and the research

compliance office’s Institutional Review Board panel at Stanford

University.
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RESULTS

Characteristics of feature matrix and response vectors
From the EHR of a tertiary academic hospital, we randomly sam-

pled 57 624 patients represented by 35 million rows of clinical item

event data. Each patient in the EHR was represented as a timeline of

clinical items (Figure 2A), therefore each patient made up several

rows of data.

For features, we curated 6231 clinical items (consisting of clini-

cal orders placed, demographics, ICD9 diagnoses codes, lab results,

treatment teams, etc.) and binned them at 4 time points: within 1

day prior, within 7 days prior, within 30 days prior, and any time

prior (Supplementary Table S1). Following feature selection, where-

upon over 5000 low-variance (standard deviation < 0.01 in training

set) features were removed, 19 661 features resulted, which were

represented by the columns of the feature matrix (Figure 2B).

We constructed 2 sets of response vectors, one for the task of

predicting individual orders (1639 orders total) and another for the

task of predicting order set usage (610 order sets total) (Figure 2B).

Algorithm performance
Figure 3 shows the performance for the individual clinical item pre-

diction task on the test set. When evaluating against the overall test

set, logistic regression had a 0.805 (95% CI 0.802–0.808) AUROC

and 0.176 (95% CI 0.170–0.181) average precision while ClinicNet

performed better with a 0.902 (95% CI 0.901–0.904) AUROC and

0.240 (95% CI 0.235–0.245) average precision. The performance

was also evaluated against a subset of the test set which consisted of

instances when a physician pulled up an institutional order set to or-

der an item for further comparison. ClinicNet significantly outper-

formed in AUROC (0.908 with 95% CI from 0.906 to 0.909) and

average precision (0.314 with 95% CI from 0.309 to 0.318) when

compared to a logistic regression model and using institutional order

sets as a set of predictions.

Table 1 presents the performance of the model on the institu-

tional order set subset task when thresholded to similar levels of re-

call. ClinicNet had significantly higher F1 scores (0.378 with 95%

CI 0.375–0.381) than both the institutional order set baseline

(0.226 with 95% CI 0.223–0.228) and logistic regression (0.285

with 95% CI 0.280–0.289).

Prediction performance for usage of existing institutional order

sets is presented in Figure 4. ClinicNet was compared to logistic re-

gression and a baseline using the most frequent items associated

with a given patient admission diagnosis across a range of thresh-

olds. ClinicNet performed best in average precision (0.311 with

95% CI 0.304–0.318) compared to both logistic (0.118 with 95%

CI 0.109–0.125) and admission baselines (0.199 with 95% CI

0.194–0.204). In AUROC, admissions baseline (0.975 with 95% CI

Figure 2. Organization of clinical data. (A) Modeling of patients as a timeline of clinical item entries. Each time a clinical item is entered for the patient makes up a

new entry. For each entry, items associated with that patient within 4 time points prior to that entry (pre) are used as features. Orderable items (ie, items that a

physician could order) and human-authored order sets associated with that patient within 1 day after that entry (post) are used as response variables. (B) Example

of what the feature matrix and response vectors might look like. Here, we see that, at 1 time point, a diagnosis of edema had been made twice in the past (pre-

any) for patient 6749 and, at another (later) time, edema had been entered 5 times in the past for that patient. In both cases, the patient was ordered furosemide

and the order set, “IP MED CHEST PAIN,” was also used within the next day.
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0.974–0.976) performs slightly better than ClinicNet (0.960 with

95% CI 0.958–0.962), with a greater difference in performance

compared to logistic (0.769 with 95% CI 0.764–0.774). The admis-

sions baseline and ClinicNet have 2 intersection points on their pre-

cision–recall curves, which suggest there are thresholds where one

performs better than the other in precision and recall.

Figure 3. The classification performance on predicting individual clinical items according to the overall test set and to instances when institutional order sets

were used. (A) ROC curve for overall test set. (B) ROC curve for item instances where institutional order sets were used. (C) Precision–recall curve for overall test

set. (D) Precision–recall curve for item instances where institutional order sets were used. The performance was measured based on AUROC and average preci-

sion, which were bootstrapped with a sample size of 10 000 for 1000 iterations to obtain 95% confidence intervals located in brackets. Evaluation was performed

at the patient-level rather than the clinical item-level. Abbreviation: AUROC: area under the receiver operating characteristics.

Table 1. Precision, recall, and F1 score of ClinicNet, institutional order sets, and logistic regression when thresholded to similar levels of re-

call

Evaluation metrics

Models Precision (95% CI) Recall (95% CI) F1 (95% CI) AUROC (95% CI)

Logistic 0.204 (0.200–0.208) 0.469 (0.464–0.473) 0.285 (0.280–0.289) 0.815 (0.812–0.817)

Institutional 0.149 (0.147–0.151) 0.463 (0.458–0.469) 0.226 (0.223–0.228)

ClinicNet 0.317 (0.314–0.320) 0.468 (0.463–0.472) 0.378 (0.375–0.381) 0.908 (0.906–0.909)

Note: As institutional order sets consist of a single threshold point, AUROC is left blank. Metrics were bootstrapped with a sample size of 10 000 for 1000 iter-

ations to get reported CIs. Evaluation was performed at the patient-level rather than the clinical item-level. The following thresholds were used: Logistic regres-

sion ¼ 0.11, ClinicNet ¼ 0.50. Bold indicates highest metric.

Abbreviations: AUROC: area under the receiver operating characteristics; CI: confidence interval.
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DISCUSSION

In this study, we developed ClinicNet, a personalized clinical order

decision recommender which leverages deep neural networks ap-

plied to 57 624 patients worth of EHR data from Stanford. We

trained, developed, and tested 2 different feed-forward neural net-

work models: (1) the traditional task of recommending custom or-

der sets to physicians from 1639 orderable items and (2) a newer

proposed workflow of recommending which order set to use out of

currently available institutional order sets. Our new problem struc-

ture is of interest to us as initial assessment of algorithms used to

predict custom order sets have been met with negative feedback out

of anxiety over algorithms that are difficult to interpret.44 This

problem structure leverages existing institutional order sets that

clinicians trust and are familiar with. As the dataset contained over

35 million rows from 57 624 patients, we elected to use deep learn-

ing for our prediction tasks as deep learning models are suitable for

learning complex patterns from large amounts of data.62 Our model

performance was evaluated by comparing AUROC, F1, precision,

and recall to both technical and standard of care benchmarks.

ClinicNet compares favorably to our prior work using episode

mining recommender algorithms29 and probabilistic topic models,25

though differing problem structure limits direct comparison. Clinic-

Net outperformed baselines in all evaluation metrics for the clinical

item prediction task, and only performed worse in AUROC for the

order set task when compared to the admissions baseline. Interest-

ingly, when we looked at the clinical item-level evaluation metrics

(as opposed to the patient-level metrics used for the results of the

study) we found that ClinicNet outperformed in both metrics

(AUROC 0.967 vs AUROC 0.950). Additionally, ClinicNet outper-

forms admissions baseline in average precision, a more realistic eval-

uation metric for this task. AUROC is an important general

measure, but clinicians may not be interested in how well sorted the

list of 610 order set options is at the bottom. Recommender systems

allow a user to narrow their focus to a top X most likely choices, re-

quiring an attention threshold reflected better using average preci-

sion. Our study shows that deep neural networks may be a good

choice of algorithm to be used to suggest order sets and order set us-

age to clinicians, as logistic regression did not surpass the standard

of care baselines. It also demonstrates the potential for algorithms to

anticipate order set usage as a form of clinical decision support.

The human-authored order set baseline, wherein individual items

were recommended on the basis of order sets, exhibited a high recall

(true positive rate). This makes sense because an order set has a high

coverage of clinical items so even though there will be a significant

number of false positives, there will be a high fraction of items from

the order sets used on the patient that are part of the set of items

that were actually ordered for the patient. However, at the same re-

call as the human-authored order set baseline, logistic regression

and the ClinicNet model both show much higher precision. Highly

precise order sets are of great clinical interest. Such an order set only

contains items that are likely to be important in the management of

an individual patient and exclude those that are not clinically useful.

Conversely, order sets that demonstrate low precision contain extra-

neous items not indicated for a specific patient and, if ordered, may

contribute to unnecessary testing and inflated healthcare costs.

Several limitations of this study exist. For one, the prediction

tasks are predicated on the response variables, which is the actual

decision that a physician ends up making for a patient, being the

“gold standard.” Thus, the objective of the neural network is to

learn to predict the decisions made by physicians. However, physi-

cians can and do make mistakes, therefore this is not a true gold

standard since the decisions that a physician makes may not neces-

sarily be the ones that are the best for a patient.29 While a potential

solution to this limitation includes expert vetting of the clinical deci-

sions made by physicians and considering the clinical outcome of a

patient given a set of clinical decisions made by a physician, this

task is largely infeasible given the size of the dataset used in the

training and evaluation of ClinicNet. Another limitation is that

ClinicNet was trained on EHR data solely from SHC. As a result,

this model might not necessarily generalize well to other patient

Figure 4. The classification performance on predicting usage of existing order set templates across ClinicNet, an admissions baseline, and logistic regression

evaluated on the test set. (A) ROC curve. (B) Precision–recall curve. The performance was measured based on AUROC and average precision, which were boot-

strapped with a sample size of 10 000 for 1000 iterations to obtain 95% confidence intervals located in brackets. Evaluation was performed at the patient-level

rather than the clinical item-level. Abbreviation: AUROC: area under the receiver operating characteristics.
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populations or hospitals and may need to be retrained if used on

other EHR data.

Finally, there are many barriers to enable this fully integrated vi-

sion with vendor-based CPOE. For instance, hospitals have different

EHR systems and introducing new software has a number of adminis-

trative and technical protocols to be approved. However, simpler

options including view-only suggestions are already viable through

Fast Healthcare Interoperability Resources interfaces. Future work

will need to further address these implementation complexities. This

includes user interface testing for clinical usability and acceptability as

well as exploring alternative algorithmic approaches such as standard

machine learning methods and recurrent neural networks, though our

preliminary attempts at such approaches have not yet performed as

well as the approaches described here.

CONCLUSIONS

In conclusion, ClinicNet, a deep neural network model, outper-

formed technical and standard of care benchmarks in terms of multi-

ple metrics toward predicting clinical care decisions. Our work

illustrates the possibility for an automated, scalable system to dy-

namically anticipate what clinical order and order sets a clinician

needs through algorithmically inferring patient context in the EHR.

The clinical insight provided may improve upon the consistency and

quality of the current standard of care.
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