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Abstract: Congenital diaphragm hernia (CDH) is a congenital disease that occurs during prenatal
development. Although the morbidity and mortality rate is rather significant, the pathogenesis
of CDH has been studied insignificantly due to the decreased accessibility of human pathological
material. Therefore the aim of our work was to evaluate growth factors (transforming growth factor-
beta (TGF-β), basic fibroblast growth factor (bFGF), insulin-like growth factor 1 (IGF-1), hepatocyte
growth factor (HGF)) and their receptors (fibroblast growth factor receptor 1 (FGFR1), insulin-like
growth factor 1 (IGF-1R)), muscle (dystrophin, myosin, alpha actin) and nerve quality (nerve growth
factor (NGF), nerve growth factor receptor (NGFR), neurofilaments (NF)) factors, local defense factors
(ß-defensin 2, ß-defensin 4), programmed cell death (TUNEL), and separate gene (Wnt-1) expression
in human pathological material to find immunohistochemical marker differences between the control
and the CDH patient groups. A semi-quantitative counting method was used for the evaluation of
the tissues and structures in the Biotin-Streptavidin-stained slides. Various statistically significant
differences were found in immunoreactive expression between the patient and the control group
tissue and the morphological structures as well as very strong, strong, and moderate correlations
between immunoreactives in different diaphragm cells and structures. These significant changes
and various correlations indicate that multiple morphopathogenetic pathways are affected in CDH
pathogenesis. This work contains the evaluation of the causes for these changes and their potential
involvement in CDH pathogenesis.
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1. Introduction

Congenital diaphragmatic hernia (CDH) is a developmental defect with the incidence
in Europe estimated to be 2.3 per 10.000 births [1]. Multiple embryonic tissue sources are
involved in the development of a functional diaphragm forming blood vessels, muscle
cells, and connective tissue [2]. The tissues necessary for diaphragm development are
mainly supported by four embryonic components: septum transversum, pleuro-peritoneal
folds (PPF), dorsal mesentery of esophagus, and muscular ingrowths from lateral body
walls. During prenatal development, these structures may fail to fuse thereby resulting in
formation of CDH. The contents of the abdominal cavity herniate into the thoracic cavity
through the defected diaphragm because of the pressure gradient between the cavities thus
causing pulmonary hypoplasia, pulmonary hypertension, and heart failure resulting in
high mortality rates.

CDH is an etiologically heterogeneous developmental defect. However, the genes
involved in pathogenesis are mainly unknown, Alaggio et al. in their research state that
the concerted action of GATA-4, Fog2, COUP-TFII and WT-1 [3] is required for a proper
development of the diaphragm. GATA-4, COUP-TFII, and WT-1 significance in CDH
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development is intertwined with the retinoic acid signaling pathway. GATA-4 activation
and expression are both influenced by retinoids. COUP-TFII is a downstream target of
retinoid signaling, and WT-1 gene is responsible for encoding a zinc-finger-containing
protein which is involved in the retinoic acid signaling pathway. The retinoic acid signaling
pathway is crucial for normal pre- and post-natal development being involved in the
specification and formation of many organs and tissues one of which is a proper diaphragm
development [4]. The transcription factors GATA-4, COUP-TFII and Fog2 are expressed in
early development of PPFs [5].

Although the morbidity and mortality rate of the patients with CDH is significant, the
pathogenesis of CDH has been studied insufficiently due to the decreased accessibility of
human pathological material. Growth factors and their receptors, muscle and nerve quality,
local defense factor, programmed cell death, and separate gene markers could reveal their
crucial role in the development of CDH.

Basic fibroblast growth factor (bFGF) manifests broad mitogenic and cell survival
activities. It plays an important role in a variety of biologic processes including embryonic
development, cell growth morphogenesis, tissue repair, tumor growth, survival, prolifera-
tion, apoptosis and invasion [6]. bFGF influences mitosis by inhibiting phosphorylation
of translation initiation factor, which is crucial for cell progression [7]. bFGF can activate
fibroblast growth factor receptor (FGFR) 1c, 1b, 2c, 3c and 4 thus initiating a tyrosine kinase
signaling pathway that has a fundamental role in many biologic processes including embry-
onic development, tissue regeneration, and angiogenesis. It also plays important roles in
diverse cell functions, including proliferation, differentiation, apoptosis and migration [6,8].
bFGF, via activation of FGFR1, is a highly potent inducer of angiogenesis. It can even be
twice as potent as vascular endothelial growth factor (VEGF). It is hypothesized that there
is a crosstalk between members of the VEGF family and bFGF during angiogenesis due to
their synergetic effect [9].

Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine involved in devel-
opment, various cellular responses and homeostasis of most human tissues [10]. Activation
of TGF-beta receptors affects gene expression through activation of SMAD family tran-
scription factors, thus regulating cell proliferation, differentiation and growth and it can
modulate expression and activation of other growth factors [11,12]. For example, TGF-β1
has a significant inhibitory effect on hepatocyte growth factor (HGF) mRNA expression;
thus, the decrease in the fibroblast size leads to the up-regulation of the HGF expression [13].
The production of numerous extracellular matrix proteins and inhibition of degrading
of these proteins is stimulated by TGF-β [10]. TGF-β influences angiogenesis by various
mechanisms; for instance, by alternating two signaling cascades with opposite results
(ALK1 and ALK5); thereby it is involved in vessel proliferation and maturation. TGF-β can
also stimulate its own expression and control the expression of other angiogenic factors,
such as platelet-derived growth factor, interleukine-1, bFGF, tumor necrosis factor alpha
and transforming growth factor alpha [14].

Insulin-like growth factor 1 (IGF-1) is an insulin-like protein with a similar function
and structure involved in mediating growth and development [15]. IGF-1 is the major
mediator of prenatal and post-natal growth [16]. IGF-1 exerts multiple physiological and
pathophysiological effects on the vasculature including hypertrophic, survival, vasomotor
and metabolic effects via its receptor (IGF-1R), stimulating smooth muscle cell prolifera-
tion, migration and inhibiting smooth muscle cell apoptosis through both endocrine and
autocrine/paracrine mechanisms [17,18]. The effects of IGF-1 are mediated principally
through IGF-1R, but they are modulated by complex interactions with multiple IGF bind-
ing proteins that are regulated by kinase activation, proteolysis, polymerization and the
initiation of intracellular signaling via the AKT signaling pathway [18]. The signaling
mechanism of IGF-1/PI3-kinase/Akt plays an important role in controlling the angio-
genic phenotype through the activation of angiogenic growth factors to induce autocrine
PI3-kinase/Akt signaling in endothelial cells [19].
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Hepatocyte growth factor (HGF) is a central growth factor that modulates proliferation,
angiogenesis, morphogenesis, motility and regulates cell growth [13,20]. HGF acts as a
morphogen in embryonic development and promotes cell migration. Muscle cells migrate
from somites into the PPFs in the presence of HGF. It is expressed along the migratory
path of migratory muscle precursors, including the PPFs. The muscle precursors will then
spread to all regions of mesenchymal cells as well as endothelium and non-hepatocyte
liver cells [21]. This protein also plays a role in angiogenesis, tumorigenesis and tissue
regeneration [22].

Furthermore, skeletal muscle fibers display distinct quality markers such as myosin,
dystrophin, and alpha actin. We can speculate about loss of muscle mass, muscle atrophy
as well as quality of muscle tissue through these factors.

Nerve growth factor (NGF) is expressed in developing and differentiating sympathetic
and sensory neurons [23]. NGF can bind to tyrosine kinase receptors (TrkA) inhibiting
apoptosis and to p75 nerve growth factor receptors (p75NGFR) in which case it stimulates
sensory neuronal cell growth and differentiation, but it might also trigger apoptosis [23].
NGFR is also located at sites that do not have access to NGF [24]. NGFR are found along
the path of the neuronal cell migration from the neural tube to the PPFs and thus may lead
to the outgrowth of the phrenic nerve [2]. No effect of NGF on motor neurons is known [25],
although proNGF (the precursor form of NGF) promotes apoptosis of motor neurons by
binding to p75NGFR [26]. Myoblast cells produce p75NGFR during myogenesis. NGF is
expressed adjacently to the developing muscle fibers. Once the myotubes have formed,
NGF and p75NGFR cease to be expressed [26].

Neurofilaments (NF) are a part of the mature neuronal cytoskeleton and the quality
marker of the neuronal structures. They are essential in nervous system development,
neuronal regeneration and electrical impulse transmission [27].

Human beta defensins (β-defensin) are a part of an organism’s defense mechanism;
therefore, in normal conditions they are not expressed in great amount, but their expression
is triggered by inflammation, microbial pathogenicity factors, tissue damage, and other
host factors. They are released primary by epithelial cells as well as by leukocytes, skeletal
muscle, heart and other organs [28]. According to the study of Baroni et al. β-defensin
2 can stimulate chemotaxis of human endothelial cells to a similar degree of VEGF [29].
β-defensin 4 exhibits anti-microbial activity, but it does not respond to inflammatory
markers: interleukin 6 (IL-6), interferon γ (IFNγ), tumor necrosis factor α (TNF-α) and IL-1.
It is also expressed in neutrophils and it attracts monocytes as well [30].

Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) as-
says are used to detect DNS fragmentation during apoptosis or sometimes DNA destruction
from genotoxic agents [31]. The labeling of free 3′-OH ends in DNA is catalyzed by the TdT
enzyme to prevent the cross-linking of free ends [31]. Nitrofen-exposed rat models show
opposing results: some show that CDH has formed due to decreased cell proliferation but
others voice an opinion that the increased apoptosis has been the cause of CDH [32].

Wnt-1 is a wingless class signaling protein that induces a pathway, which leads to an
increased expression of genes that are important in regulation of cell death, proliferation,
migration and patterning in embryonic development by inhibiting or activating the frizzled
receptors [33]. During early organogenesis, genes associated with Wnt signaling in the
diaphragm were shown to be preferentially expressed, and a few Wnt pathway members
have been associated with CDH [34].

Based on the mentioned above, our aim was the detection of appearance and distri-
bution of different growth factors and their receptors, muscle and nerve quality factors,
local defense factors, programmed cell death, and separate gene expression in the different
diaphragm sites of diaphragm hernia patients and comparison of the results with the
control group in order to find those changes that could lead to the morphopathogenetic
mechanism in the development of CDH.



Diagnostics 2021, 11, 289 4 of 22

2. Materials and Methods
2.1. Materials Characteristics of Subjects

The research work was done in accordance with the Helsinki declaration. The study
was approved by the Ethical Committee at Riga Stradins University, the permit was issued
on 10 May 2007. The diaphragm material was obtained from 5 children (2 boys and 3 girls)
age from 1 to 2 days. The patient group represented 4 children with CDH, and the control
group represented the intact part of the diaphragm of a patient with CDH and one child
without pathology in the diaphragm. All the examined patients’ hernias were localized
posterolaterally, where the mean size of hernias was 4–6 × 2–3 cm. Four necropsies of
CDH from the margin of diaphragm hernia and two control necropsies from 3 different
diaphragm sites were obtained from neonates 12 h after their death at Children Clinical
University Hospital. The localizations of diaphragm necropsy sites were proximal—near
the longitudinal axis, distal—near the body wall, central—in between proximal and distal
sites. The compiled material is the property of the Institute of Anatomy and Anthropology
in Riga Stradins University.

2.2. Immunohistochemical Analysis

The samples were fixed in a mixture of 2% formaldehyde and 0.2% picric acid in
0.1 M phosphate buffer (pH 7.2) for 24 h. Then the samples were rinsed for 12 h in Tyrode
buffer (content: NaCl, KCl, CaCl2 ·2H2O, MgCl2·6H2O, NaHCO3, NaH2PO4·H2O, glucose)
containing 10% saccharose. Afterwards the samples were embedded into paraffin. Three
micrometers thin sections had been cut; they were then stained with hematoxylin and
eosin for routine morphological evaluation. For immunohistochemistry (IMH) Biotin-
Streptavidin biochemical method was used to detect: TGF-β (orb77216, working dilution
1:100, Biorbyt Limited, Cambridge, UK), bFGF (ab16828, working dilution 1:200, Abcam,
Cambridge, UK), FGFR1 (orb38277, working dilution 1:100, Biorbyt Limited, UK), IGF-1
(MAB291, working dilution 1:50, RD systems, McKinley Place NE, MN, USA), IGF-1R (AF-
305-NA, working dilution 1:100, RD systems, USA), HGF (AF-294-NA, working dilution
1:200, RD systems, USA), NGF (ab6199, working dilution 1:500, abcam, UK), NGFR (sc-
56448, working dilution 1:150, Santa Cruz Biotechnology, Inc., Dallas, TX, USA), myosin
(ab7784, working dilution 1:150, abcam, UK), dystrophin (ab15277, working dilution 1:100,
abcam, UK), alpha actin (α-actin, HHF35, working dilution 1:100, Cell Marque Corporation,
USA), wingless gene 1 (Wnt-1, ab15251, working dilution 1:100, abcam, UK), beta defensin
2 (ß-defensin 2, sc-20798, working dilution 1:100, Santa Cruz Biotechnology, Inc., Dallas,
TX, USA), beta defensin 4 (ß-defensin 4, ab14419, working dilution 1:150, abcam, UK),
NF (2F11, working dilution 1:100, Cell Marque Corporation, USA). TUNEL, In Situ Cell
Death Detection, POD (1684817, Roche, Indianapolis, IN, USA), DAB Substrate Vector Kit
(SK4100, Vector Laboratories, Burlingame, CA, USA), was used to reveal apoptosis.

A semi-quantitative counting method was used for the evaluation of the tissues and
structures in the stained slides. Tissue and morphological structures were graded by the
appearance of positively stained cells in the visual field. The used designations were as
follows: 0—no positive structures, 0/+: occasional positive structures, +: few positive
structures, +/++: few to moderate number of positive structures, ++: moderate number of
positive structures, ++/+++: moderate to numerous positive structures, +++: numerous
positive structures, +++/++++: numerous to abundant structures, ++++: abundance of
positive structures in the visual field [35].

The stained slides were evaluated using Leica DC 300F digital camera and image
processing and analysis software Image Pro Plus (Media Cybernetics, Inc., Rockville,
MD, USA).

2.3. Statistical Analysis

The data processing was conducted using Statistical Package for the Social Sciences
(SPSS) program version 20.0. The results from semi-quantitative evaluated tissue and
structures were transformed into numerical form as follows: 0: equals to 0, 0/+: equals to
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0.5, +: equals to 1, +/++: equals to 1.5, ++: equals to 2, ++/+++: equals to 2.5, +++: equals to
3, +++/++++: equals to 3.5, ++++: equals to 4. The test of normal distribution showed that
data was not distributed normally, thus nonparametric statistics was used. Nonparametric
Mann–Whitney U test was used to determine statistically significant differences between
the patient and the control groups and Spearman’s rank correlation coefficient was calcu-
lated to detect correlations between the factors in the patient group, where r = 0–0.19 was
assumed as a very weak correlation, r =0.2–0.39—weak correlation, r = 0.4–0.59—moderate
correlation, r = 0.6–0.8—strong correlation and r = 0.8–1.0—a very strong correlation. For
all the tests p-value was chosen 5% (p-value < 0.05) as statistically significant.

3. Results
3.1. Tissue Review

Different fiber diameter, perinuclear vacuolisation and newly formed muscle fibers
were present in both the control and the patient groups (Figure 1a,b). In some cases,
sclerotic arterioles were observed in the perimysium.
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Figure 1. Micrographs of diaphragm tissue. (a) Note the different diameters of muscle fiber size (*). Hematoxylin and eosin;
(b) visible immature muscle fibers (**). Hematoxylin and eosin, ×200.

3.2. Immunohistochemical (IMH) Data

TGF-ß was observed in all tissue samples. TGF-ß presented moderate expression
across different diaphragm sites (proximal, central and distal) showing no differences
between the patient and the control group muscle fibers (Table 1, Figure 2a,b). Upon
viewing TGF-ß in blood vessels, a few to moderate number of factor positive structures
were noted in the blood vessel wall. Connective tissue demonstrated a few positive cells in
the proximal diaphragm; however, the central and the distal parts of the diaphragm showed
fluctuations of TGF-ß expression (from almost no to moderate expression). Moderate
number of TGF-ß positive mesotheliocytes was found in the proximal and the distal parts
of the diaphragm, while the central (herniated) part showed only a few positive cells in the
patient group whereas an increase in positive structures was noted in the control group (a
moderate number of positive structures) (Table 1).

bFGF was almost absent from the diaphragm tissue only marking occasional muscle
fibers; however, bFGF showed fluctuations from occasional positive muscle fibers to an
abundance of bFGF positive muscle fibers (Table 1, Figure 3a,b) in the distal part of the
CDH affected diaphragm.
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Table 1. Semi-quantitative evaluation of the relative number of TGF-β, bFGF, and FGFR1 in the CDH patient and the
control groups.

TGF-β bFGF FGFR1

Mf Ct B M Mf Mf Ct B M

P
Patients +/++ + +/++ ++/+++ 0–0/+ ++/+++ +/++–++/+++ ++/+++ +++

Controls ++ + +/++ ++ 0 ++++ 0/+–++ ++ +++

C
Patients ++ +/++ ++ + 0/+ +++ 0/+–++ +++ +++

Controls ++ 0–++ +/++ ++ 0–0/+ +++ 0/+–++ ++ +++

D
Patients ++ 0/+ ++ ++ 0/+–+++ ++/+++ 0/+–+++ ++ 0/+

Controls ++ 0–+ +/++ ++ 0 +++/++++ +/++ +/++ ++/+++

Abbreviations: Mf—muscle fibers; Ct—connective tissue; B—blood vessels; M—mesothelium; P—proximal part of diaphragm; C—central
part of diaphragm; D—distal part of diaphragm; TGF-β—Transforming growth factor-beta; bFGF—basic fibroblast growth factor; FGFR1—
Fibroblast growth factor receptor 1; 0—no positive structures, 0/+—occasional positive structures, +—few positive structures, +/++—few
to moderate number of positive structures, ++—moderate number of positive structures, ++/+++—moderate to numerous positive
structures, +++—numerous positive structures, +++/++++—numerous to abundant structures, ++++—abundance of positive structures in
the visual field.
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FGFR1 presented a stable expression both in the control and the patient groups muscle
fibers; however, upon comparing these groups, it was found that FGFR1 was slightly more
expressed in the control group muscle fibers (abundance of FGFR1 positive structures) than
in the patient group muscle fibers (from moderate to numerous FGFR1 positive structures).
High fluctuations were noted in the proximal and the distal diaphragm connective tissue
variating from occasional to numerous positive cells (Table 1, Figure 4a,b), while the central
(herniated) part displayed the number of positive cells that varied from occasional to
moderate in both the patient and the control groups. The evaluation of blood vessels
demonstrated moderate to numerous positive FGFR1 structures throughout the diaphragm
sites. Numerous FGFR1 positive mesotheliocytes were found in the proximal and the
central parts of the diaphragm whereas the distal part had occasional FGFR1 positive
mesotheliocytes (Table 1).
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IGF-1 presented the most variable expression in muscle fibers. The proximal part of
the CDH affected diaphragm showed a few positive muscle fibers, whereas the controls
possessed numerous positive muscle fibers. The central part demonstrated an increase
of IGF-1 positive muscle fibers (moderate to numerous positive muscle fibers) in the
patient group but a few to numerous positive muscle fibers were found in the control
group (Table 1, Figure 5a,b). The distal part of the CDH affected muscle fibers showed an
increased IGF-1 expression (moderate to numerous positive muscle fibers), whereas the
control group had a notable decrease (few positive muscle fibers) (Table 2).

On average moderate to numerous IGF-1R positive muscle fibers, numerous positive
connective tissue, moderate to numerous positive blood vessels and numerous factor
positive mesotheliocytes were observed in both the CDH patient and the control groups
(Table 2, Figure 6a,b).

HGF immunoreactive structures were revealed in a very stable appearance—from
moderate to numerous positive muscle fibers and blood vessels, and numerous positive
connective tissue and mesothelial cells (Table 2, Figure 7a,b)

Myosin in the controls was expressed in all the diaphragm parts equally showing mod-
erate to numerous positive muscle fibers. The patient tissue revealed a similar expression in
the proximal and the central parts of CDH; while the distal part of the diaphragm demon-
strated the fluctuation from few to numerous positive muscle fibers (Table 3, Figure 8a,b).
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Table 2. Semi-quantitative evaluation of the relative number of IGF-1, IGF-1R, and HGF in the CDH patient and the control
groups.

IGF-1 IGF-1R HGF

Mf Ct B M Mf Ct B M Mf Ct B M

P
Patients + ++/+++ ++ +++ ++/+++ +++ ++/+++ +++ ++/+++ +++ ++/+++ +++

Controls +++ +++ ++++ +++ +++ +++ +++ +++ ++/+++ ++/+++ ++/+++ +++

C
Patients ++/+++ ++ ++/+++ +++ ++/+++ +++ ++/+++ +++ +++ +++ ++/+++ +++

Controls +/++ ++ +++ +++ +–+++ +++ +++ +++ ++/+++ ++/+++ ++/+++ +++

D
Patients ++/+++ ++/+++ ++/+++ +++ ++/+++ +++ ++/+++ +++ ++/+++ +++ +++ +++

Controls + ++ ++ +++ +++ +++ +++ +++ ++/+++ ++/+++ ++/+++ +++

Abbreviations: Mf—muscle fibers; Ct—connective tissue; B—blood vessels; M—mesothelium; P—proximal part of diaphragm; C—central
part of diaphragm; D—distal part of diaphragm; IGF-1—Insulin-like growth factor 1; IGF-1R—Insulin-like growth factor 1 receptor;
HGF—Hepatocyte growth factor; 0—no positive structures, 0/+—occasional positive structures, +—few positive structures, +/++—few
to moderate number of positive structures, ++—moderate number of positive structures, ++/+++—moderate to numerous positive
structures, +++—numerous positive structures, +++/++++—numerous to abundant structures, ++++—abundance of positive structures in
the visual field.
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Figure 7. (a) Moderate to numerous HGF positive muscles in a CDH patient. HGF IMH; (b) Moderate to numerous
HGF positive weakly stained structures in the control group tissue. HGF IMH, ×200. HGF—Hepatocyte growth factor;
IMH—immunohistochemistry.

Table 3. Semi-quantitative evaluation of the relative number of muscle quality factors in the CDH
patient and the control groups.

Myosin Dystrophin α-Actin

Mf Mf B Mf B

P
Patients ++/+++ +–+++ + +–++++ ++++

Controls ++/+++ +–+++ 0/+ +++ ++++

C
Patients ++/+++ ++ 0/+ +++ ++++

Controls ++/+++ +–+++ 0/+ +++/++++ ++++

D
Patients +–+++ 0/+–+++ 0/+ +++ ++++

Controls ++/+++ +–+++ 0/+ ++++ ++++
Abbreviations: Mf—muscle fibers; B—blood vessels; P—proximal part of diaphragm; C—central part of di-
aphragm; D—distal part of diaphragm; 0—no positive structures, 0/+—occasional positive structures, +—few
positive structures, +/++—few to moderate number of positive structures, ++—moderate number of positive
structures, ++/+++—moderate to numerous positive structures, +++—numerous positive structures, +++/++++—
numerous to abundant structures, ++++—abundance of positive structures in the visual field.
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Figure 8. (a) Moderate number of myosin positive intensively stained muscle fibers in a CDH patient. Myosin IMH;
(b) Moderate to numerous positive myosin muscle fibers in the control group tissue. Myosin IMH, ×200. IMH—
immunohistochemistry.
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Dystrophin presented from few to numerous positive muscle fibers in the proximal
part of CDH affected diaphragm, while a moderate number of muscle fibers was seen in
the central diaphragm. The distal part of the CDH affected diaphragm presented from
occasional to numerous dystrophin positive muscle fibers, whereas the control group
showed consistent distribution from few to numerous positive dystrophin muscle fibers
(Table 3, Figure 9a,b).

Diagnostics 2021, 11, 289 10 of 23 
 

 

 
Figure 8. (a) Moderate number of myosin positive intensively stained muscle fibers in a CDH patient. Myosin IMH; (b) 
Moderate to numerous positive myosin muscle fibers in the control group tissue. Myosin IMH, ×200. IMH—immunohisto-
chemistry. 

Dystrophin presented from few to numerous positive muscle fibers in the proximal 
part of CDH affected diaphragm, while a moderate number of muscle fibers was seen in 
the central diaphragm. The distal part of the CDH affected diaphragm presented from 
occasional to numerous dystrophin positive muscle fibers, whereas the control group 
showed consistent distribution from few to numerous positive dystrophin muscle fibers 
(Table 3, Figure 9a,b). 

 
Figure 9. (a) Moderate number of dystrophin positive muscles in CDH. Dystrophin IMH; (b) Moderate number of positive 
dystrophin muscles in the control group tissue. Dystrophin IMH, ×200. IMH—immunohistochemistry. 

α-actin expression was relatively stable with numerous positive muscle fibers and an 
abundance of positive blood vessels in the CDH and the control diaphragms (Table 3, 
Figure 10a,b). 

Figure 9. (a) Moderate number of dystrophin positive muscles in CDH. Dystrophin IMH; (b) Moderate number of positive
dystrophin muscles in the control group tissue. Dystrophin IMH, ×200. IMH—immunohistochemistry.

α-actin expression was relatively stable with numerous positive muscle fibers and
an abundance of positive blood vessels in the CDH and the control diaphragms (Table 3,
Figure 10a,b).
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However, mesotheliocytes presented a variable expression. β-defensin 2 was completely 
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Figure 10. (a) Moderate to numerous positive α-actin muscle fibers in a CDH patient. α-actin IMH; (b) Numerous to
abundant α-actin muscle fibers in the control group tissue. α-actin IMH, ×200. IMH—immunohistochemistry.

Evaluating β-defensin 2 appearance in the diaphragm tissue, β-defensin 2 expression
was relatively stable, showing a moderate number of positive muscle fibers, occasional
positive connective tissue, and few positive endotheliocytes in the CDH and the controls.
However, mesotheliocytes presented a variable expression. β-defensin 2 was completely
absent in the central part of the CDH affected diaphragm; however, an increase of positive
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factor structures (up to numerous positive mesotheliocytes) was found in the control group
(Table 4, Figure 11a,b).

Table 4. Semi-quantitative evaluation of the relative number of local defense factors and programmed cell death in the CDH
patient and the control groups.

β-Defensin 2 β-Defensin 4 Apoptosis

Mf Ct B M Mf Mf Ct B M

P
Patients ++ + 0 +++ 0 ++ +–+++ +–+++ +–++++

Controls ++ 0/+ + +++ 0 ++ ++/+++ ++/+++ ++/+++

C
Patients ++ 0/+ + 0 0/+ ++ +–+++ ++ +–++++

Controls ++ 0/+ +/++ 0–+++ 0/+ ++ +++ +++/++++ +++/++++

D
Patients ++ + 0/+ 0–+++ 0 ++ ++ +–+++ ++/+++

Controls ++ 0/+ + ++/+++ 0 ++ ++ ++/+++ ++/+++

Abbreviations: Mf—muscle fibers; Ct—connective tissue; B—blood vessels; M—mesothelium; P—proximal part of diaphragm; C—central
part of diaphragm; D—distal part of diaphragm; 0—no positive structures, 0/+—occasional positive structures, +—few positive structures,
+/++—few to moderate number of positive structures, ++—moderate number of positive structures, ++/+++—moderate to numerous
positive structures, +++—numerous positive structures, +++/++++—numerous to abundant structures, ++++—abundance of positive
structures in the visual field.
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Figure 12. The lack of β-defensin 4 positive structures in a CDH patient (a) and in the control group (b). β-defensin 4 IMH, 
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Apoptosis affected a moderate number of muscle fiber nuclei in both the patient and 
the control groups. However, the number of apoptotic connective tissue cells and endo-
theliocytes varied from few to numerous in the CDH affected tissue; the control group 
showed a stable number of moderate to numerous positive structures. The number of 
apoptotic mesotheliocytes fluctuated from few positive structures to an abundance of pos-
itive structures both in the patient and the control groups (Table 4, Figure 13a,b). 

Figure 11. (a) Few β-defensin 2 positive muscle fibers in CDH. β-defensin 2 IMH; (b) Moderate β-defensin 2 positive
muscle fibers in a patient without CDH. β-defensin 2 IMH, ×200. IMH—immunohistochemistry.

β-defensin 4 showed occasional positive muscle fibers only in the central part of the
diaphragm yet was absent everywhere else (Table 4, Figure 12a,b).

Apoptosis affected a moderate number of muscle fiber nuclei in both the patient
and the control groups. However, the number of apoptotic connective tissue cells and
endotheliocytes varied from few to numerous in the CDH affected tissue; the control group
showed a stable number of moderate to numerous positive structures. The number of
apoptotic mesotheliocytes fluctuated from few positive structures to an abundance of
positive structures both in the patient and the control groups (Table 4, Figure 13a,b).

NGF marked only a few nerves among the muscle fibers, with a slight increase (few
to moderate number of positive structures) in the distal diaphragm of CDH cases. On the
contrary, the number of blood vessels and solitarily located NGF positive nerve bundles
were always higher in the control group in comparison to the CDH affected tissue (Table 5,
Figure 14a,b).
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Figure 13. (a) A few apoptotic connective tissue cells in a patient with CDH. TUNEL; (b) Moderate apoptotic nuclei in the
control group muscle fibers, connective tissue, and endothelium. TUNEL ×200.

Table 5. Semi-quantitative evaluation of the relative number of nerve quality factors in the CDH patient and the con-
trol groups.

NGF NGFR NF

Ct B Nf Ct B Nf Nf

P
Patients + + + 0/+–+ 0 0/+ 0

Controls + ++ ++ 0/+ + +++ 0–+++

C
Patients + +/++ 0/+ + ++/+++ 0 0–+++

Controls + +–+++ +–+++ 0/+–+ 0/+–+++ 0/+–+++ 0–+++

D
Patients + 0/+ 0 0/+–+ ++ 0 0

Controls +/++ ++ 0/+ 0/+–+ ++/+++ 0/+–+++ 0–+++

Abbreviations: NGF—nerve growth factor; NGFR—nerve growth factor receptor; NF—neurofilaments; Ct—connective tissue; B—blood
vessels; Nf—nerve fibers; P—proximal part of diaphragm; C—central part of diaphragm; D—distal part of diaphragm; 0—no positive
structures, 0/+—occasional positive structures, +—few positive structures, +/++—few to moderate number of positive structures,
++—moderate number of positive structures, ++/+++—moderate to numerous positive structures, +++—numerous positive structures,
+++/++++—numerous to abundant structures, ++++—abundance of positive structures in the visual field.
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Figure 14.  (a) Moderate expression of NGF in a nerve bundle in a patient with CDH. NGF IMH; (b) Moderate distribution 
of NGF in a nerve bundle and among the muscle fibers in the control group tissue. NGF IMH, ×250. NGF—nerve growth 
factor; IMH—immunohistochemistry. 

We found relatively small differences between the patient and the control groups in 
NGFR positive structures, where the expression in the connective tissue was fluctuating 
from occasional to few positive cells. NGFR positive nerve fibers among the blood vessels 
and those in nerve bundles had notable variations from absence of positive structures to 
numerous positive structures with a tendency of lower expression in the CDH affected 
tissue than in the control group (Table 5, Figure 15a,b). 

 
Figure 15.  (a) Moderate NGFR-containing nerve fibers in a CDH patient. NGFR IMH; (b) Moderate to numerous NGFR 
positive nerves in the control group tissue. NGFR IMH, ×400. NGFR—nerve growth factor receptor; IMH—immunohisto-
chemistry. 

The variable expression from total absence to numerous NF positive nerve fibers was 
detected in the central diaphragm both in the patients and the controls; however, no NF 
positive nerves were found in the patient proximal and distal parts of the diaphragm, 
while fluctuations of NF remained equal in the control group—from total absence to nu-
merous positive structures (Table 5, Figure 16a,b). 

Figure 14. (a) Moderate expression of NGF in a nerve bundle in a patient with CDH. NGF IMH; (b) Moderate distribution
of NGF in a nerve bundle and among the muscle fibers in the control group tissue. NGF IMH, ×250. NGF—nerve growth
factor; IMH—immunohistochemistry.

We found relatively small differences between the patient and the control groups in
NGFR positive structures, where the expression in the connective tissue was fluctuating
from occasional to few positive cells. NGFR positive nerve fibers among the blood vessels
and those in nerve bundles had notable variations from absence of positive structures to
numerous positive structures with a tendency of lower expression in the CDH affected
tissue than in the control group (Table 5, Figure 15a,b).
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Figure 15. (a) Moderate NGFR-containing nerve fibers in a CDH patient. NGFR IMH; (b) Moderate to numerous
NGFR positive nerves in the control group tissue. NGFR IMH, ×400. NGFR—nerve growth factor receptor; IMH—
immunohistochemistry.

The variable expression from total absence to numerous NF positive nerve fibers was
detected in the central diaphragm both in the patients and the controls; however, no NF
positive nerves were found in the patient proximal and distal parts of the diaphragm, while
fluctuations of NF remained equal in the control group—from total absence to numerous
positive structures (Table 5, Figure 16a,b).



Diagnostics 2021, 11, 289 14 of 22
Diagnostics 2021, 11, 289 15 of 23 
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NF-containing nerve fibers in the control group tissue. NF IMH, ×400. NF—neurofilaments; IMH—immunohistochemis-
try. 
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Wnt-1 demonstrated a stable expression of numerous to abundant positive muscle 
fibers and mostly no positive structures in the connective tissue. However, it was found 
that Wnt-1 fluctuated significantly from total absence to abundance of positive endotheli-
ocytes and mesotheliocytes in the CDH affected diaphragm tissue whereas the control 
group presented a stable expression (Table 6, Figure 17a,b). 

Figure 16. (a) Moderate NF nerve fibers in connective tissue of the CDH diaphragm. NF IMH; (b) Moderate to numerous
NF-containing nerve fibers in the control group tissue. NF IMH, ×400. NF—neurofilaments; IMH—immunohistochemistry.

Wnt-1 demonstrated a stable expression of numerous to abundant positive muscle
fibers and mostly no positive structures in the connective tissue. However, it was found that
Wnt-1 fluctuated significantly from total absence to abundance of positive endotheliocytes
and mesotheliocytes in the CDH affected diaphragm tissue whereas the control group
presented a stable expression (Table 6, Figure 17a,b).

Table 6. A semi-quantitative evaluation of the relative number of Wnt-1 gene expression in the CDH
patient and the control groups.

Wnt-1

Mf Ct B M

P
Patients +++ 0 0/+–+++ 0–++++

Controls +++ 0 + 0

C
Patients +++/++++ 0 0/+–++++ 0

Controls +++ 0 0/+ 0

D
Patients +++/++++ 0/+ +/++ 0–++++

Controls +++ 0 + 0
Abbreviations: Mf—muscle fibers; Ct—connective tissue; B—blood vessels; M—mesothelium; P—proximal
part of diaphragm; C—central part of diaphragm; D—distal part of diaphragm; 0—no positive structures,
0/+—occasional positive structures, +—few positive structures, +/++—few to moderate number of positive
structures, ++—moderate number of positive structures, ++/+++—moderate to numerous positive structures,
+++—numerous positive structures, +++/++++—numerous to abundant structures, ++++—abundance of positive
structures in the visual field.

3.3. Statistical Analysis

Statistically significant differences were found between the patient and the control
group tissue and morphological structures. bFGF (Mann–Whitney U: 10; Z-score: −2.592;
p-value: 0.013) and FGFR1 (Mann–Whitney U: 9; Z-score: −2.598; p-value: 0.01) im-
munoreactives showed significant changes between the patient and the control group
muscle fibers. TGF-β (Mann–Whitney U: 13.5; Z-score: −2.399; p-value: 0.032), FGFR1
(Mann–Whitney U: 7; Z-score: −2.781; p-value: 0.005), IGF-1R (Mann–Whitney U: 9;
Z-score: −2.797; p-value: 0.01), β-defensin 2 (Mann–Whitney U: 14.5; Z-score: −2.125;
p-value: 0.041), TUNEL (Mann–Whitney U: 14.5; Z-score: −2.063; p-value: 0.041) and
NGF (Mann–Whitney U: 10.5; Z-score: −2.485; p-value: 0.013) immunoreactives revealed
significant changes between the patient and the control group blood vessels. Only HGF
(Mann–Whitney U: 0; Z-score: −4.123; p-value: < 0.001) was found statistically significant



Diagnostics 2021, 11, 289 15 of 22

in connective tissue between the groups. No statistically significant data was found in
mesothelium.
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Spearman’s rank correlation coefficient was used to detect correlations between im-
munoreactives in the patient group. A very strong positive correlation was detected
between TGF-β and FGFR1, a strong positive correlation between myosin and TUNEL,
HGF and IGF-1R, FGFR1 and IGF-1, bFGF and FGFR1, TGF-β and IGF-1, bFGF and IGF-1R,
IGF-1 and bFGF, IGF-1 and β-defensin 4, whereas a moderate positive correlation was
detected between TGF-ß and bFGF in the muscle fibers (Table 7).

Table 7. Spearman’s rank correlation coefficient between different tissue factors in the patient group
muscle fibers.

Strength of
Correlation

Correlations between Immunoreactive Structures
in the Patient Group Muscle Fibers rs p-Value

“very strong” 0.8–1.0 TGF-β and FGFR1 0.911 <0.001

“strong” 0.6–0.79

Myosin and apoptosis 0.784 0.003

HGF and IGF-1R 0.744 0.006

FGFR1 and IGF-1 0.668 0.018

bFGF and FGFR1 0.663 0.019

TGF-β and IGF-1 0.644 0.024

bFGF and IGF-1R 0.627 0.029

IGF-1 and bFGF 0.615 0.033

IGF-1 and β-defensin 4 0.603 0.038

“moderate” 0.4–0.59 TGF-β and bFGF 0.585 0.046
Abbreviations: TGF-β—Transforming growth factor-beta; bFGF—basic fibroblast growth factor; FGFR1—
Fibroblast growth factor receptor 1; IGF-1—Insulin-like growth factor 1; IGF-1R—Insulin-like growth factor
1 receptor; HGF—Hepatocyte growth factor, rs—Correlation strength.

A very strong positive correlation was detected between FGFR1 and IGF1, a strong
positive correlation between HGF and TGF-β, Wnt-1 and IGF-1, Wnt-1 and IGF-1R, Wnt-1
and FGFR1, TGF-ß and β-defensin 2, TGF-β and FGFR1 TGF-β and IGF-1, IGF-1 and
IGF-1R in blood vessels (Table 8).
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Table 8. Spearman’s rank correlation coefficient correlations between different tissue factors in the
patient group blood vessels.

Strength of
Correlation

Correlations between Immunoreactive Structures
in Patient Group Blood Vessels rs p-Value

“very strong” 0.8–1.0 FGFR1 and IGF-1 0.812 0.001

“strong” 0.6–0.79

HGF and TGF-β 0.786 0.002

Wnt-1 and IGF-1 0.741 0.006

Wnt-1 and FGFR1 0.732 0.007

TGF-β and β-defensin 2 0.708 0.010

Wnt-1 and IGF-1R 0.704 0.011

TGF-β and FGFR1 0.695 0.012

TGF-β and IGF-1 0.650 0.022

IGF-1 and IGF-1R 0.648 0.023
Abbreviations: TGF-β—Transforming growth factor-beta; bFGF—basic fibroblast growth factor; FGFR1—
Fibroblast growth factor receptor 1; IGF-1—Insulin-like growth factor 1; IGF-1R—Insulin-like growth factor
1 receptor; HGF—Hepatocyte growth factor; Wnt-1—wingless gene-1, rs—Correlation strength.

A strong positive correlation was found only between FGFR1 and β-defensin 2 in
connective tissue (rs: 0.624; p-value: 0.03).

A strong positive correlation was present between Wnt-1 and β-defensin 2 (rs: 0.69;
p-value: 0.013), Wnt-1 and IGF-1 (rs: 0.649; p-value: 0.022), a moderate positive correlation
was found between Wnt-1 and TGF-ß (rs: 0.584; p-value: 0.046) in mesothelium.

4. Discussion

Immunoreactive expression was compared between the patient and the control groups
in different diaphragm sites of diaphragm hernia to determine the significance of different
growth factors and their receptors, muscle and nerve quality factors, local defense fac-
tors, programmed cell death, and separate gene expression in the development of CDH.
Histological structures and correlations between immunoreactives were also made.

Although the data showed slight alterations between different sites of diaphragm
hernia, no significant changes were determined between these sites, showing either that
the immunoreactives are distributed equally in different sites of the diaphragm or these
changes are not possible to detect with the number of patients we had in our research.

CDH patient muscle fibers showed variable expression of bFGF and IGF-1 growth
factors, IGF-1 had the most notable fluctuations. FGFR1 also presented a variable expression
in muscle fibers. Statistically significant changes in bFGF and FGFR expression were noted
between the patient and the control group muscle fibers. These growth factors presented
strong correlations between IGF-1 and bFGF, FGFR1 and IGF-1, bFGF and IGF-1R, showing
that either these growth factors interact with each other or there is a pathway that makes
alternations in their expression. For instance, one of such pathways is a retinoid acid
pathway and alterations in this pathway are determined as a significant factor for the
development of CDH [36]. Furthermore, bFGF and IGF-1 expression can be affected
by a retinoid acid pathway [37,38], thus we speculate that immunoreactive alternations
in muscle fibers detected in our patients can be caused by alternations in the retinoid
acid pathway.

Remarkably, bFGF had no expression in the control group diaphragm tissue whereas
the CDH patient muscle fibers showed an unstable expression of bFGF. We assume this to
be a complete novelty for this anomaly. A strong correlation between bFGF and FGFR was
detected. It was found that with a higher expression of bFGF in the patient tissue, FGFR
expression was lower compared to the control group, where bFGF was not expressed at all.

Muscle quality markers showed compelling data. Myosin and α-actin expression in
the diaphragm muscle fibers had a stable expression; however, dystrophin presented a
variable expression in both the patient and the control group diaphragm muscle fibers. We
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assume these relative changes in dystrophin expression could be due to the diaphragm
development processes involving apoptosis in the muscle mass [39].

Immunoreactive expression in blood vessels had numerous inconsistencies, showing
significant changes in TGF-β, FGFR1, IGF-1R, NGF, β-defensin 2 and apoptosis between
the patient and the control groups. We suppose these factors could play an important role
in the pathogenesis of CDH through the development of blood vessels.

It should be noted that TGF-β signaling pathway is considered important for the
proper diaphragm formation [40]. TGF-β expression was slightly higher and had variations
in CDH patients comparing the patient and the control group tissue; meanwhile the control
group presented a stable expression, suggesting CDH patients could have TGF-β pathway
alterations in blood vessels. Significance of the alternations in TGF-β pathway has also
been proved by other scientists that studied the development of CDH [36].

Strong intercorrelations in blood vessels were found between FGFR1, IGF-1, IGF-
1R and Wnt-1 as well as significant changes in FGFR1, IGF-1R expression between the
patient and the control group. As the activation of FGFR1 and IGF-1R receptors can lead to
activation of PI3K/Akt pathway [41–43], these strong intercorrelations with wnt-1 suggest
the presence of synergism between the PI3K/Akt pathway and the wnt/β-catenin pathway.
Such synergy was found in Skurk et al. research suggesting that VEGF/PI3-kinase/Akt
signaling is a downstream of β-catenin, and that it contributes to the pro-angiogenic actions
of β-catenin on endothelial cells [43]. Therefore, fluctuations in Wnt-1 gene expression
could cause the significant changes in FGFR1 and IGF-1R expression between the groups.

IGF-1R had a relatively high and stable expression in the diaphragm tissue, with
alternations between the patient and the control groups only in blood vessels. This suggests
that IGF-1R is not affected in other tissues in the presence of CDH. IGF-1R could be involved
in CDH pathogenesis through angiogenetic processes as well as previously mentioned
IGF-1R, FGFR1, Wnt pathway interactions.

The evaluation of β-defensin 2 expression revealed that it was higher in the control
group than in the CDH patients. According to Baroni et al., research β-defensin 2 has
properties to promote endothelial cell proliferation [29]. Although the exact mechanism
through which β-defensin 2 exerts its pro-angiogenetic properties is still unclear, it is clearly
seen that the various cytokines involved in pro-angiogenetic processes are less expressed
in CDH affected blood vessels than in the control group tissue. These findings further
accent that there is a dysregulation in angiogenetic processes of the formation of CDH.
Angiogenetic processes might have a crucial role in the pathogenesis of CDH.

However, the data shows various cytokines responsible for angiogenetic processes
being affected, a more detailed research on the interactions between the above-mentioned
pathways and growth factors should be carried out to confirm this theory.

The immunoreactive expression was stable in connective tissue with an alteration
between the patient and the control groups in HGF expression with a higher expression in
the patient tissue. Overall HGF expression was stable and had a relatively high expression
comparing it to other immunoreactives. The studies reveal that muscle cells migrate from
somites into the PPFs [21] in the presence of HGF. This shows that HGF should have a
significant impact on CDH development; however, no statistically significant changes
were found in other diaphragm tissues. We presume alternations in other tissues may be
seen in embryonal development. As for an increased HGF expression in the connective
tissue, it could be a compensatory mechanism after the development of CDH to increase
the number of myocytes in areas where the hernia has not developed and to increase the
overall strength of a diaphragm.

Mesothelium had very few alternations in the immunoreactive expression, showing
that mesothelium is either slightly or not affected by CDH at all.

β-defensin 4 showed an absence of positive muscle fibers in the proximal and distal
parts of the diaphragm and its expression fluctuated from absent to few positive structures
in the central part. β-defensin 4 is an anti-microbial agent and its expression increases
in response to inflammatory signals. It has been reported that the gene of the human
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β-defensin 4, called hBD-4, is limited to only a few tissues and the diaphragm is not
one of them [30]. The β-defensin levels coincide with the controls and the herniated
diaphragms. We can see no bacterial infection therefore we can conclude that in normal
condition β-defensin 4 is probably not expressed in diaphragm tissue. β-defensin 2 was
expressed in both the patient group and their controls without significant differences. It
provided fluctuating results in the CDH patient tissues. As β-defensin genes are close to
chromosome 8p23.1, which is a hotspot with genes responsible for CDH formation [44,45],
some deletions might include the defensin gene clusters, where variants in the non-deleted
allele or total deletion of defensin coding gene might further influence defensin expression
in tissues.

There are two existing hypotheses of how CDH occurs. Some investigators voice an
opinion of an increased apoptosis [46,47], others—of a decreased cell proliferation [32,48]
to be at fault of CDH development. Our findings contradict the increased cell death
theory because the number of apoptotic cells in the patient tissue was the same or slightly
decreased compared to the number of apoptotic cells in the control group. One of the
herniated samples showed a few solitary apoptotic cells in the connective tissue, while
all surrounding structures appeared negative showing that there was a high variability of
cells affected by apoptosis in the patient tissue. Therefore, we can conclude that CDH can
develop without elevated programmed cell death numbers. We can hypothesize that there
are different pathways how CDH can be formed, through a high variability of apoptotic
cell numbers in CDH patient tissue for instance.

The number of NGF and NGFR positive nerve fibers varied from one nerve bundle
to another within each sample. It is notable that NGF and its receptor did not correlate
with each other. Still, NGF remained higher in all samples. High NGF numbers have
been reported to induce increased levels of matrix metalloproteases (MMPs). MMPs
enhance skeletal muscle fiber regeneration by promoting satellite muscle cell migration
and differentiation [49]. In this context, MMP-1,-2,-7,-9,-13 have been emphasized [49].
Consequently, NGF expression needs to be elevated in case of the diaphragm injury, but
we see that it is not so. In addition, a theory has been proposed that NGF, in fact, inhibits
the function of MMPs [50]. Therefore, the decreased number of NGF positive structures
could imply to either over-expression or under-expression of MMPs.

NGF is expressed in higher numbers than NGFR, which may suggest that a part
of NGF attaches to the TrkA NGFR whose expression was not measured in this study.
Other studies say that MMP-2 is activated exactly through TrkA NGFR stimulation, which
promotes angiogenesis [51]. In addition, VEGF levels have been found to respond to
elevated NGF expression with an increase in numbers, further giving rise to neovascular-
ization [23,52]. We noticed a decrease of NGF in blood vessel walls, which indicates that
blood vessel formation in CDH might be impaired.

NGFR guides phrenic nerve growth from neural tube to PPFs. At the same time,
p75NGFR when binding to NGF is capable of inducing apoptosis in fibroblasts and myofi-
broblasts [53]. The marker’s expression is decreased in the nerve bundles and the blood
vessel walls of the herniated diaphragm samples, which may have led to an increased
fibroblast lifespan that decreased healing abilities of the diaphragmatic defects. This
coincides with the reduced number of apoptotic cells visualized with TUNEL.

Wnt-1 demonstrated high expression variability in blood vessels and mesothelium.
Its levels of signaling did not correlate with the cell death marker, which might be because
Wnt-1 protects cells from apoptosis only when expressed in exceedingly high numbers as
in cancer cells [54]. Wnt-1 stabilizes β-catenin, whose loss of function in mouse models
leads to diaphragm development defect [34]. We, however, observed that Wnt-1 was
up-regulated in most CDH patient endotheliocytes, mesotheliocytes, and muscle fibers,
which might be a compensatory readjustment. One hypothesis is that elevated Wnt-1
numbers might be at fault of underdeveloped diaphragm tissue architecture. This explains
why Wnt-1 levels in muscle fibers correlate with myosin, which is expressed only in
differentiated muscle cells. However, this rise in Wnt-1 numbers alone most likely could
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not be responsible for CDH development. In Wilms Tumor 1 (Wt-1) knock-out mice models
the diaphragms develop without CDH when β-catenin and, probably, Wnt-1 levels are kept
elevated [34]. The loss of Twist-related protein 1 (Twist1) positive cells is assumed to be a
common factor why CDH develops in reduced Wt-1 and β-catenin pathway models [34].
Both Wt-1 and Wnt-1 influence β-catenin signaling and Twist1 expression [34,55].

5. Conclusions

Different tissue factor appearance and distribution seem to correlate with the specific
morphopathogenetic mechanism but do not depend on the specific site of affected diaphragm.

With a notable increase of bFGF, FGFR1 expression decreased in patient tissue (sup-
ported by a significant intercorrelation between these factors). This reveals a new patho-
genetic phenotype for CDH, suggesting the prominent stimulation of growth in mesenchy-
mal origin tissue.

The prominent and stable expression of IGF-1R and HGF and moderate expression
of TGF-β show these factors as essential growth stimulators in CDH affected tissue. In-
tercorrelations between these factors and local defense factors (β-defensin 2, but not 4)
and apoptosis indicate the leading role of tissue growth, anti-microbial defense, and pro-
grammed cell death in the morphopathogenesis of CDH.

Variable Wnt-1 expression in patient blood vessels, while being stable in controls and
having strong intercorrelations with IGF-1, FGFR1, and IGF-1R suggests dysregulation in
angiogenetic processes in herniated diaphragms.

The minor changes of muscle quality markers myosin and α-actin expression between
the patient and the control groups are less likely to be involved in CDH pathogenesis,
while the variable dystrophin expression in both the CDH patient and the controls seems
to manifest itself more due to the diaphragm development processes involving apoptosis
in muscle mass.

Only mesothelium presents insignificant alternations in different tissue factor expres-
sions throughout the herniated diaphragm tissue, thus suggesting that CDH has almost no
effect on mesotheliocytes.

Decreased NGF, NGFR and NF expression in CDH diaphragm indicates the possible
decrease of neuronal structure quality in the pathogenesis of this anomaly.
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