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Abstract

Background: Gene-set analyses measure the association between a disease of interest and a “set” of genes related to a
biological pathway. These analyses often incorporate gene network properties to account for differential contributions of
each gene. We extend this concept further—defining gene contributions based on biophysical properties—by leveraging
mathematical models of biology to predict the effects of genetic perturbations on a particular downstream function.
Results: We present a method that combines gene weights from model predictions and gene ranks from genome-wide
association studies into a weighted gene-set test. We demonstrate in simulation how such a method can improve statistical
power. To this effect, we identify a gene set, weighted by model-predicted contributions to intracellular calcium ion
concentration, that is significantly related to bipolar disorder in a small dataset (P = 0.04; n = 544). We reproduce this
finding using publicly available summary data from the Psychiatric Genomics Consortium (P = 1.7 × 10−4; n = 41,653). By
contrast, an approach using a general calcium signaling pathway did not detect a significant association with bipolar
disorder (P = 0.08). The weighted gene-set approach based on intracellular calcium ion concentration did not detect a
significant relationship with schizophrenia (P = 0.09; n = 65,967) or major depression disorder (P = 0.30; n = 500,199).
Conclusions: Together, these findings show how incorporating math biology into gene-set analyses might help to identify
biological functions that underlie certain polygenic disorders.
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Background

Genetic contributions to disease can be complex and might in-
volve the coordination of a collection of genetic variants in the
disruption of 1 or many biological pathways. Previous studies
of psychiatric conditions provide evidence that a single genetic

variant often confers little disease risk despite high heritabil-
ity [1–3]. Rather, psychiatric disorders can be polygenic [4]—
hundreds to thousands of genes of very small effect contribute
to the disorder. For this reason, genetic risk for an individual
is commonly measured by aggregating information from mul-
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tiple genes into a polygenic risk score [5–9]. Each of these vari-
ants might play a small role in the disruption of a pathway but
collectively lead to the development of disease. Consequently,
uncovering genetic influences on psychiatric disorders can be
challenging when etiology of disease depends on >1 gene [10].
Computational approaches are emerging to better prioritize can-
didate genes [11–22].

Gene-set analyses are a common tool for measuring the as-
sociation between a disorder and a set of genes rather than a sin-
gle gene [23–28]. Many statistical tests and software are available
to perform gene-set analysis (cf. [28, 29]) to determine whether
genes in a particular gene set are significantly associated with
a phenotype (self-contained) or whether a phenotype is more
strongly associated with genes in a set than genes not in the set
(competitive) [26, 28, 30]. Often gene sets are defined on the ba-
sis of genes that contribute to a particular biological pathway,
which enables identification of pathways that are important for
a disorder. This approach likely leads to stronger, more repro-
ducible findings if abnormal pathways are what ultimately con-
tributes to genetic risk [28, 31].

However, biological functions may ultimately drive risk as
opposed to an abnormal pathway or single gene variant. Bi-
ological functions do not map one-to-one to biological path-
ways; a function can recruit some genes from multiple path-
ways [32]. In bipolar disorder, for example, spontaneous neu-
ronal firing rate differs in stem cells derived from bipolar indi-
viduals compared with controls [33, 34]. This cellular function—
neuronal firing rate—recruits genes from calcium-mediated sig-
naling (GO:0019722), regulation of action potential (GO:0098900),
and chemical synaptic transmission (GO:0007268), among oth-
ers. Hence, if perturbed biological functions drive disease risk,
jointly testing genes in 1 pathway that includes genes of little
impact and ignoring genes in other relevant pathways would re-
sult in a less powerful gene-set analysis.

Moreover, some genes or gene products play a larger role in
the realization of the biological function. To account for this,
some gene-set analyses incorporate information about the net-
work structure of gene interactions [12–15, 35–37]. Network-
based methods, such as EnrichNet [13], GANPA [37], and LEGO
[36], represent the network of functional interactions between
genes as a network—a mathematical object made up of ver-
tices (genes or proteins) and edges (connections). On the basis
of features of the network, such as the number of connections a
gene has with other genes, genes are given more or less weight
in the gene-set test statistic. While these methods attempt to
account for the functional non-equivalence of genes, they rely
on mathematical properties of the network rather than biologi-
cal mechanisms involved in the related biological function. The
connections between genes might vary in strength or operate
in a non-linear way. For example, a gene with many weak con-
nections to other genes might carry equal or less downstream
biological influence than a gene with few, strong connections to
other genes. This discrepancy would be obscured by considering
only the number or pattern of connections. Greater specificity
can be achieved quickly through detailed mathematical mod-
els from math biology, which are driven from bottom-up bio-
physical principles. Efforts within the field have culminated in
ModelDB [38], which hosts >1,000 publicly available models [39].
Examples include models of the hypothalamic-pituitary-adrenal
axis, monoamine systems, and circadian rhythms, among oth-
ers. Model parameters related to genes can be varied to measure
the relative contribution of genes to a specific biological function
of interest (e.g., firing rate). Incorporating model predictions into

gene-set tests might strengthen the link between genes and dis-
orders.

We present a simple method, Gene-set Enrichment with
Math Biology (GEMB), for measuring the association between a
disorder and genes connected to a biological function, based on
model predictions. Our method relies on (i) ranking genes in de-
creasing order of association strength to a disorder and (ii) as-
signing weights to a set of genes to reflect their relative contribu-
tion to a specific biological function. We illustrate one approach
to assigning weights by using pre-existing models from math
biology. Ranks and weights are combined into a test for signif-
icance of the association between genes related to a biological
function (as predicted by a neurobiological model) and a disor-
der.

To demonstrate the utility of our method, we test the hypoth-
esis that genes affecting intracellular calcium ion (Ca2+) concen-
tration are related to bipolar disorder by incorporating a detailed
model of intracellular Ca2+ concentrations [40]. Bipolar disorder
is a severe and chronic psychiatric disorder [41] with estimated
heritability at 85% [42]. Genome-wide association studies report
several susceptibility loci [43], including a voltage-gated calcium
gene [44], which remains among the strongest findings to date.
Calcium signaling is an incredibly complex process to model [45]
but has been implicated in many human diseases [46], including
bipolar disorder.

Method Description
A weighted gene-set statistic

We assume a general set-up of a competitive gene-set test: indi-
viduals are phenotyped and analyzed for expression in n genes;
each gene is measured for association to the phenotype; and a
subset of m genes are determined to be of interest (see Fig. 1
for an overview). From this set-up, we require only the rank of
each gene in decreasing order of association strength to the phe-
notype; genes that are most strongly associated with the phe-
notype have the highest rank (i.e., closest to 1) and those that
are most weakly associated with the phenotype have the lowest
rank (i.e., closest to n).

We diverge from many gene-set tests by requiring that non-
negative weights be assigned to individual genes in the subset
of interest. Formally, we require:

� genes labeled 1 to n;
� rank ri ∈ {1, . . . , n} for each gene i = 1, . . . , n;
� gene set S ⊆ {1, . . . , n}; and
� weights wi ≥ 0 for each gene i ∈ S with

∑
i∈S wi > 0.

Without any loss of generality, we assume weights wi sum to
1; we can always rescale weights so that they sum to 1. Then,
we define the following test statistic using a weighted sum of
the ranks ri (i ∈ S):

v := ∑
i∈S wi ri .

The choice of weights encodes an a priori hypothesis about
the relative contribution of a gene to the phenotype. As a specific
case, we can recover an unweighted gene-set test by setting wi =
1/m. This choice of weights captures the a priori hypothesis that
each gene in S contributes equally to the phenotype (or a lack
of support for one gene over another). In this case, the statistic
v is the mean rank of the genes in S. Recalling that a rank of 1
is assigned to the gene with the strongest association, a value v
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Figure 1: Overview of gene-set analysis with math biology. (A) Genes are ranked on the basis of their association with a phenotype and weighted on the basis of their
model-predicted contribution to a specific function. Ranks and genes are combined to perform a weighted gene-set test. (b) Genetic analysis can be performed at
the level of either a single gene, a gene set, a gene network, or a gene set connected by math biology. Gene-set analysis with math biology uses models to describe

connections between genes based on biophysical principles.

< (n + 1)/2 reflects that genes in S are ranked higher on average
relative to genes not in S. Conversely, a value v > (n + 1)/2 reflects
that genes in S are ranked lower on average relative to genes
not in S. If v = (n + 1)/2, genes in S are ranked neither higher nor
lower on average relative to genes not in S. In other words, small
v suggests an association between the gene set and phenotype.
We point out that genes in S do not need to be evenly distributed
in rank to achieve v ≈ (n + 1)/2; they could be disproportionately
ranked close to the mean rank (n + 1)/2 or ranked close to the
extreme ranks 1 and n.

As another specific case, we could recover a single gene
test by setting wj = 1 for some j ∈ S and setting all other
weights to zero. This choice captures the a priori hypothesis
that gene i specifically contributes to the phenotype. The statis-
tic v would be the rank of gene i. More broadly, setting any
weight to zero reflects the hypothesis that the correspond-
ing gene does not contribute to the phenotype. The statistic v
would be identical in value if we had simply removed the gene
from S. Further, smaller weights mean a smaller contribution
to v.

With more general weights, the statistic v is interpreted sim-
ilarly to the unweighted version, replacing an average of the
ranks with a weighted average. Our interpretation is inherited
from the fact that v − (n + 1)/2 changes sign when genes are
ranked in opposite order and increases when a gene in S is ex-
changed for a gene not in S with higher rank. Thus, small v

can be thought of as showing that genes in S have a higher
(weighted) relative rank to genes not in S.

A weighted gene-set test

To use v in a statistical test, we must specify a null distribution.
For many gene-set analyses, a common null hypothesis is that
the genes in Swere chosen uniformly at random from the entire
set of genes. Under this null hypothesis, we can construct a null
distribution for v by drawing ranks for genes in our set, Ri for
i ∈ S, uniformly at random from

{1, 2, . . . , n}

without replacement and calculating

V := ∑
i∈S wi Ri .

The distribution of the random variable V serves as the null dis-
tribution for v.

The alternative hypothesis is that genes in S were not cho-
sen uniformly at random. In broad terms, they were chosen be-
cause of their relationship to the phenotype. Hence, we are inter-
ested in how often V with gene ranks chosen randomly suggests
a stronger association between set Sand a phenotype than the
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statistic v determined by the actual association to the pheno-
type. In other words, we use the probability, or P-value, associ-
ated with a 1-sided test given by

P (V ≤ v)

to determine whether v is significant. Note, a 2-sided test could
also be defined by using

P

(∣∣∣∣V − n + 1
2

∣∣∣∣ ≥
∣∣∣∣v − n + 1

2

∣∣∣∣
)

.

A simple way to estimate P (V ≤ v) is to use Monte Carlo sim-
ulation, where V is repeatedly sampled from its distribution and
we count how often a sample of V ≤ v. This computation bene-
fits from the fact that V is simple to calculate and can be sam-
pled in parallel. The law of large numbers ensures that a Monte
Carlo estimate of P (V ≤ v) = E(1V≤v ) is unbiased and has vari-
ance Pr(V ≤ v)/k, where k is the number of Monte Carlo samples.

Asymptotic approximation
Alternatively, we could estimate P(V ≤ v) with

�

(
v − μ

σw

)
,

where � is a standard normal distribution and μ= (n + 1)/2 and
σ 2

w = [(
n2 − 1

)
/12

]∑
i∈S w2

i . This approximation follows by mak-
ing the simplifying assumption that ranks Ri are drawn uni-
formly at random from {1, . . . , n} with replacement (as opposed
to without replacement) and then noting that the resulting V is
a sum of independent random variables with respective means
wi[(n + 1)/2] and variances w2

i

[(
n2 − 1

)
/12

]
(i ∈ S). Table 1 com-

pares Monte Carlo estimates of 1-sided P-values to estimates us-
ing a normal approximation.

Type I error and power
Type I error is controlled by the distribution of gene ranks un-
der the null hypothesis of no association between the gene set
and the phenotype. Our weighted gene-set test uses the null
distribution that arises when any permutation of gene ranks is
equally likely. However, the true distribution of gene ranks when
there is no association is not clearly defined owing to the com-
plex correlations that might exist among genes. Moreover, the
null distribution of gene ranks is determined by the method used
to measure gene–phenotype associations (see [47] for a compar-
ison). It is thus important to choose a method for ranking genes
that properly controls Type I error.

Power can be improved with a weighted gene-set test over
gene-set or single-gene analyses when multiple genes have dif-
ferential contribution to disease risk. To illustrate, consider n
genes and a set of 2 independent genes with very small asso-
ciation to the disease. Under our null hypothesis, gene ranks di-
vided by n are approximately uniformly distributed between 0
and 1. A single-gene test could assess whether each gene’s nor-
malized rank is below some critical value (Fig. 2A, gray region).
By contrast, a gene-set test could assess whether the sum of
the 2 genes’ normalized ranks is below some threshold (Fig. 2A,
blue region) and a weighted gene-set test could assess whether
a weighted sum of the 2 genes’ normalized ranks is below some
threshold (Fig. 2A, green region). In each case, Type I error is con-
trolled at 0.05 when the rejection region has an area of 0.05.

To estimate statistical power, we consider a situation when
2 independent genes of interest are ranked on the basis of an
F test examining whether ν coefficients are zero when regress-
ing phenotype on gene variables, as is done in MAGMA, with ν

being the number of gene-level principal components used in
the regression model [26]. For simplicity, we set ν = 10 and as-
sume that the P-value for each gene recovered from the F test
would be its rank normalized by the number of genes n. For a
sample size of k, the test statistic for gene 1 and 2 would fol-
low an F distribution with ν − 1 and k − ν degrees of freedom
under the null hypothesis (no gene–phenotype association). For
an alternative distribution, we assume that the test statistic fol-
lows a non-central F distribution with ν − 1 and k − ν degrees
of freedom and non-centrality parameters kd1 or kd2 for gene
1 and 2, respectively. Under this alternative, increasing sample
size or non-centrality leads to larger joint densities for normal-
ized ranks near the axes (Fig. 2B). Thus with only 2 genes, these
changes can improve statistical power—the probability of arriv-
ing at normalized ranks that lie in each reject region (Fig. 2C). We
expect that this improvement would continue to hold or grow
with increases in gene-set size and increasingly differential ef-
fect sizes. Hence, this example provides support that weighting
normalized gene ranks can further increase statistical power by
accounting for differential contributions of genes to a disease.

Gene correlation
As alluded to above, nearby genes are often correlated. This cor-
relation could lead to correlated gene ranks and subsequently vi-
olate the null distribution arising from drawing gene ranks uni-
formly at random without replacement. To account for gene cor-
relation, we can draw ranks distributed as a multivariate normal
random variable (ε1, . . . , εn) with mean zero and covariance ma-
trix � and let Ri be the rank of εi among the set {ε1, . . . , εn}. The
covariance matrix � captures gene correlation. The resulting
distribution for V = ∑

i∈S wi Ri can then be estimated by Monte
Carlo simulation as before.

Determining gene weights

Weights can capture any a priori hypothesis whether justified
by functional data, literature surveys, or experiments. Our goal,
however, is more specific: we want weights to reflect the rela-
tive contribution of genes to a specific biological function. If we
have reason to think certain genes play a large role in the bio-
logical function of interest, we upweight them. If genes do not
affect the biological function of interest, we downweight them.
In this way, our weighted gene-set test incorporates the hypoth-
esis that a specific biological function (captured by the weights)
is important to a phenotype.

To inform the choice of weights, we propose a general ap-
proach using models from math biology. We start with a neuro-
biological model that can return a scalar measure of the function
of interest. As noted earlier, many models are publicly available
through sources such as ModelDB [38]. Next, we consult gene
databases to identify genes related to 1 or more model parame-
ters and create a mapping of genes to model parameters. Then,
we perform a global sensitivity analysis to measure the relative
contribution of each parameter to a specific function of interest.
We opt for a global sensitivity analysis based on the partial rank
correlation coefficient (PRCC) [48] due to its simplicity. Last, we
assign weights to each gene based on the contributions of the
model parameter to which it is mapped.

We remark that the association between genes and param-
eters need not be one-to-one. On one hand, models might not
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Table 1: Difference between Monte Carlo estimates of a 1-sided P-value P(V ≤ v) for the weighted gene-set test and estimates using a normal
approximation

l m n
v

μ − 4σw μ − 3σw μ − 2σw μ − σw

0.5 10 1,000 −3.0E−05 −5.7E−04 −1.2E−03 2.2E−03
10,000 −2.9E−05 −5.3E−04 −8.0E−04 3.0E−03

100 1,000 −2.1E−05 −5.5E−04 −4.7E−03 −1.1E−02
10,000 −8.0E−06 −1.2E−04 −6.1E−04 −7.2E−04

1 10 1,000 −3.1E−05 −7.4E−04 −1.5E−03 3.8E−03
10,000 −3.1E−05 −7.0E−04 −1.1E−03 4.4E−03

100 1,000 −1.8E−05 −5.0E−04 −4.0E−03 −8.7E−03
10,000 −9.2E−06 −9.9E−05 −5.1E−04 −5.6E−04

2 10 1,000 −3.2E−05 −1.1E−03 −2.4E−03 6.7E−03
10,000 −3.2E−05 −1.1E−03 −2.1E−03 7.0E−03

100 1,000 −1.7E−05 −4.4E−04 −3.1E−03 −6.2E−03
10,000 −8.2E−06 −1.6E−04 −4.0E−04 −7.3E−05

Weights were defined as wi ∝ il (i = 1, . . . , m) for various l, assuming s = {1, . . . , m}. A total of 107 Monte Carlo samples were used in each case.

BA

C

Figure 2: Statistical power. (A) Possible regions to reject null hypothesis for a single-gene test (corrected for multiple testing), a gene-set test, and a weighted gene-set
test. (B) Joint density functions of ranks divided by n for different sample sizes (n) when genes have very small effect sizes (d1 and d2). (C) Statistical power estimated
for each case in (B). The larger power between methods (gene set versus weighted gene set) is bolded in each case.

be sufficiently detailed to capture the individual contribution of
each gene, so multiple genes may be associated with a single
parameter. For example, 4 genes are known to modulate for-
mation of L-type Ca2+ channels, but most mathematical mod-
els with L-type ion channels do not include individual param-
eters to capture the differential contributions of each gene. On
the other hand, multiple parameters might be associated with a
single gene. For example, models of neuronal action potential of-
ten distinguish between sodium currents and persistent sodium
currents [49] even though both currents may be regulated by the
same gene [50]. We describe how we handled these issues in the
context of our case study.

Analyses

To illustrate our method, we explore the hypothesis that genes
contributing to intracellular Ca2+ concentrations in excitable

neurons are related to bipolar disorder. Calcium signaling has
been both implicated in bipolar disorder and extensively mod-
eled. Furthermore, this hypothesis was initially tested using
our method with a relatively small dataset (n = 544) from the
Prechter Bipolar Cohort [51] (details in Appendix). Thus, the re-
sults reported here reproduce our initial finding and validate an
a priori hypothesis with a much larger dataset.

Gene ranks

Summary genetic data were obtained on patients with bipolar
disorder (n = 20,129) and controls (n = 21,524) from the Psy-
chiatric Genomics Consortium (PGC) [52, 53]. Association was
measured between 8,958,989 SNPs and bipolar disorder, result-
ing in P-values for each SNP. Data collection and analysis are
detailed in Ruderfer et al. [53]. Using SNP-level summary data,
gene-level association with bipolar disorder was measured us-
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ing MAGMA software [26]. Default parameter settings were used
in MAGMA, with gene boundaries defined on the basis of NCBI
Build 37 (hg19). A total of 3,554,879 (39.68%) SNPs mapped to
≥1 gene, whereas 18,309 genes (out of 19,427 genes) mapped to
≥1 SNP. Linkage disequilibrium between SNPs was estimated by
MAGMA using reference data files created from Phase 3 of 1,000
Genomes [54]. The set of 18,309 genes were ranked on the ba-
sis of their measured association (P-value) with bipolar disorder;
the smallest P-values were ranked closest to 1.

Gene weights

We used a detailed model of an intracellular Ca2+ concentra-
tion in a hippocampus CA1 pyramidal cell developed by Ash-
had and Narayanan [40]. The model is publicly available in
ModelDB (Model 150551) and written with free Neuron soft-
ware [38]. Furthermore, it captures key contributors to intra-
cellular Ca2+ concentrations, including ion transport (K+, Na+,
and Ca2+) across the cell membrane; transport of Ca2+ into and
out of the sarcoplasmic endoplasmic reticulum; synaptic plas-
ticity; and mediating receptors such as inositol triphosphate
(InsP3), ionotropic glutamate receptors, and metabotropic glu-
tamate recptors. Finally, the model uses a morphologically re-
alistic 3D representation of a hippocampus CA1 pyramidal cell
accompanied by spatial dynamics giving rise to Ca2+ waves.

To identify genes of interest, we started with 182 genes mak-
ing up the “Calcium signaling pathway” (Pathway ko04020) in
KEGG [55–57]. Each gene was evaluated for whether it could
modulate intracellular Ca2+ concentrations in the model using
the Gene database from the NCBI [58]. A total of 38 genes could
modulate intracellular Ca2+ concentrations in the model, by way
of ion channels, ion pumps, or receptors. We found 3 ion chan-
nels (Na+, A-type K+, and delayed rectifying K+) and 2 recep-
tors (N-methyl-D-aspartate [NMDA] and α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid [AMPA]) that could affect in-
tracellular Ca2+ concentration in the model but had not been
associated with genes in the KEGG calcium signaling pathway.
An additional 31 genes were found related to these channels or
receptors. Of the 69 genes identified, 4 genes (ATP2B3, CACNA1F,
GRIA3, KCND1) were excluded because they were not associated
with gene ranks (described below). A total of 65 genes were an-
alyzed.

For each gene, we identified a parameter that could modulate
(up and down) the modeling component related to the gene. For
example, channel conductance was associated with ion channel
genes. Default parameter values were taken from the simulation
in Fig. 6 of [40]. Other genes, associated parameters, and default
values are summarized in Table 2.

With parameters and genes identified, we used the Ashhad
and Narayanan model to simulate intracellular Ca2+ concentra-
tions during an established protocol for inducing synaptic plas-
ticity at a synapse, namely, 900 pulse stimulation at 10 Hz; see
Fig. 6 in [40]. We simulated 320 samples of parameter sets us-
ing Latin-hypercube sampling from a normal distribution with
mean given by the respective baseline parameter in [40], stan-
dard deviation given by 5% of the respective baseline parameter,
and zero correlation. For each parameter set, we simulated intra-
cellular Ca2+ and measured average intracellular Ca2+ concen-
trations during initial transients induced in the first 3 seconds
of the simulation.

We estimated the PRCC between each parameter and the
measured concentrations controlling for the remaining param-
eters (Fig. 3). We found, for example, a strong positive par-
tial correlation between mean intracellular Ca2+ concentrations

Figure 3: Partial rank correlation coefficient (PRCC) estimated for 13 parameters
that modulate intracellular Ca2+ concentrations in the Ashhad and Narayanan
model [40]. PRCC measures partial correlation between a parameter and the

functional measure of interest (mean intracellular Ca2+ concentration) control-
ling for the contribution of other parameters.

and maximum permeability P̄NMDA of NMDA receptors and a
strong negative partial correlation between mean intracellu-
lar Ca2+ concentrations and the amplitude Vmax of sarcoplas-
mic/endoplasmic reticulum calcium (SERCA) pump uptake.

Based on estimated PRCCs, we defined weights for the 65
genes as follows. For each of the Nk genes assigned to parameter
k with PRCC ρk, we assigned weights |ρk|/Nk. We then renormal-
ized weights to sum to 1. Note that we could use any function of
ρk to assign weights to associated genes. We use only the mag-
nitude of PRCC because measured associations between genes
and phenotypes are not sufficiently specific to reflect the direc-
tion of association in addition to the magnitude. We divide by
the number of genes assigned to parameter k, so that a single
component in the model is not weighted heavily simply because
there are a large number of genes assigned to the component.

Weighted gene-set test

Combining gene ranks obtained from the genetic analysis with
gene weights obtained from the model of calcium signaling, we
performed the weighted gene-set test. For comparison, we per-
formed an unweighted gene-set test using all 182 genes from
the KEGG calcium signaling pathway [55–57] by assigning equal
weights to all 182 genes. In addition, we performed a typical
over-representation analysis with the set of 182 genes. Genes
were labeled as significant or not based on a significance level
of 0.1 adjusted for false discovery rate [59] (a significance level
0.0044 for our problem); a 1-sided Fisher exact test was per-
formed to test for over-representation of significant genes in the
KEGG calcium signaling pathway compared to genes not in the
KEGG calcium signaling pathway.

Our gene-set test (GEMB) showed strong support for our hy-
pothesis that genes contributing to intracellular Ca2+ concen-
tration are related to bipolar disorder (P = 1.7 × 10−4; Fig. 4). Fur-
thermore, focusing on the entire KEGG calcium signaling path-
way without consideration of differential contributions to bio-
logical function provided little support for the hypothesis that
calcium signaling is important to bipolar disorder (P = 0.26 us-
ing our method GEMB with equal weights and P = 0.081 using a
1-sided Fisher exact test). These discrepancies show that incor-
porating weights could possibly be illuminating biological fac-
tors that contribute to a psychiatric disorder.

Sensitivity analyses

Additional analyses were performed to evaluate the sensitivity
of our result to 4 factors. First, we wanted to ensure that our test
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Table 2: Calcium genes and associated model parameters

Genes Value Parameter

ATP2B[1-2,4] 0.008 μM ms−1 Mean rate γ 0 of Ca2+ flux density
ATP2A[1–3] 0.1 μM ms−1 Amplitude Vmax of SERCA pump uptake
CACNA1[C–D,S] 0.316 mS cm−1 L-Type Ca2+ channel conductance gCaL

CACNA1[G–I] 0.1 mS cm−1 T-Type Ca2+ channel conductance gCaT

GRM[1,5] 0.3e-3 Metabotropic glutamate receptor density [mGR]0
GNA[Q,11,14–15] 100 ms−1 Gα-bound activated PLC formation rate k7

PLC[B1–B4,D1,D3–D4,E1,G1–G2,Z1] 0.83 ms−1 PLCα-bound PIP2 formation rate k9

ITPR[1–3] 1.85 IP3 receptor density ḡInsP3R

GRIN[1,2A–2D,3A–3B] 1.938107025 nM s−1 Maximum NMDA receptor permeability P̄NMDA

GRIA[1–2,4] 1.29207135 nM s−1 Maximum AMPA receptor permeability P̄AMPA

KCN[A4,C3–C4,D2–D3] 22 mS cm−2 A-type K+ channel conductance gKA

KCN[A1–A3,A6–A7,B1–B2,C1–C2] 3 mS cm−2 Delayed rectifying K+ channel conductance ḡKDR

SCN[1–5,8–11]A 90 mS cm−2 Na+ channel conductance ḡNa

Calcium genes affect either ion channels, ion pumps, or receptors in the Ashhad and Narayanan model [40]. Baseline parameter values were taken from [40].

Figure 4: One-sided P-values estimated for gene-set tests. Three tests were per-

formed for each disorder: (i) over-representation test (Fisher exact test) applied
to the KEGG calcium signaling pathway, (ii) our gene-set test (GEMB) with equal
weights applied to the entire KEGG calcium signaling pathway, and (iii) our gene-
set test (GEMB) with genes related to the Ashhad and Narayanan model [40] and

weighted according to their relative contribution to our functional measure of
interest (mean intracellular Ca2+ concentration in an excitable cell).

would not simply find intracellular Ca2+ concentration to be im-
portant for any disease because such lack of specificity would
limit the practical value of our method. An identical procedure
used for the bipolar disorder dataset was applied to datasets for
schizophrenia (33,426 cases and 32,541 controls) [53] and ma-
jor depressive disorder (170,756 cases and 329,443 controls) [60]
using summary data from the PGC (Fig. 4). Even though these
2 disorders have shared genetic risk with bipolar disorder, our
weighted gene-set test did not find evidence to support the hy-
pothesis that genes contributed to intracellular Ca2+ concentra-
tion are related to schizophrenia (P = 0.09) or major depressive
disorder (P = 0.30). Neither our method with equal weights nor
a 1-sided Fisher exact test suggested that the entire KEGG cal-
cium signaling pathway was significantly related to schizophre-
nia or major depressive disorder (P > 0.05). Thus, our weighted
gene-set test supports that these findings are specific to bipolar
disorder.

Second, we wanted to ensure that our result was not driven
by a single gene. We performed the weighted gene-set test re-
peatedly, removing each gene 1 at a time and recovering a P-
value for each test. Regardless of which gene was removed, our
test still found that the weighted gene set related to intracellular
Ca2+ concentration was significantly associated with bipolar dis-
order. Through this process, we identified a list of 10 genes that
contributed the most evidence—based on the largest increases

in the P-value recovered after removing the given gene—to the
association between the weighted gene set and bipolar disor-
der (Table 3). The top 10 genes are involved in SERCA pumps,
inositol 1,4,5-trisphosphate (IP3) receptors, and ionotropic and
metabotropic glutamate receptors. We also verified that our re-
sult was not driven by the CACNA1C gene, which is important
because motivation for studying calcium signaling was driven in
part by prior PGC results that implicate CACNA1C. The CANA1C
gene alone was significant, ranking 10th out of 18,195 genes (P =
10/18,195 = 5.5 × 10−4), but our gene-set test continued to pro-
vide strong support for the remainder of the gene set contribut-
ing to intracellular Ca2+ with the CACNA1C gene removed (P =
1.9 × 10−4).

Third, we checked the sensitivity of our result to gene bound-
aries as defined by NCBI Build 38 because SNPs outside the gene
boundary may still be relevant to the gene. We generated new
gene ranks using MAGMA but extended the gene boundary by
10 kb in either direction. With these gene ranks, our test still
found the weighted gene set contributing to intracellular Ca2+

concentration to be significantly related to bipolar disorder (P =
9.6 × 10−4), albeit to a lesser extent.

Last, we checked the sensitivity of our result to correlation
between genes. An estimated gene correlation matrix was recov-
ered from MAGMA software. Because the resulting matrix was
not positive definite, we adjusted the smallest eigenvalues to be
at least a value of 10−6, leaving the eigenvectors alone. The ad-
justed gene matrix � was then incorporated into the weighted
gene-set test to account for gene correlation as described above.
When accounting for gene correlation, our weighted gene-set
test still found that intracellular Ca2+ concentration was related
to bipolar disorder (P = 1.7 × 10−4).

Discussion

We presented a method for examining associations between bi-
ological functions and psychiatric disorders that we call GEMB
(Gene-set Enrichment with Math Biology). Central to our method
are gene weights that measure the relative contribution of a
gene to a particular biological function, which we determine us-
ing a neurobiological model. We applied our approach to assess
the hypothesis that genes involved in the regulation of intracel-
lular Ca2+ concentrations are related to bipolar disorder. Gene
weights were based on their relative contribution to intracellular
Ca2+ concentrations, determined by a detailed model of calcium
signaling from Ashhad and Narayanan [40]. Gene ranks were ob-
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Table 3: Top 10 genes contributing to statistical significance of intracellular Ca2+ concentrations

Gene Functional target P

ATP2A1 Sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) 1.2 × 10−3

ITPR3 Inositol 1,4,5-trisphosphate (IP3) receptor 1.1 × 10−3

ATP2A2 Sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) 8.1 × 10−4

GRIN2A Ionotropic glutamate receptor (NMDA) 6.6 × 10−4

GRM1 Metabotropic glutamate receptor 4.9 × 10−4

GRIN2B Ionotropic glutamate receptor (NMDA) 4.4 × 10−4

GRM5 Metabotropic glutamate receptor 4.2 × 10−4

GRIN3B Ionotropic glutamate receptor (NMDA) 2.7 × 10−4

GRIA4 Ionotropic glutamate receptor (AMPA) 2.4 × 10−4

SCN2A Voltage-gated sodium channel 2.1 × 10−4

Baseline 1.7 × 10−4

Genes are ranked in order of largest P value after applying our gene-set test with the gene removed.

tained using summary genetic data from the PGC on bipolar dis-
order [53], consisting of 20,129 individuals with bipolar disorder
and 21,524 controls. Combining gene ranks and weights with our
weighted gene-set test, we found strong support for the hypoth-
esis that the gene set contributing to intracellular Ca2+ concen-
trations is related to bipolar disorder (P = 1.7 × 10−4) compared to
little support based on a test using the more general KEGG cal-
cium signaling pathway (P = 0.081). This result illustrates how
gene sets defined on the basis of biological pathways may be
too broad to capture the genetic effect on a biological function
that is associated with a disorder.

A practical benefit of our weighted gene-set test is that only
gene ranks are needed from genetic data. Gene ranks can be
shared across researchers more easily and require fewer regu-
latory and computational resources to analyze compared with
full genetic data. Sharing genetic resources and data has become
the norm in genetic research as the community moves towards
large consortia to achieve the sample sizes, level of evidence,
and study consistency that are expected. The PGC, for exam-
ple, has ∼300 investigators and >75,000 subjects [61], and the
National Institute of Mental Health (US) has made genetic data
available to researchers. Gene ranks can even be recovered from
summary data rather than full genetic data as done by MAGMA
[26].

Popular gene-set tests typically start with gene-level mea-
sures of association between genes and the phenotype such
as fold change, t-statistic, P-value, gene ranks, likelihood ra-
tio, regression coefficient, and correlation coefficient [25, 30, 62,
63]. We transformed P-values obtained from MAGMA into gene
ranks. The choice of gene-level measure and any subsequent
transformation is an important decision, because it can alter the
findings from gene-set analyses in several ways. First, the gene-
level measure may yield better accuracy in finding significant
gene sets depending on the genetic architecture of the disease
of interest [62, 64]. A binary variable may be better than a gene
rank for diseases with a few highly influential genes but worse
for diseases with a large number of moderately influential genes
[64]. Second, gene-level measures differ in their statistical prop-
erties. For example, larger sample sizes may change P-values
without affecting gene ranks, and using a probit transformation
of P-values rather than P-values directly, as in MAGMA, can yield
a distribution closer to normal [26]. Third, the choice of statis-
tic could change the clinical relevance of the findings, as one
finds in a single-gene analysis when comparing fold change to
a t-statistic [65]. Although we use gene ranks, ranks can be eas-
ily replaced by any gene-level measure of association if desired.
It will be important for future studies to explore how different

gene-level measures fare with the weighted gene-set test that
we propose here.

Once gene ranks are determined, our method then needs
only gene weights from neurobiological models, which too has
its benefits. Neurobiological models are numerous, experimen-
tally validated, and publicly available in ModelDB [38]. For exam-
ple, we were able to quickly explore calcium signaling in bipo-
lar disorder, owing to the accessibility of a detailed model de-
veloped by Ashhad and Narayanan [40] (Model 150551). Similar
quick explorations could be used to examine other potentially
important biological functions. In searching key words in Mod-
elDB, we found 171 models that contain the concept of “synap-
tic plasticity,” 168 models that contain the concept of “calcium
dynamics,” 47 models that contain the dopamine neurotrans-
mitter, and 9 models that contain the concept of “circadian
rhythms,” to name a few [38]. Together, these models could an-
notate genes on the basis of model-predicted functional mea-
sures to add to current resources that annotate genes on the ba-
sis of biological pathways, such as KEGG [55–57].

With GEMB, neurobiological models may inform genetic
studies, but the reverse may also be true: genetic studies may
inform neurobiological models. In psychiatry, for instance, there
is growing emphasis on team science, affording many opportu-
nities for researchers from the mathematical sciences to help
tackle problems [66]. However, just as it is difficult to pin down
genes to study in psychiatric disorders, it is also difficult to pin
down specific biological processes to study because abnormal
function is found for many neural systems in a psychiatric dis-
order [67]. Thus, GEMB could help identify, or ground, candidate
neurobiological models for studying in psychiatry. The model of
Ashhad and Narayanan [40] provides 1 such example.

There are a number of other methods like GEMB that try to
incorporate information about gene function into gene-set anal-
yses. Network-based methods represent genes as vertices and
interactions between 2 genes as edges, resulting in a mathemat-
ical object known as a network [12–18, 35–37]. Properties of this
network (e.g., their location in the network, number of connec-
tions to a gene) are used to adjust the weight given to a gene
in a gene-set analysis. In a broad sense, genes might be impor-
tant to a biological pathway if they are more connected to other
genes. For example, GANPA [37] and LEGO [36] builds a network
based on a gene co-expression, protein-protein interactions, and
gene ontology. Based on this network, they weight each gene in
the set of interest as a function of the number of connections
to other genes in the set and other genes in the entire network.
EnrichNet uses a random walk on these networks to measure
associations between genes and target cellular processes. Alter-
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native ways to incorporate functional information about genes
include Bayesian approaches that account for overlap between
gene sets [19, 20] or approaches based on gene expression lev-
els [21, 22]. A benefit of our method is that it is sufficiently gen-
eral, such that weights could also be determined from network
analysis, experiments, or meta-analysis. Weights need only be
non-negative and sum to 1.

The presented method GEMB was designed to be simple,
which has certain limitations. First and foremost, our method
like many genetic analyses ignores the various ways that gene
and SNP interactions can influence a disease, resulting in a com-
plex genetic architecture of the disease. For example, 1 gene or
part of a gene can regulate another gene, or 2 genetic variants
may lead to increased risk in a disorder that surpasses the ad-
ditive risk of each variant alone. Hence, our method like other
gene-set analyses aims to identify genes that are associated
with disorders for further scientific investigation rather than to
establish causal relationships between genes and disorders. Sec-
ond, we do not account for gene interactions in the neurobiolog-
ical model. The Sobol method of global sensitivity analysis [68],
for example, could measure the relative contribution of param-
eters and their higher-order interactions. Our weighted gene-set
test could be extended to incorporate these interactions. Third,
neurobiological models are sure to be imperfect, meaning that
gene weights are only predicted measures of biological function.
This issue is, of course, common to all modeling. The question
then is not whether using a model leads to the correct answer
but rather whether using models to favor certain genes would
strengthen inferences compared to treating the genes equally.
This is an empirical question that only continued analyses and
applications can answer.

In summary, we propose an approach to gene-set analysis
that incorporates math biology. Our method can be used flex-
ibly, requiring only that genes be ranked and weighted. Genes
can be ranked using any algorithm, even when only summary
genetic data are available. Ranks can be determined for any dis-
ease. Genes can be weighted using any information whether
from experiments, prior analyses, simulation, or math biology—
although we focused on the latter. Weights can even be reused
from one disease to the next. When the underlying model of
math biology is complicated, a researcher could use their own
knowledge or borrow weights from another study (e.g., weights
for intracellular Ca2+ concentration from the present study).
These features, together with increasing availability of genetic
datasets and models, leave few barriers to our method’s use. In
turn, our method may help to improve statistical power in gene-
set analyses. Most importantly, it could facilitate meaningful bi-
ological interpretations that are ultimately necessary in our un-
derstanding of the genetic basis of disease.

Availability of Source Code and Requirements
� Project name: GEMB
� Project home page: https://github.com/cochran4/GEMB
� RRID:SCR 018904
� biotoolsID: gemb
� Operating system(s): Platform independent
� Programming language: MATLAB
� Other requirements: None
� License: GNU GPL

Availability of Supporting Data and Materials

The datasets supporting the results of this article are based on
published work on schizophrenia and bipolar disorder as part of
the PRC; data are available through the PGC website [69].

An archival copy of the source code and supporting data is
available via the GigaScience database GigaDB [70].
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Appendix
Coming up with an a priori hypothesis

Prior to applying our method to the PCG dataset discussed in
the main text, we applied our method to genetic data obtained
from the Prechter Bipolar Cohort, a longitudinal cohort of 1,111
individuals [51]. The University of Michigan’s Biomedical In-
stitutional Review Board approved all recruitment, assessment
and research procedures (HUM606). Patients provided written
informed consent after receiving a complete description of the
study. We focused on individuals with bipolar I disorder. Diag-
noses of psychiatric illness (e.g., bipolar disorder type I) or lack of
psychiatric illness (i.e., control) were determined using the Diag-
nostic Instrument for Genetic Studies (DIGS), commonly used in
psychiatric research [71]. Diagnoses obtained from the DIGS ad-
hered to DSM-IV diagnostic criteria and were confirmed and re-
confirmed annually through a consensus of 3 clinicians, result-
ing in “best estimate” diagnoses. Participants provided whole-
blood samples at study intake for genetic testing of specific
single-nucleotide polymorphisms (SNPs). Methods pertaining to
genetic testing are described in detail elsewhere [72]. Approxi-
mately 0.5 million SNPs were analyzed initially, which were then
used to impute alleles for other SNPs, resulting in >9.8 million
SNPs in total.

For the application of our method, we used the same set of
genes and the same gene weights obtained from simulation of
the Ashhad and Narayanan model [40]. Gene ranks were ob-
tained starting with 428 individuals with bipolar disorder I and
193 controls without a psychiatric diagnosis. Genetic variation
was first analyzed using PLINK software [73] to account for pop-
ulation stratification and outliers. We performed principal com-
ponent analysis on SNP data and visualized the participant load-
ings associated with the first 2 principal components. We re-
moved any individuals who could be separated from the main
cluster in this 2D space either visually or with k-means clus-
tering. This analysis was repeated until there were no partic-
ipants who could be separated, leaving a total of 377 partici-
pants with bipolar disorder I and 167 controls. Gene-level asso-
ciation to bipolar disorder I was measured using MAGMA soft-

ware [26]. The 10 leading principal components obtained from
the final principal component analysis were included as covari-
ates. Gene locations were defined using NCBI Build 38. A total
of 18,300 genes were ranked on the basis of the measured asso-
ciation (P-value) with bipolar disorder I, with smallest P-values
ranked closest to 1.

With gene ranks and weights, we performed our weighted
gene-set test (GEMB). We again compare our results to an
unweighted gene-set test (applying our gene-set test with
equal weights) using all 182 genes from the KEGG calcium
signaling pathway [55–57]. We also performed a typical over-
representation analysis: genes were labeled as significant or
not and then a 1-sided Fisher exact test was applied to
test for over-representation of significant genes in the KEGG
calcium signaling pathway compared to genes not in the
KEGG calcium signaling pathway. However, because the sig-
nificance level of 0.1 adjusted for false discovery rate yielded
no significant genes, we labeled the top 1% of genes as
significant [59].

Our gene-set test (GEMB) showed moderate support for our
hypothesis that intracellular Ca2+ concentration is related to
bipolar I disorder (P = 0.04). By contrast, focusing on the entire
KEGG calcium signaling pathway provided little support for the
hypothesis that calcium signaling is important to bipolar I (P =
0.63 using our method GEMB with equal weights and P = 0.24
using a 1-sided Fisher exact test). These results provided the im-
petus to study intracellular calcium concentrations in the larger
PCG dataset.
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