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Functional precision medicine in AML often relies on short-term in vitro drug sensitivity screening (DSS) of primary patient cells in
standard culture conditions. We designed a niche-like DSS assay combining physiologic hypoxia (O2 3%) and mesenchymal stromal
cell (MSC) co-culture with multiparameter flow cytometry to enumerate lymphocytes and differentiating (CD11/CD14/CD15+) or
leukemic stem cell (LSC)-enriched (GPR56+) cells within the leukemic bulk. After functional validation of GPR56 expression as a
surrogate for LSC enrichment, the assay identified three patterns of response, including cytotoxicity on blasts sparing LSCs,
induction of differentiation, and selective impairment of LSCs. We refined our niche-like culture by including plasma-like amino-acid
and cytokine concentrations identified by targeted metabolomics and proteomics of primary AML bone marrow plasma samples.
Systematic interrogation revealed distinct contributions of each niche-like component to leukemic outgrowth and drug response.
Short-term niche-like culture preserved clonal architecture and transcriptional states of primary leukemic cells. In a cohort of 45
AML samples enriched for NPM1c AML, the niche-like multiparametric assay could predict morphologically (p= 0.02) and molecular
(NPM1c MRD, p= 0.04) response to anthracycline-cytarabine induction chemotherapy. In this cohort, a 23-drug screen nominated
ruxolitinib as a sensitizer to anthracycline-cytarabine. This finding was validated in an NPM1c PDX model.
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INTRODUCTION
The outcome of patients diagnosed with acute myeloid leukemia
(AML) remains unsatisfactory and new therapeutic approaches are
required [1]. Drug sensitivity patterns differ across AML genetic
subsets, among which NPM1-mutated (NPM1c) AML is the most
frequent [2].
After the failure of conventional therapies, there is no standard

salvage regimen and patients are increasingly proposing persona-
lized therapies based on their physical status and the genetic make-
up of their disease. However, genetics may not suffice to choose the
optimal therapy, because some targets may have multiple available
inhibitors (e.g., FLT3 mutations), and some active drugs may lack
strong genetic biomarkers (e.g., venetoclax) [3]. Functional precision
medicine based on ex vivo drug sensitivity screening (DSS) is gaining
momentum to overcome these limitations [4–6].
DSS datasets can be leveraged at the population level, e.g., to

identify drugs active in pre-defined AML subsets, or at the
individual level, to tailor therapy to each patient. So far, most AML
DSS platforms have tested drugs across broad concentration
ranges in standard culture conditions, using the global viability of

minimally fractionated primary samples to estimate drug sensi-
tivity [4–6]. However, clinical drug exposure is bounded by
bioavailability and dose-limiting hematological toxicity [1]. The
leukemic niche provides resistance signals [7, 8]. Plasma-like
medium improves the metabolic fidelity of in vitro assays [9, 10].
Notably, amino-acid levels differ between cancer patients and
healthy subjects [11]. The tumor purity of primary AML samples is
not absolute and leukemic cells can exist in different states
including stem and differentiated states [12, 13]. Several surface
markers have been proposed to enrich leukemic stem cells (LSCs)
within the leukemic bulk [14]. Among those, expression of the
G-coupled receptor GPR56 appears relatively universal across AML
subsets [15, 16] and is stable upon short-term ex vivo culture [15].
Here we report the development and validation of an ex vivo

drug screening platform for primary human AML cells that
combines a niche-like culture system with a multiparametric flow
cytometry readout. Focusing on NPM1-mutated AML, we perform
clinical and genetic validation of the platform and nominate novel
sensitizers to “7+ 3” daunorubicin (DNR) and cytarabine (AraC)
combination chemotherapy in AML.
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METHODS
Detailed Methods are provided in the Supplementary Appendix
(online only).

Primary AML samples
Fresh or viably frozen Bone Marrow (BM) or peripheral blood (PB)
mononuclear cells (MNCs) from AML patients were collected after
informed consent at the time of diagnosis or relapse by the INCa-
labeled Hôpital Saint-Louis Tumor Bank. The project was approved by
INSERM IRB (CEEI-15-220). Clinical and genetic annotations are provided in
Supplementary Tables 1 and 2.

Short-term ex vivo culture
All experiments were conducted in 96-well plate format. hTERT-MSC-GFP
immortalized human mesenchymal stromal cells (MSCs) were provided by
JP Bourquin) [17]. AML MNCs were seeded at 50,000 cells per well in 90 µL
of MEMα standard medium, or in plasma-like culture medium (Supple-
mentary Table 7), both supplemented with 25% dialyzed FBS, 100 IU/mL
penicillin, and 100 µg/mL streptomycin. TPO 1 ng/mL and EPO 2.5 ng/mL
(Peprotech, Neuilly-sur-Seine) were added to reach “plasma-like” cytokine
concentrations. Drugs were resuspended in medium and immediately
added to each well, with a maximum DMSO 0.1% final concentration.
Plates were incubated for 72 hours at 37 °C in 20% or 3% O2 and 5% CO2

(hypoxia, MCO-19M-PE incubator, Panasonic, Genevilliers). Details are
provided in the Supplementary Appendix.

Multiparametric flow cytometry
Cells were washed and stained with Fixable Viability Stain eFluor 780
(Thermo Fisher Scientific), anti-CD45 PerCPCY5.5, anti-GPR56 PE, anti-
CD11b APC, anti-CD14 APC, anti-CD15 APC, anti-CD3 BV421 and anti-CD19
BV421 (all BD Biosciences, Le Pont de Claix) and processed on an Attune
Next (Thermo Fischer Scientific) flow cytometer. Cell counts were obtained
after manual gating on FlowJo V10.6.2 (Beckton Dickinson, Le Pont de
Claix). Details are provided in the Supplementary Appendix.

AML drug screening data analyses
Cell counts in each gate were normalized to negative controls (DMSO 0.1%
vehicle wells). Drug activity was determined as the actual (trapezoidal) area
over the curve (AOC) of cell counts (ie without fitting a dose-response
curve) without truncation, using the PhamarcoGx R package [18]. With
AOCs, higher values indicate greater drug activity. Details are provided in
the Supplementary Appendix.

Statistical analyses
Statistical analyses were conducted in Prism 8.0.1 (GraphPad, San Diego,
CA) or R version 3.6.0 (https://www.R-project.org/). Details are provided in
the Supplementary Appendix.

Data accessibility
Bulk and single-cell RNA-Seq will be available at European Genome-
phenome Archive (EGA) under accession code EGAS00001006265. Other
data will be available upon reasonable request to the principal
investigator.

RESULTS
Multiparametric flow cytometry readout for ex vivo culture of
primary AML cells
We first sought to develop a core flow cytometry panel to
enumerate residual cells following a 72-hour co-culture of human
primary AML MNCs with human immortalized MSC-hTERT-GFP
stromal cells in 3% O2 (Fig. 1a), a culture system that has been
previously shown to maintain primary human LSCs and to
recapitulate micro-environment-driven drug resistance [7, 8]. The
gating strategy allows exact counting of viable cells within the
leukemic bulk after exclusion of GFP+MSCs and CD3/CD19+
lymphocytes. Within the leukemic bulk, cells are assigned to a
GPR56+ (henceforth LSC) state, to a CD11b/CD14/CD15+ (Diff+)
differentiating state, or to the basal GPR56-Diff- blast state (Fig.
1b). We chose GPR56 to define the LSC population because its

gene belongs to the core 17-gene stemness gene expression
signature of AMLs and because its surface expression enriches for
AML initiating potential across a broad spectrum of AML subsets
(including CD34- NPM1-mutated AMLs) and is stable upon short-
term ex vivo culture [15, 16, 19]. We validated that combination of
hypoxia (3% O2) and MSC co-culture enhanced the number of
viable GPR56+ leukemic cells after 72-hour culture ex vivo over
each feature alone or standard (O2 20%, no MSC) culture (Fig. 1c).
In three primary AML samples, residual GPR56+ leukemic cells
sorted after 72-hour hypoxic MSC co-culture were enriched ~10-
fold in leukemic long-term initiating potential compared to
GPR56- cells (Fig. 1d, e).

Different patterns of drug activity at clinically relevant
concentrations
We next interrogated the patterns of activity of 25 drugs (or
combinations) at fixed concentrations in the niche-like culture
system. Clinically relevant maximal concentrations for ex vivo drug
testing were defined as either the peak plasma drug concentra-
tion in available pharmacokinetics (PK) studies, or as the
concentration inhibiting 40% (IC40) growth of CD34+ hemato-
poietic stem/progenitor cells from healthy donors in niche-like
(MSC, 3% O2) co-culture dose-response assays, whichever was
lowest (Fig. 2a, Supplementary Tables 3 and 4). In one illustrative
NPM1-mutated AML (SLS305), unsupervised clustering revealed
different patterns of drug activity, including one with predominant
activity on the leukemic bulk with lower efficacy on LSCs and
differentiation (“cytotoxic” pattern A), one with predominant
activity on the proportion of LSCs (“stemness-specific” pattern B)
and one with prominent differentiating activity (pattern C, Fig. 2B).
Expectedly, the “cytotoxic” cluster encompassed known che-
motherapeutic agents including the standard AML combination
therapy DNR and cytarabine (AraC) or actinomycin D, both of
which have been shown to be clinically active in NPM1-mutated
AML [20, 21]. The anti-stemness cluster was enriched in epigenetic
drugs or combinations targeting BET bromodomains (OTX015),
menin-MLL interactions (MI-2), and DOT1L (EPZ-5676), which have
demonstrated pre-clinical activity on the NPM1c leukemia-
initiating program [22–24]. Finally, the combination of arsenic
trioxide (ATO) and all-trans retinoic acid (ATRA) was the most
prominent member of the differentiating cluster, along with other
doublets or triplets of epigenetic agents. Figure 2c displays the
prototypical output of drugs or combinations from each cluster
across different NPM1-mutated AMLs, highlighting the reduced
proportion of LSCs (and DIFF cells) without impact on the total
number of leukemic cells upon single-agent exposure to the BCL-2
inhibitor venetoclax, the relative sparing of LSCs with the cytotoxic
DNR-AraC combination, and the differentiating activity of ATO-
ATRA, also resulting in a seemingly unchanged count of total
leukemic bulk. Altogether, these results are in keeping with known
pre-clinical or clinical data regarding these agents in NPM1-
mutated AML [25–28], and highlight the relevance of a multi-
parametric readout for ex vivo drug screening of primary AML
samples.

Refinement of niche-like culture with plasma-like medium
Conventional culture media poorly reflect the endogenous levels
of metabolites such as amino acids and cytokines from normal
human plasma [9, 10]. Furthermore, the metabolome and
cytokinome of AML patients may differ from healthy subjects
[29–32]. We thus undertook targeted metabolomics and multiplex
cytokine dosages on the plasma of BM aspirates collected at AML
diagnosis in 24 patients and compared them to conditioned
media of primary AML samples co-cultured on an MSC layer in 3%
O2, or to the conditioned medium of MSC alone. While amino-acid
levels from conditioned media of AML co-cultures minimally
differed from that of MSC alone co-culture, they significantly
exceeded 1.4 to 3.6-fold those from diagnostic AML plasma for 16
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Fig. 1 Multiparametric readout after ex vivo culture of primary AML cells. A Summary of the workflow for multiparametric flow cytometry
following short-term ex vivo co-culture of primary AML MNCs with MSCs in 3% O2. B Gating strategy. C Number of GPR56+/Diff− LSCs after
72-hour culture with or without MSCs and with 20% (standard) or 3% (hypoxia) O2 in three samples; 6–10 technical replicates per condition.
Mean ± SD. T tests with Welch’s correction. D, E Experiment design (D) and L-LTC-IC output (E) expressed as the ratio of colonies after 5-week
culture per seeded GPR56+ or GPR56- cells sorted after a 72-hour culture with MSCs and 3% O2 in three different AML samples. Technical
triplicates. Mean ± SD. Two-sided T tests with Welch’s correction. Clinical, phenotypic, and genetic annotations of primary AML samples are
available in Supplementary Table 1.
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of 21 tested amino acids (false discovery rate [FDR] < 0.01, Fig. 3A,
Supplementary Table 5). Myeloid cytokine levels were highly
variable in AML conditioned media but were systematically lower
than BM plasma levels for TPO (mean 62.2 ± 61.1 versus
1128.2 ± 1012.9 pg/mL, q= 0.001) and EPO (mean 29.9 ± 7.9
versus 2852.0 ± 4506.0 pg/mL, q < 0.001, Fig. 3B, Supplementary
Table 6).
We could thus design a custom medium based on amino-acid-

free MEMa medium and dialyzed FBS supplemented with plasma-
like AA levels and/or plasma-like EPO and TPO concentrations
(Supplementary Table 7). We next systematically interrogated the
contribution of each of the four components of our pseudo-niche
culture system (addition of MSCs, lowering of O2 from 20% to 3%,
substitution of the standard to plasma-like amino-acid levels, the
addition of plasma-like levels of EPO and TPO cytokines) to the
output of short-term ex vivo cultures of primary AML cells using
multiparametric flow cytometry. Cells were treated with vehicle
(DMSO) or with a mini-panel of six drugs/combinations with
reported activity in NPM1-mutated AML in 4-point 10-fold dilution
dose-response assays (Fig. 3c). Focusing first on vehicle-treated
cells, each pseudo-niche component was found to have a distinct
imprint on leukemic states ex vivo. Notably, both MSCs and
hypoxia improved the viability of the leukemic bulk ex vivo while
MSCs and plasma-like amino acids maintained leukemic cells in
the LSC state at the expanse of differentiation (Fig. 3d).
Importantly, up to 40% of the variance between the output of
ex vivo culture in these different conditions could be explained by
interactions between pseudo-niche factors (Supplementary Fig. 1).
We next inspected the impact of each pseudo-niche component
on drug activity. Overall, MSCs, plasma-like amino acids, and

cytokines conveyed significant but variable sensitization or
resistance to the 6 investigated drugs or combinations (Fig. 3e).
Again, interactions between pseudo-niche components had a
strong impact on drug responses, accounting for up to 70% of the
variance (Supplementary Fig. 2). We finally compared drug
activities in ‘standard’ culture conditions (no MSCs, 20% O2,
standard medium without cytokine addition) to those in full
“pseudo-niche” conditions (MSC layer, 3% O2, plasma-like amino
acids, and cytokines). Overall, there was no systematic bias
between culture conditions (Fig. 3f), and the ranking of drugs in
each patient for each readout was not correlated (Supplementary
Fig. 3), indicating that drug screening outputs performed in
standard conditions cannot predict the results of those performed
in niche-like conditions.

Short-term niche-like ex vivo culture preserves intra-tumor
heterogeneity
To determine whether short-term culture distorts the intra-tumor
genetic heterogeneity of leukemic cells, we performed targeted
sequencing of a 43 gene panel in archived BM MNCs obtained
from 7 AML patients (median 4 gene mutations per patient, range
2–5, Supplementary Table 8) and performed amplicon-based
sequencing of residual viable blasts after 72-hour culture in either
standard or niche-like conditions. All 25 gene mutations were
detectable in both culture conditions, including sub-clonal
mutations with variant allele frequencies (VAF) < 20%, and limited
distortion in VAF distribution compared to the primary specimen.
In one sample (SLS352), niche-like culture better maintained
CEBPA-mutant cells compared to standard culture (Fig. 4a and
Supplementary Fig. 4). We similarly performed bulk RNA-Seq after
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a 6-hour culture and compared the transcriptome of cells exposed
to niche-like versus standard culture conditions in 4 patients.
When inspecting the gene expression signatures of leukemic cells
reported at the single-cell level (Supplementary Table 9) [13], both
culture conditions depleted the promonocyte-like signature but

standard culture also significantly depleted three additional
signatures that were preserved in niche-like conditions (FDR < 0.1,
Fig. 4b). Finally, single-cell RNA-sequencing revealed that the
distribution of BM mononucleated cell populations was preserved
after a 72-hour culture in niche-like condition compared to the
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reference pre-culture specimen, while standard culture led to
selective attrition of leukemic progenitors, with skewed cell cycle
distribution (Fig. 4c). Of genes expressed in at least 10% of
leukemic progenitor cells, 338 (103 up, 235 down) were
differentially expressed ([fold change] >1.5 and FDR-adjusted q
value <0.05) after standard culture versus pre-culture, compared
to only 244 (up 57, down 187) after niche-like culture (Fisher exact
test p= 0.001, Supplementary Tables 10–12, Supplementary Fig.
5). Collectively, these results suggest that short-term niche culture
preserves the clonal heterogeneity and phenotypic diversity of
primary AML specimens.

Validation of the niche-like multiparametric drug screening
platform
We next investigated the clinical relevance of our niche-like,
multiparametric drug screening platform. We performed a screen
of a 5-point, 10-fold serial dilution of the conventional
chemotherapy combination of daunorubicin and cytarabine
(DNR-AraC) in 45 patient samples, including 37 NPM1c AMLs
(Supplementary Table 1). The DNR-AraC combination was
delivered at a fixed 1:20 ratio reflective of the average ratio
observed in vivo upon administration of the combination [33],
either alone, or with the addition of a fixed, low concentration of a
23-drug panel (Fig. 5a, Supplementary Figs. 6–8). Low dose
concentrations were chosen as the IC10 for healthy CD34+ cells
(see supra) or 20% of Cmax from PK data, whichever was lower
(Supplementary Tables 3, 4). Drug activity on blasts was higher in
patients achieving CR after induction chemotherapy, compared to
those with induction failure (p= 0.02, Fig. 5B). When adjusting the
drug activity on lymphocytes as an internal reference, all nine
patients whose blasts were more sensitive to DNR-AraC compared
to their lymphocytes (chemosensitive blasts) achieved CR,
compared to 20 of the 29 (69%) patients with lower drug activity
on blasts relative to lymphocytes (chemoresistant blasts; Fisher’s
test p= 0.08). In 21 NPM1-mutated AML patients with available
post-induction NPM1c transcript MRD data, MRD levels did not
differ between patients with chemosensitive versus chemoresis-
tant blasts (p= 0.35). Conversely patients with chemosensitive
GPR56+ LSCs (n= 11) had lower post-induction MRD than those
with chemoresistant LSCs (n= 10, p= 0.04, Fig. 5C). As a
continuous variable, higher relative drug activity on LSCs (i.e.,
adjusted to activity on lymphocytes) was associated with longer
Event-Free Survival (EFS, Cox model hazard ratio [HR]= 0.25, 95%
confidence interval [CI] 0.08–0.78, p= 0.02), independently of
adverse European LeukemiaNet risk (HR= 4.79, 95% CI 1.90–12.10,
p= 0.001). The niche-like platform also validated known geneti-
cally targeted therapies (Fig. 5d). Specifically, addition of the pan-
kinase inhibitor midostaurin to DNR-AraC lead to superior
combination activity on blasts (p= 0.01), and to a lesser extent
on LSCs (p= 0.05) of FLT3-ITD mutated samples (n= 16), while
addition of the more potent FLT3-ITD inhibitor crenolanib had
superior activity on both blasts (p= 0.006) and LSCs (p= 0.009).
Finally, the IDH1 inhibitor ivosidenib led to enhanced killing of
blasts (p= 0.04), but not LSCs (p= 0.35) in IDH1-mutated samples
(n= 9). Of note, no difference was noted for the activity of the
combination with the IDH2 inhibitor enasidenib between IDH2

mutated (n= 7) and wildtype (n= 38) samples on bulk (p= 0.20)
or LSC (p= 0.47) populations (not shown). Systematic inspection of
chemogenomic relations further revealed that FLT3 mutations
significantly sensitized blasts and LSCs to the addition of
venetoclax to DNR-AraC (q < 0.05, Supplementary Fig. 9).

Discovery of novel drug combinations with niche-like
multiparametric screening
Focusing on drug activity against GPR56+ LSCs, the results of this
DNR-AraC screen could be interpreted at the individual level to
nominate the optimal combination in each patient. Though the
DNR-AraC-venetoclax triplet scored as the top combination for 27
(60%) of 45 tested patients, “private” optimal combinations with
nine different third agents were nominated for 17 (38%) patients,
while only 1 (2%) had no benefit of any of the 23 third agents
tested (Supplementary Fig. 10), stressing the potential role for
functional assays to tailor individual therapies in AML. Inspecting
the screen at the population level to identify the average benefit
of each third agent over the DNR-AraC backbone alone, akin to
parallel clinical trials, confirmed the benefit of adding venetoclax
or selinexor to DNR-AraC, both regimens being currently tested in
clinical trials [34, 35], but also revealed a significant activity of the
addition of the JAK inhibitor ruxolitinib (q < 10−5, Fig. 6a), which
has so far been explored in patients with AML secondary to
myeloproliferative neoplasms [36], but never in the setting of
NPM1 mutations. Of note, the activity of ruxolitinib in this setting
was not dependent on FLT3 status (Supplementary Fig. 9). To
validate prospectively this finding, we treated xenotransplanted
NPM1-mutated AML cells also harboring mutations in DNMT3A,
IDH1, and FLT3 with a combination of the anthracycline
doxorubicin and cytarabine at maximal tolerated dose, ruxolitinib
or the triplet combination (Fig. 6b). Post-treatment BM biopsies
showed no reduction in leukemic burden with ruxolitinib alone
compared to vehicle (p= 0.41), whereas the addition of ruxolitinib
to doxorubicin-cytarabine further reduced leukemic infiltration
over chemotherapy alone (p= 0.01, Fig. 6c). Ruxolitinib as a single-
agent prolonged the survival of mice over vehicle (p= 0.003) and
the addition of ruxolitinib to chemotherapy also significantly
improved survival compared to chemotherapy alone (p= 0.009,
Fig. 6d), providing in vivo confirmation of the ex vivo screen.

DISCUSSION
With the ongoing expansion of therapeutic options in AML,
ex vivo DSS of primary AML cells has gained renewed interest to
tailor personalized treatment decisions [4, 37–39], reposition
existing therapies [40, 41], discover novel agents or combinations
[42–44], or perform chemo-genetic correlations [6, 43]. Ex vivo DSS
is often limited by the lack of niche mimicry and the limited
information obtained by global viability assessment. Little is
known of the impact of short-term ex vivo culture on the intra-
tumor genetic and transcriptional heterogeneity of AML
[13, 45, 46].
We report the development of a niche-like multiparametric

platform for ex vivo drug screening of primary AML samples.
Combining an immortalized MSC stromal layer with low oxygen

Fig. 4 Clonal architecture and transcriptomes after short-term ex vivo culture. A Variant Allele Frequencies in primary AML MNCs and
residual blasts after 72-hour culture in standard (no MSC, 20% O2, standard MEM-alpha medium) or niche-like (MSC co-culture, 3% O2, plasma-
like amino acids, and cytokines) culture. Circles are proportional to VAFs, normalizing circle diameter based on the highest VAF in each sample.
Additional cases are reported in Supplementary Fig. 4 and detailed mutations are provided in Supplementary Table 7. B Normalized
Enrichment Scores (NES) and FDR-adjusted q values for the six leukemic state gene expression signatures from Van Galen et al. [13]
(Supplementary Table 8) from RNA-Seq of four cryopreserved NPM1-mutated samples (SLS244, SLS354, SLS381, and SLS389) immediately after
thawing (primary) or after 6 hours of ex vivo culture in niche-like or standard culture conditions. C, D UMAP plots of single-cell RNA-
sequencing in pre-culture cells (n= 7008 cells) from SLS393 (normal cytogenetics, NPM1c and FLT3-ITD, additional details in Supplementary
Tables 1, 2), after 72 hours of ex vivo culture in standard (n= 1079 cells) or niche-like (n= 4928 cells) conditions. C, D Projection of cell-type
identity (C) or cell cycle phase identity (D). E Pie chart of the distribution of cell-type frequencies from C.
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concentrations recapitulating BM oxygen tension [7, 47], we could
validate the choice of GPR56 as a surface marker to enrich residual
LSC activity after short-term culture. Our simple 6-color flow panel
was sufficient to capture distinct drug-induced phenotypes,
including cytotoxicity sparing LSCs, inhibition of stemness
potential, and differentiating activity, recapitulating known
features of selected approved AML drugs or combinations [25–28].
A systematic investigation of our niche-like culture system on

leukemia growth and drug response revealed the crucial role of
interactions between MSCs, low oxygen, plasma-like amino acids,

and cytokines on the number and phenotype of leukemic cells,
and on their response to selected drugs or combinations. MSC and
low oxygen-limited the attrition of primary AML cells upon ex vivo
culture, with stroma and plasma-like amino acids maintaining the
GPR56+ LSC-enriched phenotype, while hypoxia-induced pheno-
typic differentiation. Response to five of six tested drugs or
combinations was significantly affected by the addition of stroma,
plasma-like amino acids, or cytokines. Though oxygen level had
no impact on sensitivity to any of the 6 drugs tested, we cannot
exclude that it may modulate drug response on larger screens.
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Further work is thus needed to determine that hypoxia is a critical
component of niche-like culture for primary AML cells. Impor-
tantly, in none of the three tested primary AML samples could
results of the drug screen in niche-like culture be predicted by
conducting the screen in standard conditions. In seven AML
samples, we could show that short-term ex vivo culture does not
distort clonal representation, minor sub-clones (variant allelic
frequency <20% in the primary specimen) still being detectable in
all tested patients, although the full resolution of clonal

architecture would require whole-exome sequencing. Our bulk
RNA-Seq results suggest a benefit of niche-like culture over
standard culture in preserving leukemic transcriptional states,
though a significant depletion of the promonocyte-like state was
also noticeable upon niche-like culture, while single-cell RNA-
sequencing revealed a skewed cell cycle distribution in residual
cells after standard, but not niche-like culture.
Akin to several DSS studies [38, 48–51], we could show that

ex vivo response of the leukemic bulk to a DNR-AraC combination
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was correlated to the achievement of remission after
anthracycline-cytarabine “7+ 3” therapy. Focusing on NPM1-
mutated AMLs, most of whom achieve remission after 7+ 3
chemotherapy [20], and using non-leukemic cells (lymphocytes) as
an internal reference as previously proposed [38], we could show
that the activity of DNR-AraC on GPR56+ LSC-enriched cells but
not on the leukemic bulk, could predict the depth of remission as
assessed by NPM1-transcript MRD, but also event-free survival. Of
note, CD34 expression was not accounted for in this study, given
its variable expression in NPM1-mutated LSCs [52]. This clinical
validation was completed by a genetic one, whereby the presence
of FLT3 or IDH1 mutations predicted the response to combinations
including FLT3 or IDH1 inhibitors, respectively. Of note, no such
correlation was noted with the IDH2 inhibitor enasidenib. Though
this could simply reflect the limited size of the studied cohort
(n= 45, including seven with an IDH2 mutation), this could reflect
a potential IDH2-independent activity of enasidenib [53].
The standard randomized clinical trial approach, even when

selecting patients based on a genetic biomarker, has so far yielded
limited benefit, owing to the variable benefit of adding a third
agent to the standard 7+ 3 backbone. Indeed, by screening the
addition of 23 drugs at concentrations deemed clinically relevant
based on available PK data, or on drug testing of healthy CD34+
cells, we could show that in 39% of patients, the optimal triplet
therapy is a private one. This result praises the development of
robust DSS assays and innovative clinical trial design to foster
functional precision medicine in AML [54]. Analyzing the average
benefit of adding each of those 23 drugs to erode the
GPR56+ LSC-enriched pool in a cohort of AMLs (many with
NPM1 mutation) confirmed the benefit of adding venetoclax or
selinexor to intensive chemotherapy [34, 35]. More surprisingly,
the addition of the JAK1/2 inhibitor ruxolitinib also markedly
improved anti-LSC activity over DNR-AraC alone ex vivo. This
benefit was not confined to the subset of patients harboring FLT3
or signaling mutations and is reminiscent of the sensitization to
BCL-2 inhibition by this kinase inhibitor recently reported by an
ex vivo DSS study [55]. A combination of ruxolitinib with intensive
chemotherapy in patients selected based on a DSS assay is
currently explored by the BEAT-AML master trial (NCT03013998)
[54], but to date, no clinical trial has reported the activity of this
combination in de novo AML. The benefit of ruxolitinib addition
could be validated in vivo in an NPM1-mutated PDX model, where
engrafted mice received a ruxolitinib regimen in the lower range
of reported in vivo experiments [56–58], and/or a combination of
the anthracycline doxorubicin with cytarabine at maximally
tolerated doses. Further work will be required to determine the
mechanism, which could be non-cell-autonomous, through which
ruxolitinib chemosensitizer NPM1-mutated AML cells [55].
Prospective analytical and clinical validation of our proposed

niche-like ex vivo drug testing assay and benchmarking to existing
platforms are important future steps [54, 59]. Further improve-
ments to the assay will rely on miniaturization to improve
throughput, incorporation of patient-derived MSCs, and culture
medium refinement by accounting for plasma concentrations of
polar metabolites [9]. More sophisticated flow cytometry panels
will need to include additional LSC and differentiation markers
and may also allow studying T cell activation. Collectively, our
work contributes to the growing interest in functional assays to
complement genomics-based precision oncology in leukemias.
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