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Abstract

O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a type of glycosylation that occurs when a monosaccharide,
O-GlcNAc, is added onto serine or threonine residues of nuclear or cytoplasmic proteins by O-GlcNAc transferase
(OGT) and which can be reversibly removed by O-GlcNAcase (OGA). O-GlcNAcylation couples the processes of
nutrient sensing, metabolism, signal transduction and transcription, and plays important roles in development,
normal physiology and physiopathology. Cumulative studies have indicated that O-GlcNAcylation affects the
functions of protein substrates in a number of ways, including protein cellular localization, protein stability and
protein/protein interaction. Particularly, O-GlcNAcylation has been shown to have intricate crosstalk with
phosphorylation as they both modify serine or threonine residues. Aberrant O-GlcNAcylation on various protein
substrates has been implicated in many diseases, including neurodegenerative diseases, diabetes and cancers.
However, the role of protein O-GlcNAcylation in immune cell lineages has been less explored. This review
summarizes the current understanding of the fundamental biochemistry of O-GlcNAcylation, and discusses the
molecular mechanisms by which O-GlcNAcylation regulates the development, maturation and functions of immune
cells. In brief, O-GlcNAcylation promotes the development, proliferation, and activation of T and B cells. O-
GlcNAcylation regulates inflammatory and antiviral responses of macrophages. O-GlcNAcylation promotes the
function of activated neutrophils, but inhibits the activity of nature killer cells.

Keywords: O-GlcNAcylation, OGT, OGA, Immune cells

Background
The discovery and synthesis of O-GlcNAcylation
Protein O-GlcNAcylation was first discovered by Hart
and Torres using bovine milk galactosyltransferase to
conjugate tritiated UDP-galactose on N-acetylglucosa-
mine (GlcNAc) residues on the surfaces of murine
lymphocytes nearly 35 years ago [1]. This is a type of
post-translational modification by glycosylation that
links a single GlcNAc molecule to the serine/threonine
(S/T) site on proteins by a O-linked β-glycosidic bond
[2]. The addition and removal of monosaccharides is

regulated by O-GlcNAc transferase (OGT) and O-
GlcNAcase (OGA), respectively (Fig. 1). OGT, originally
detected in rabbit reticulocytes and purified from rat
liver cytosol, is responsible for transferring GlcNAc
derived from uridine diphosphate N-acetylglucosamine
(UDP-GlcNAc) to protein S/T residues upon the release
of UDP [3]. OGA was first purified from rat spleen
cytosol and found to be able to mediate the removal of
GlcNAc from proteins [4]. Unlike other types of protein
glycosylations, which are mainly produced by the
secretory pathways, the subcellular distribution of O-
GlcNAcylation is ubiquitous in the nucleus and cyto-
plasm as only about 7% of O-GlcNAc moieties are
detected on the cell surface [1, 5]. O-GlcNAcylation was
shown to be highly enriched on the proteins in nuclear
pore complexes and nuclear envelopes [2, 6–8], as well
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as on proteins interacting with chromatin [9]. More-
over, cytoskeletal proteins [10], and intrinsic mem-
brane proteins of the Golgi apparatus and
endoplasmic reticulum (ER) were also verified to pos-
sess O-GlcNAc moiety [11, 12].
UDP-GlcNAc, which serves as the donor substrate for

O-GlcNAcylation is generated from the hexosamine bio-
synthetic pathway (HBP) (Fig. 1). The HBP uses glucose
in combination with glutamine, acetyl-coenzyme A
(Acetyl-CoA) and uridine-5′-triphosphate (UTP), which
are derived from amino acids, lipids and nucleotide
metabolic pathways, respectively, to generate UDP-

GlcNAc [13, 14]. Only approximately 2–3% of cell glu-
cose uptake enters the HBP [15]. The first two steps in
the HBP, phosphorylation of glucose to become glucose-
6-phosphate (G-6P) by hexokinase (HK), and phospho-
glucose isomerase (GPI)-mediated transformation into
fructose-6-phosphate (F-6P), are shared with glycolysis.
Instead of entering glycolysis, a small amount of F-6P is
committed to be transaminated with glutamine by glu-
tamine:fructose-6-phosphate amidotransferase (GFAT)
to become glucosamine-6-phosphate (GlcN-6P), which
is the rate-limiting step of the HBP [15, 16]. In the pres-
ence of Acetyl-CoA, GlcN-6P is then acetylated by

Fig. 1 Overview of the Hexosamine Biosynthetic Pathway (HBP) and O-GlcNAcylation. The HBP integrates four metabolism pathways, including
carbohydrate (glucose), amino acid (glutamine), lipid (Acetyl-CoA) and nucleotide (UTP). Glucose becomes F-6P through the initial two steps
shared by the HBP and glycolysis pathway. Only 2–3% F-6P enters the HBP, and in combination with glutamine, Acetyl-CoA and UTP generates
UDP-GlcNAc. OGT catalyzes the transfer of GlcNAc moiety onto the serine (S) or threonine (T) site on the protein substrates, while OGA is able to
remove the GlcNAc. Free GlcNAc can return to the HBP through the salvage pathway.
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glucosamine-phosphate N-acetyltransferase (GNPNAT,
EMeg32) to produce N-acetylglucosamine-6-phosphate
(GlcNAc-6P) [17], which further undergoes isomeriza-
tion by GlcNAc phosphomutase (PGM3/AGM1) to
produce N-acetylglucosamine-1-phosphate (GlcNAc-1P)
[18]. Finally, GlcNAc-1P and UTP are converted into
UDP-GlcNAc and pyrophosphate (PPi) via UDP-
GlcNAc pyrophosphorylase (UAP1/AGX1) [19]. Fur-
thermore, free GlcNAc removed from proteins by OGA
can re-enter the HBP via the salvage pathway, in which
GlcNAc is converted into GlcNAc-6P by N-acetylgluco-
samine kinase (GlcNAc kinase, NAGK) [20, 21]. Overall,
the intracellular level of UDP-GlcNAc is influenced by
the metabolic pathways and as a result, HBP and O-
GlcNAcylation are considered as the intracellular
nutrient sensors [13, 14, 22]. For instance, glucose
deprivation results in reduced cell growth and decreased
levels of UDP-GlcNAc in growth factor treated cells
[23]. Activated T cells cultured in medium lacking glu-
cose or glutamine show relatively reduced levels of intra-
cellular UDP-GlcNAc [24]. Similarly, glucose deprivation
leads to decreased levels of intracellular UDP-GlcNAc
and reduced levels of protein O-GlcNAcylation, which
in turn results in upregulation of OGT mRNA transcrip-
tion in the HepG2 human liver cancer cell line [25]. Sat-
urated fatty acids, such as palmitate and stearate, are
sources of Acetyl-CoA and trigger increased expression
of GFAT in human myotubes, which in turn induces en-
hanced intracellular concentrations of UDP-GlcNAc
[26]. Moreover, the addition of GlcNAc into medium
caused accumulation of UDP-GlcNAc, and changes in
intracellular UDP-GlcNAc levels, which influenced cell
growth [27].
Although UDP-GlcNAc has long been viewed as the

sensor for nutrients, a study on 3T3-L1 adipocytes
showed that fluctuations in UDP-GlcNAc concentration
may not fully reflect changes in extracellular glucose
amounts because treatment with 1 to 25 mM glucose
upregulated UDP-GlcNAc at similar levels (all about
1.5- to 2-fold more than that in untreated cells) [28].
This may be explained by the fact that UDP-GlcNAc is
usually concentrated in the ER and Golgi for initiation
and branching endomembrane glycosylation, respectively
[29, 30]. When the capacity of UDP-GlcNAc in these
two organelles reaches saturation, free UDP-GlcNAc is
released into the cytosol, nucleus and mitochondria.
Conversely, if the cellular level of UDP-GlcNAc remains
low, the majority of UDP-GlcNAc is conserved in the
ER and Golgi apparatus, leading to lower UDP-GlcNAc
levels in the cytoplasm and nucleus [22]. In addition, the
rate limiting enzyme GFAT is negatively modulated by
downstream products, GlcN-6P and UDP-GlcNAc,
which prevent the generation of excessive UDP-GlcNAc
[15, 16]. In summary, the levels of UDP-GlcNAc in

different organelles reflect the metabolic situation of the
cells, which is significant for maintaining cell viability
and homeostasis.

Enzymes involved in O-GlcNAc cycling: OGT and OGA
The OGT gene resides on the X chromosome and is in-
dispensable for embryonic stem cell survival and devel-
opment [31–33]. OGT is ubiquitously expressed [31, 32,
34]. The open reading frames of the OGT gene are
highly conserved in several species including rats, mice,
rabbits, C. elegans and humans [34, 35]. The OGT tran-
script encodes a protein with two major regions. The N-
terminal domain is composed of a series of superhelical
tetratricopeptide repeats (TPRs) whose repetitive num-
ber depends on the species and type of alternatively
spliced isoforms. The C-terminal region comprises
multiple catalytic domains [31, 34–36]. Human OGT en-
codes three isoforms, which results from the alternative
splicing of transcripts in the N-terminal region. Full-
length human OGT, also called nucleocytoplasmic OGT
(ncOGT), contains 13 TPRs and has the molecular
weight of 116 kDa. While mitochondrial OGT (mOGT)
has the molecular weight of about 103 kDa and only 9
TPRs along with an alternatively spliced N-terminal
mitochondria targeting sequence. The shortest form of
OGT (sOGT), which has a molecular weight of approxi-
mately 78 kDa, possesses only 2 TPRs [31]. Like the dis-
tribution of protein O-GlcNAcylation, ncOGT and
sOGT are located in the nucleus and cytoplasm; how-
ever, mOGT tends to accumulate in the mitochondrial
inner membrane [37].
Full-length OGT exists as a trimer [38]. TPRs help

OGT multimerization because the deletion of TPRs 1–6
abrogates the subunit assembly [39]. Structural analysis
of the human OGT protein revealed that the TPR do-
mains usually form a dimer of superhelices. Mutants on
the dimerization interface of TPR superhelices prevent
the formation of TPR dimers in solution and cause mod-
erate reduction of the enzymatic activity of OGT toward
nucleoporin p62 [40]. Wild-type OGT has three dissoci-
ation constants for UDP-GlcNAc, 6, 35 and 217 μM,
when the concentration of UDP-GlcNAc varies from
0.05 μM to 4.8 mM. OGT enzymatic activity was also
shown to be enhanced in response to elevated levels of
UDP-GlcNAc [39]. The truncated form of OGT lacking
TPRs 1–6 retains comparable enzymatic activity toward
casein kinase II (CKII) peptide glycosylation, but it has
only two dissociation constants, 6 and 60 μM. These re-
sults suggest that OGT activity is regulated by not only
the concentration of UDP-GlcNAc but also the subunit
structure and composition [39].
In addition to facilitating the formation of OGT tri-

mer, TPRs also help OGT to recognize protein sub-
strates. For example, GABAA receptor-associated protein
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(GRIF-1) and trafficking Kinesin Protein 1 (TRAK1)
were identified as the OGT interacting proteins from
yeast two-hybrid screening and found to bind the TPR
domain of OGT [41]. OGT has more than 4000 protein
substrates. The crystal structure of human OGT may
help explain the role of TPRs in binding substrates. A
ladder of asparagine on the inner surface of the OGT
TPR superhelix accounts for the interactions with vari-
ous substrates [40]. The mutation of asparagine into ala-
nine on the TPR asparagine arrays results in decreasing
O-GlcNAcylation [42–44]. These studies provide the evi-
dence that TPR domains of OGT serve as the docking
sites for protein substrates. In addition to substrate rec-
ognition by TPRs, interaction between the OGT catalytic
cleft and the acceptor peptide is also pivotal for OGT to
select its substrates [45, 46]. Crystal structure analyses of
human OGT combined with various peptides demon-
strated that each substrate conjugates with OGT in a
similar conformation between the − 3 to + 2 subsites.
The size of amino acid and conformational restriction
can lead to spatial constraints for the placement of pep-
tides into the catalytic cleft of OGT. Therefore, the pep-
tide sequence specificity, determined from − 3 to + 2
subsites, accounts for stable spatial conformation to
interact with the catalytic cleft of OGT [46]. In sum-
mary, structural analyses have provided a mechanistic
insight into how OGT uses each domain to accommo-
date and select various protein substrates.
OGA is mainly enriched in the cytosol, unlike OGT,

which can accumulate in the nucleus and cytosol [47,
48]. The OGA transcript encodes a protein with three
distinct regions consisting of an N-terminal catalytic do-
main, a stalk domain and a C-terminal pseudo-histone
acetyltransferase (HAT) domain [49, 50]. The molecular
weight of full-length OGA is about 130 kDa. OGA
mRNA also undergoes alternatively splicing in the HAT
domain, which results in the encoding of a shorter form
of OGA (sOGA). sOGA is approximately 100 kDa and
targets to the nascent lipid droplet [51]. Like OGT,
OGA is capable of binding to several different protein
substrates to exert its functions. OGA is highly con-
served among species [47]. Studies of the crystal struc-
ture of OGA combined with glycoprotein substrates
have suggested that OGA possesses a highly conserved
putative groove for substrate docking [49]. The crystal
structure of human OGA also provides the first evidence
of how mammalian OGA interacts with different sub-
strates [50, 52–54]. Human OGA tends to form a homo-
dimer, and uses a unique substrate-recognition mode, in
which the stalk domain of OGA combines with the cata-
lytic domain from the other OGA monomer to form a
cleft for substrate binding [50, 52–54]. Furthermore, the
inner surface of the substrate binding cleft is mainly
composed of hydrophobic residues, which are conserved

in most eukaryotes. These hydrophobic interactions are
important for spatial constraints and protein binding;
consistently, mutation of these residues causes reduced
binding of human OGA to the substrates [50]. Structural
analyses of the interaction between human OGA and
different glycopeptides, including those from α-
crystallin, TAB1, ELK1 and lamin B1, showed that
GlcNAc moiety is anchored to the conserved residues of
the OGA catalytic pocket [52]. This binding mode
makes OGA able to select and stabilize O-GlcNAcylated
peptides in the cleft. Surprisingly, these glycopeptides
bind with OGA in a bidirectional manner with identical
binding conformations, in spite of their different glyco-
sylation residues and flanking sequences [52]. Together,
these studies illustrate that OGA uses a new substrate-
binding method to achieve diverse protein recognition.

Main text
O-GlcNAcylation regulates the functions of proteins
O-GlcNAcylation modifies the S/T residues, which over-
lap the protein phosphorylation sites, showing that O-
GlcNAcylation can be a regulatory mode for phosphor-
ylation. Indeed, the “Ying-Yang model” was proposed to
illustrate the mode of interplay of these two post-
translational modifications, which represents how O-
GlcNAcylation competes with phosphorylation to oc-
cupy the same site or adjacent positions via steric hin-
drance [55]. For instance, through a kinetic-based high
resolution mass spectrometry assay, a frequently occur-
ring phosphorylation/O-GlcNAcylation interplay motif,
(pS/pT)P(V/A/T)(gS/gT), was identified [56]. Further,
phosphorylation on the − 3 subsite hampers O-GlcNA-
cylation on the 0 subsite [56]. Nevertheless, global ana-
lyses of the reciprocal effects between O-GlcNAcylation
and phosphorylation by high throughput mass spectrom-
etry revealed the complexity of the crosstalk [57, 58].
For example, among 711 phosphopeptides identified
from NIH-3T3 cells, 208 phosphorylation sites and 148
phosphorylation sites were reduced and increased, re-
spectively, after elevation of O-GlcNAcylation levels by
treating cells with OGA inhibitors [57]. Further, 10 and
19 proteins showed increased and reduced O-GlcNAcy-
lation levels, respectively, after inhibition of glycogen
synthase kinase-3 (GSK3) by lithium treatment [58].
These results show that O-GlcNAcylation and phos-
phorylation do not always occur reciprocally. Further,
the interplay between O-GlcNAcylation and phosphoryl-
ation can be at the enzyme level. OGT or OGA modified
by phosphorylation on their catalytic subunits or their
regulatory subunits affects their activities. For example,
tyrosine phosphorylation of OGT resulting from insulin
signaling increases the activity of OGT [59]. O-GlcNA-
cylation may regulate kinases or phosphatases, causing
indirect changes on the phosphorylation [55, 57]. Many
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kinases were identified as O-GlcNAcylated proteins. The
in vitro OGT assay using human kinase array has identi-
fied that 39% of the kinases on the array were the OGT
substrates [60]. Recently, results from kinase array indi-
cated that more than 80% of human kinases were the
substrates of OGT, and over 100 kinases could be O-
GlcNAcylated in living cells [61, 62]. For example, the
increased IKKβ activation caused by O-GlcNAcylation
on S733 can enhance glycolysis, which further contrib-
utes to more elevated O-GlcNAcylation and a positive
feedback loop between IKKβ and O-GlcNAcylation [63].
Interestingly, previous studies demonstrated that the
ATPase subunits from the 19S regulatory complex of
the proteasome were O-GlcNAcylated [64], resulting in
the inhibition of ATPase activity and of proteasome me-
diated proteolysis of Sp1 [65]. Several O-GlcNAcylation
sites were also identified in the 20S core complex, which
implicates that O-GlcNAcylation may directly affect pro-
teasome catalytic activity [66]. Therefore, O-GlcNAcyla-
tion affects many biochemical properties of protein
substrates, including protein phosphorylation and stabil-
ity. Furthermore, O-GlcNAcylation can also influence
other types of post-translational modification, such as
acetylation, which further extends the functions of O-
GlcNAcylation. For example, increased intracellular
O-GlcNAcylation results in increased acetylation on
Lys (K)382 of p53, which further enhances nuclear
translocation of p53 and upregulates the expression of
p53 target genes [67]. The p300-mediated acetylation
on K310 of p65 of the NF-κB subunit was enhanced
by O-GlcNAcylation of p65 on T305 and S319, which
is important for NF-κB regulated gene expression and
cell viability [68, 69].
As mentioned above, O-GlcNAcylation has been ex-

tensively studied in cancer and neurodegenerative dis-
eases [70, 71]. O-GlcNAcylation is highly elevated in the
majority of cancers as O-GlcNAcylation integrates the
nutrient flux with the metabolic pathways, which is crit-
ical for the proliferation and growth of tumor cells. O-
GlcNAcylation regulates many proteins involved in can-
cer initiation and proliferation. For example, O-GlcNA-
cylation increases the stability of p53 and estrogen
receptor-β (ER-β) [72, 73]. O-GlcNAcylation of c-Myc at
T58 residue may promote nuclear localization of c-Myc
[74]. O-GlcNAcylation of transcription factor YY1 im-
peded its association with RB, promoted the binding of
YY1 with DNA, and may affect cell cycle transitions
[75]. In the mammalian brain, O-GlcNAcylation of Tau
decreases the phosphorylation and cytotoxicity of Tau
[76]. The amyloid precursor protein (APP) in Alzhei-
mer’s disease (AD) pathology is modified by O-GlcNA-
cylation [77]. Enhanced O-GlcNAcylation increased the
processing of the neuroprotective form of APP [78]. This
review focuses on the recent advances in the biological

and molecular impact of O-GlcNAcylation in the im-
mune system (Fig. 2). The role of O-GlcNAcylation in
each immune cell lineage is discussed separately below.

Role of O-GlcNAcylation in hematopoietic stem cells
Hematopoietic stem cells (HSCs) are the multipotent
stem cells, which reside in bone marrow, and are able to
self-renew and differentiate into all blood cell lineages.
Conditional knockout of Oga in HSCs resulted in the re-
duced self-renewal of HSCs and decreased bone marrow
progenitor populations [79]. RNA-Seq analysis of Oga
depleted hematopoietic progenitor cells showed that the
expression of nutrient uptake and signaling genes are
dysregulated [79]. As high rate of glycolysis was used by
HSCs to generate energy and maintain the stemness
[80], these results suggest that homeostasis of O-GlcNA-
cylation is required for the maintenance of HSCs. These
findings also suggest that dysregulation of O-GlcNAcyla-
tion may impair the development of all types of immune
cells.

Role of O-GlcNAcylation in macrophages
Macrophages are myeloid immune cells and are widely
distributed in tissues. In response to foreign pathogens
and danger signals within the tissue microenvironment,
macrophages initiate innate immune responses and in-
flammation [81, 82]. Several studies demonstrated that
O-GlcNAcylation promotes inflammatory responses in
macrophages [83–86]. NF-κB, a critical regulator of in-
flammatory responses in macrophages, is reported to be
modified by O-GlcNAcylation. Allison et al. showed that
OGT could co-localize to the promoter sites regulated
by NF-κB and modified T305 of RelA, which promoted
acetylation on K310 of RelA, and enhanced NF-κB tran-
scriptional activity after tumor necrosis factor (TNF)
stimulation [68]. A previous study showed that c-Rel, a
NF-κB subunit, was modified by O-GlcNAcylation on
S350, which is required for its DNA binding and trans-
activation activity [87]. Microglia is the brain resident
macrophage [88]. In BV2 microglia cells, c-Rel interacts
with OGT upon lipopolysaccharide (LPS) treatment,
which promotes the O-GlcNAcylation of c-Rel and for-
mation of the c-Rel-p50/p105 heterodimeric complex
[89]. Another report demonstrated that OGT is modified
by S-nitrosylation, which inhibits the catalytic activity of
OGT in resting RAW 264.7 murine macrophage cells
(Fig. 2a, left panel) [86]. When stimulated with LPS,
OGT is de-nitrosylated, which enhances the O-GlcNA-
cylation of p65 [86]. Attenuation of O-GlcNAcylation
negatively regulates p65 nuclear translocation, resulting
in decreased production of NO and interleukin (IL)-1β
[86]. STAT3 also serves as a critical transcription factor
in promoting inflammation and tissue repair [90, 91].
STAT3 can also induce IL-10 production in
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Fig. 2 (See legend on next page.)
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macrophages to suppress inflammation [92, 93]. It was
previously shown that O-GlcNAcylation of STAT3 at
T717 negatively regulates STAT3 phosphorylation and
reduces IL-10 production [84]. Further, in bone-
marrow-derived macrophages (BMDMs), the expression
of OGT can be transcriptionally downregulated by
myeloid-derived cullin 3 (CUL3), an E3 ubiquitin ligase
belonging to the Cullin-RING ligase superfamily through
nuclear factor E2–related factor-2 (Nrf2) [84, 94–96].
Therefore, CUL3 counteracts STAT3 O-GlcNAcylation,
elevates STAT3 phosphorylation and inhibits inflamma-
tion (Fig. 2a, left panel) [84].
In contrast, several studies indicated that hyper-O-

GlcNAcylation correlated with anti-inflammation in is-
chemia and sepsis [97, 98]. Upon glucosamine (GlcN)
treatment, which bypasses the GFAT rate-limiting step
and induces hyper-O-GlcNAcylation [21], the transcrip-
tion activity of c-Rel is inhibited, thereby reducing the
NF-κB-mediated expression of inducible nitric oxide
synthase (iNOS) in LPS stimulated BV2 microglia cells
(Fig. 2a, middle panel) [89, 98]. Moreover, it has been re-
cently shown that O-GlcNAcylation is capable of inter-
acting with receptor-interacting serine/threonine-protein
kinase 3 (RIPK3), a member of the necrosome complex
[99], to inhibit necroptosis of macrophages and reduce
necroptosis-induced cytokine production and inflamma-
tion (Fig. 2a, middle panel) [100]. O-GlcNAcylation of
RIPK3 at T467 suppressed RIPK3-RIPK1 and RIPK3-
RIPK3 complex formation, subsequently inhibiting
necroptosis of macrophages [100]. Ogtf/f Lyz2-cre condi-
tional knockout mice, which carry deleted Ogt in macro-
phages showed significantly increased RIPK3 activation,
elevated inflammatory cytokine production, and more
severe mortality in experimental sepsis, as compared

with control mice [100]. Furthermore, O-GlcNAcylation
may direct the polarization of M2 macrophages, which
contribute to inflammation resolution and tissue repair
[97, 101, 102]. A recent study showed that GlcN treat-
ment reduced M1 specific gene expression in macro-
phages in an LPS-induced septic lung injury animal
model [97]. Accordingly, administration of Thiamet-G, a
specific OGA inhibitor [103], increases the expression of
M2 markers on microglia and suppresses NF-κB p65 sig-
naling, which leads to the reduction of iNOS and
cyclooxygenase-2 (COX-2) expression after middle cere-
bral artery occlusion [102]. Therefore, changes in O-
GlcNAcylation levels may alter the differentiation of M2
vs. M1 macrophages in tissues.
Antiviral immunity of macrophages was also shown to

be regulated by O-GlcNAcylation [83, 85]. Administra-
tion of GlcN protects mice from RNA virus infections,
such as influenza virus, vesicular stomatitis virus and
coxsackievirus A6 [85]. Depletion of Ogt in macrophages
by Lyz2-cre abolished this protective effect, indicating
that O-GlcNAcylation is required for anti-RNA virus in-
fection [83, 85]. Both retinoic acid inducible gene I
(RIG-I) and melanoma differentiation associated gene 5
(MDA5) can respond to RNA virus infection [104]. After
RIG-I and MDA5 activation, tripartite motif-containing
protein 31 (TRIM31) induces the activation of mito-
chondrial antiviral signaling protein (MAVS), a crucial
adaptor protein for antiviral responses [105, 106], via
K63-linked ubiquitination [104, 107]. MAVS also pro-
motes activation of interferon regulatory factor 3 (IRF3)
and NF-κB, leading to the production of type I inter-
feron (IFN) and cytokines to against virus infection [104,
106]. MAVS is modified by O-GlcNAcylation, which
promotes RIG-I and MDA5 mediated IRF3 activation as

(See figure on previous page.)
Fig. 2 O-GlcNAcylation orchestrates immunity. a HSCs are able to self-renew and differentiate into all blood cell lineages. OGA controls the
homeostasis of O-GlcNAcylation, which affects the gene transcription, such as fibroblast growth factor 3 (Fgf3) and solute carrier family 1, member
5 (Slc1a5), to regulate self-renewal and nutrient transport of HSCs. b In macrophages, OGT is de-nitrosylated after LPS treatment, which results in
O-GlcNAcylation and activation of NF-κB. O-GlcNAcylation of STAT3 inhibits its phosphorylation, leading to decreased IL-10 production and
increased pro-inflammatory cytokine production (left panel). In certain scenarios, O-GlcNAcylation also has an anti-inflammatory function in
macrophages. GlcN-induced hyper-O-GlcNAcylation inhibits NF-κB-mediated iNOS expression. Moreover, O-GlcNAcylation of RIPK3 inhibits RIPK3-
RIPK1 complex formation and thus reduces necroptosis-induced inflammation. The antiviral response of macrophages is also regulated by O-
GlcNAcylation (middle panel). Upon RNA virus infection, MAVS is modified by OGT, which is essential for K63-linked ubiquitination-mediated
MAVS activation. This biochemical reaction enhances downstream IFN production via RIG-I signaling (right panel). c O-GlcNAcylation is rapidly
increased after neutrophils are activated, which promotes the chemotaxis and cellular mobility of neutrophils. d O-GlcNAcylation may inhibit NK
differentiation by increasing the stability of EZH2. In addition, O-GlcNAcylation seems to reduce the cytotoxic activity of NK cells. e During T cell
development in thymus, O-GlcNAcylation is required for homeostasis of ETPs. Notch signaling promotes the uptake of glucose (Glc) and
glutamine (Gln), which leads to protein O-GlcNAcylation, enhanced β selection, and rapid self-renewal of DN4. After TCR rearrangement, O-
GlcNAcylation promotes positive selection and mature single positive T cell development (left panel). Protein O-GlcNAcylation is increased when
T cells are activated. O-GlcNAcylation is required for activation of many transcription factors, such as NFAT, c-Rel and c-Myc in activated T cells
(upper right panel). Notably, O-GlcNAcylation also increases the expression of RORγt and FOXP3 in Th17 and Treg cells (lower right panel). f In B
cell lineages, O-GlcNAcylation is upregulated in pre-B cells, thereby promoting the proliferation of pre-B cells through elevating c-Myc expression.
Moreover, O-GlcNAcylation regulates BAFF signaling to maintain homeostasis of mature B cells in spleen and bone marrow (left panel). When B
cells are activated through BCR signaling, Lyn is modified by OGT, which recruits SYK and activates BCR downstream signaling. NFAT and NFκB
are activated by O-GlcNAcylation in activated B cells, which mediates B cell proliferation. O-GlcNAcylation is also involved in BCR crosslinking-
induced apoptosis. O-GlcNAc modification of LSP1 recruits PKCβ1, which phosphorylates LSP1 and contributes to B cell apoptosis (right panel)
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well as IFN production in RNA virus infections (Fig. 2a,
right panel) [85]. Song, et al. showed that multiple O-
GlcNAcylation at 322–347 amino acid regions of MAVS
is essential for MAVS activation and IFN signaling [85].
S366 of MAVS is O-GlcNAcylated after a RNA virus in-
fection, which functions upstream of the TRIM31 medi-
ated K63-linked ubiquitination of MAVS, and the
activation of IRF3 and NF-κB in BMDMs [83]. In
addition, MAVS conditional knockout mice also showed
a diminished protective effect of GlcN [85]. To
summarize, O-GlcNAcylation can promote antiviral re-
sponses via regulating MAVS activity in macrophages.
As mentioned above, O-GlcNAcylation appears to

have opposite functions in inflammatory responses in
macrophages. Although it requires further study, this
discrepant effect of O-GlcNAcylation in macrophages
could be related to M1 vs M2 polarization, or tissue resi-
dency. Nevertheless, results from the study in Caenor-
habditis elegans may give further explanation. Oga-1 and
ogt-1 knockout nematodes display similar, but not con-
trary, phenotype in insulin-like signaling [108, 109], sug-
gesting that OGT and OGA seem to coordinately
regulate the level of intracellular O-GlcNAcylation.
Therefore, an optimal zone of O-GlcNAc level is critical
for the maintenance of normal cellular function [110]. In
addition, the binding of c-Rel to iNOS promoter is chan-
ged depending on the concentrations of glucose in the
culture [111], implying that optimal range of O-GlcNA-
cylation is important for shaping gene expression in
inflammatory responses. Thus, another possibility is that
both hyper- and hypo-O-GlcNAcylation may cause
immune deregulation.

Role of O-GlcNAcylation in neutrophils
Neutrophils are polymorphonuclear leukocytes, which
rapidly infiltrate wounds and lesion sites during infection
or tissue damage. Neutrophils not only phagocytose
pathogens and produce pro-inflammatory cytokines,
ROS and granular proteins, but also release neutrophil
extracellular traps (NET) to minimize the damage
caused by pathogens [112]. Previous studies demon-
strated that O-GlcNAcylated proteins in neutrophils are
rapidly increased within 2 min following treatment with
N-Formylmethionine-leucyl-phenylalanine (fMLF), a
polymorphonuclear and mononuclear phagocyte activa-
tor [113–115], suggesting that O-GlcNAcylation may be
crucial for the function of neutrophils. Increased O-
GlcNAcylation promotes chemotaxis and cellular mobil-
ity of neutrophils [114, 116]. Meanwhile, administration
of PUGNAc, an OGA inhibitor [4, 117], or GlcN upre-
gulates the activity of Rac, an important small GTPase
for regulating neutrophil mobilization [118], and acti-
vates downstream p38 and p44/42 MAPK signaling
[116]. In summary, these results indicate that O-

GlcNAcylation promotes neutrophil mobilization via in-
creasing Rac activation (Fig. 2b).

Role of O-GlcNAcylation in NK cells
Natural killer (NK) cells are innate lymphoid cells. They
are cytotoxic effector cells often involved in tumor sur-
veillance and infection clearance [119]. Enhancer of zeste
homolog 2 (EZH2), which is a histone methyltransferase
in the polycomb repressive complex 2 (PRC2), limits the
differentiation and survival of NK cells [120, 121]. It has
been shown that O-GlcNAcylation of EZH2 at S75 pro-
motes the stability of EZH2 [122]. Moreover, previous
studies demonstrated that O-GlcNAcylation may regu-
late cytotoxicity of NK cells [123, 124]. Protein O-
GlcNAcylation is down-regulated in NK cells during
cytotoxicity execution; while, inhibition of cytotoxic ac-
tivity by treating NK cells with recombinant soluble
HLA-G1, a nonclassical MHC I molecule [125], en-
hanced O-GlcNAcylation levels in NK cells [123]. In
addition, treatment with GlcN reduced the cytotoxic ac-
tivity of NK cells, which is accompanied by the altered
localization of cathepsins C and E, and polarization of
lytic granules in NK cells [124]. Interestingly, GlcN
treatment in NK cells reduced phosphorylation of
FOXO1 (a negative regulator of NK cell function [126]),
and paxillin, but elevated O-GlcNAcylation of FOXO1
and paxillin. Although the detailed mechanisms of how
O-GlcNAcylation affects the function of FOXO1, paxillin
and other proteins in NK cells remains to be studied,
these results suggest that O-GlcNAcylation negatively
regulates the cytotoxic effects of NK cells (Fig. 2c).

Role of O-GlcNAcylation in T cells
Rapid cycling of O-GlcNAc modification is detected in
activated lymphocytes [127]. O-GlcNAcylation has been
reported to play an important role in T cell lineages. T
cell progenitors travel from bone marrow to the thymus
and differentiate to early thymic progenitors (ETPs). In
the thymus, ETPs commit to the T cell lineage and
become double negative (DN) cells, which further
complete T cell development through various check-
points at different stages. A recent study shows that
ETPs is decreased in Ogaf/f Vav-cre mice, in which Oga
is deleted in HSCs. These results indicate that O-
GlcNAc homeostasis is essential for very early stages of
T cell development [79]. Successful rearrangement of
the T cell receptor (TCR) β chain enables the presence
of a pre-TCR complex on the cell surface, which medi-
ates β-selection and promotes the development of DN3
to DN4 [128–131]. As a result, DN4 cells show potential
for self-renewal and finally become double positive (DP)
thymocytes. Swamy et al. showed that Notch signaling,
which is required for the β-selection checkpoint in the
DN3 to DN4 transition [132, 133], significantly increases
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the import of glucose and glutamine when DN3 thymo-
cytes differentiate into DN4 thymocytes (Fig. 2d, left
panel) [24]. After becoming DP thymocytes, the uptake
of glucose and glutamine is downregulated [24]. In par-
allel with nutrient uptake, protein O-GlcNAcylation in
developing thymocytes was increased at the DN4 stage
[24]. It is noted that Notch signaling-mediated upregula-
tion of O-GlcNAcylation is important for β-selection
checkpoints. Consistently, depletion of Ogt in developing
thymocytes resulted in the reduction of DP thymocytes,
revealing the importance of O-GlcNAcylation in devel-
oping thymocytes during the transition into the DP stage
[24]. In addition, in vitro results indicated that Ogt-de-
pleted DN cells have normal differentiation and survival,
but they failed to proliferate in response to Notch signal-
ing [24]. These results suggest that O-GlcNAcylation is
essential for self-renewal of DN4. DN4 cells initiate TCR
α chain rearrangement to produce a TCR complex
[134], which allows the proceeding of positive selection
and negative selection to become single positive (SP)
CD4 or CD8 T cells [134]. Protein O-GlcNAcylation is
increased during positive selection (Fig. 2d, left panel)
[24]. Moreover, both CD4 and CD8 SP cells dramatically
decrease in T cell-specific Ogt knockout mice [24]. Thus,
O-GlcNAcylation is also required for positive selection
of T cells.
O-GlcNAcylation also plays a crucial role in mature T

cells. Activated T cells, triggered by treatment with anti-
CD3/anti-CD28 antibodies, increase the expression of
glucose transporter 1 (GLUT1), a membrane transporter
that mediates glucose uptake and further causes a dra-
matic increase in glucose uptake [135]. Hence, activated
T cells rapidly increase uptake of glucose and show ele-
vated levels of protein O-GlcNAcylation (Fig. 2d, upper
right panel) [24]. Numerous studies have indicated that
O-GlcNAc modification of many transcription factors
participates in the regulation of T cell activation. For in-
stance, nuclear factor of activated T cells (NFAT), a key
regulator for IL-2 and cytokine production by T cells
[136], interacts with OGT and is O-GlcNAcylated [137].
Downregulation of OGT results in impaired NFAT func-
tion and inhibits IL-2 production [137]. In contrast, O-
GlcNAcylation of c-Rel, a NF-κB subunit, at S350 is re-
quired for its DNA binding and transcriptional activa-
tion [87]. Mutation at S350 of c-Rel reduces the
expression of NF-κB downstream targets, including cyto-
kine (IL-2 and IFNγ), in response to TCR activation
[87]. Further, c-Myc, a critical metabolic regulator [138],
is modified by O-GlcNAc [24, 139]. OGT promotes c-
Myc expression in T cells during expansion. Depletion
of c-Myc in T cells impaired the expression of glucose
and glutamine transporters upon T cell activation [138].
Moreover, knockout of c-Myc in T cells abolishes the in-
duction of TCR-mediated O-GlcNAcylation [24]. These

data suggest that c-Myc mediates a positive feedback
loop between TCR-mediated T cell activation and pro-
tein O-GlcNAcylation.
After TCR activation, depending on the environmental

cues, naïve CD4 T cells can differentiate to various types
of effector cells, such as T helper (Th)1, Th2, Th17 and
regulatory T (Treg) cells. Recent studies indicated that
O-GlcNAcylation is implicated in both differentiation
and homeostasis of Th17 and Treg cells (Fig. 2d, lower
right panel) [140–142]. Administration of Thiamet-G in-
creased the binding of RORγt, a pivotal transcription
factor for commitment of the Th17 lineage [143], to Il-
17 promoter and therefore promotes IL-17 production
and Th17 differentiation. Subsequently, pro-
inflammatory responses were enhanced by Th17 cells
[142]. OGT is a downstream target of microRNA(-
miRNA)-15b [140]. miRNA-15b inhibits Th17 differenti-
ation, which may result from reducing the expression of
RORγt through blocking O-GlcNAcylation of NF-κB
[140]. FOXP3 is a lineage-determining transcription fac-
tor for Treg cells [144, 145]. It has been reported that
FOXP3 is stabilized by O-GlcNAcylation, and that O-
GlcNAcylation is required for IL-2/STAT5 signaling-
mediated FOXP3 expression. Depletion of Ogt in Treg
cells in mice dramatically reduced Treg lineage stability,
which resulted in a severe autoimmune phenotype [141].
Thus, O-GlcNAcylation is required for the maintenance
of lineage stability and regulatory function of Treg cells.
IL-2 signaling-mediated STAT5 activation is also im-
portant for Th2 differentiation. STAT5, which binds to
Il-4 gene, promotes optimal production of IL-4 and Th2
differentiation [146]. O-GlcNAcylation may thus likely
regulate Th2 differentiation through IL-2/STAT5 signal-
ing, although it requires further validation. In addition,
IFN-γ-induced STAT1 activation is required for the in-
duced expression of Th1 lineage-determining transcrip-
tion factor, T-bet [147]. Previous studies indicated that
O-GlcNAcylated STAT1 enhanced the stability of phos-
phorylated STAT1 and its downstream signaling trans-
duction [148, 149]. Whether O-GlcNAcylation of
STAT1 participates in the regulation of Th1 differenti-
ation needs to be further determined. The functional
role of O-GlcNAcylation in CD8 T cells awaits further
characterization. O-GlcNAc-enriched proteome profiling
of murine effector and memory-like CD8+ T cells has
been reported [150], which showed that protein O-
GlcNAcylation in effector CD8+ T cells is involved in
transcription and translation essential for the regulation
of cell proliferation, while protein O-GlcNAcylation in
memory-like CD8+ T cells is involved in the mRNA pro-
cessing. Taken together, these combined findings indi-
cate that O-GlcNAcylation controls the development,
activation and differentiation of a variety of T cell sub-
sets at various stages.
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Role of O-GlcNAcylation in B cells
B cells contribute to adaptive immune responses via pro-
ducing antibodies and promoting T cell activation via
antigen presentation. Progenitor B cells undergo pro-B,
early pre-B and late pre-B stages to become immature B
cells in bone marrow. A recent study indicated that O-
GlcNAcylation is increased in large pre-B cells and
required for the proliferation of pre-B cells [151].
Inhibition of O-GlcNAcylation by administration of
OGT inhibitors downregulates the expression of c-Myc,
cyclin A and cyclin E in a PD36 pre-B cell line.
These results suggest that O-GlcNAcylation induces
pre-B cells proliferation by increasing the expression
of c-Myc and c-Myc downstream genes, such as
cyclin A and cyclin E [151].
Immature B cells then migrate to secondary lymphoid

organs, including the spleen, in which they differentiate
into mature B cells, including marginal zone B (MZB)
cells and follicular B (FOB) cells. Deletion of Ogt in B
cells by using a CD19 promoter-driven cre mouse line
showed that O-GlcNAcylation is required for the
homeostasis of mature B cells, particularly FOB cells
(Fig. 2e, left panel) [152]. Specific depletion of OGT in B
cell lineages resulted in downregulation of B cell-
activating factor (BAFF) signaling in mature B cells,
which lead to increased apoptosis of mature B cells in
bone marrow and spleen. However, the number of im-
mature B cells and MZB are not significantly influenced
by the depletion of Ogt [152]. Notably, upon B cell re-
ceptor (BCR) engagement-mediated B cell activation,
metabolic reprograming induces the expression of
GLUT1 (Fig. 2e, right panel) [153]. Consistently, the O-
GlcNAcylation level in activated B cells, caused by
ligation of BCR, is elevated, which is required for effi-
cient B cell activation [137, 152, 154]. NFATc1 and NF-
κB are modified by O-GlcNAc, which further
strengthens the extent of B cell activation [137]. In
addition, O-GlcNAcylation of Lyn on S19 is important
for Lyn activation and Syk recruitment. Results from
studies of the role of O-GlcNAcylation in BCR signaling
cascades support the role of O-GlcNAcylation in B cell
survival (Fig. 2e, right panel) [152]. In the context of ex-
tensive BCR crosslinking and absence of CD40L-
mediated survival signals provided by T cells, activated B
cells undergo apoptosis. O-GlcNAcylation is also in-
volved in the regulation of BCR crosslinking-induced
apoptosis. Lymphocyte specific gene 1 (LSP1) is known
to mediate anti-IgM-induced B cell apoptosis [155]. The
dynamic interplay between O-GlcNAcylation and phos-
phorylation of LSP1 following BCR crosslinking deter-
mines the apoptosis of activated B cells. O-
GlcNAcylation of Lsp1 on S209 is critical for the recruit-
ment of PKC-β1, which contributes to phosphorylation
of Lsp1 on S243 [154]. As a result, O-GlcNAcylation

promotes signaling cascades and apoptosis of activated B
cells (Fig. 2e, right panel) [154].
In the help with T follicular helper (Tfh) cells, acti-

vated B cells differentiate to germinal center B (GCB)
cells, which undergo somatic hypermutation and affinity
maturation within GCs, followed by further differenti-
ation of GCB cells into antibody secreting plasmablasts/
plasma cells or memory B cells. O-GlcNAcylation also
plays a crucial role in the differentiation of GCB cells.
Studies from the mouse lines carrying a deletion of Ogt
in the GC stage revealed that the generation of GCB
cells and plasma cells requires O-GlcNAcylation [152].
However, the detailed molecular mechanisms contribut-
ing to the reduced generation of plasma cells after dele-
tion of Ogt in GCB cells requires further study. In
conclusion, in B cell lineages, O-GlcNAcylation is pivotal
for the regulation of homeostasis and activation of
mature B cells, as well as for mounting efficient GC and
antibody responses.

Conclusions
O-GlcNAcylation, mediated by the dynamic coordin-
ation of the actions of OGT and OGA, contributes to
the regulation of the development, homeostasis, and
functions of immune cells. Dysregulated O-GlcNAc cyc-
ling, as shown by lineage specific knockout of Ogt or
Oga in mice has demonstrated the significance of O-
GlcNAcylation in a variety of immune cells, including
HSCs, T cells, B cells, NK cells, macrophages, and neu-
trophils. However, applying genetic deletion of Ogt or
Oga, or inhibitor treatment, to study the role of O-
GlcNAcylation in a biological system still raises the
challenge of understanding of the impact of site-specific
O-GlcNAcylation as site-directed mutagenesis of protein
O-GlcNAc sites from S/T into alanine to abolish the O-
GlcNAcylation event may as well dampen phosphoryl-
ation event. Intriguingly, a recent report showed that the
engineered cysteine-S-GlcNAc is a hydrolytically stable
and accurate structural mimic of serine-O-GlcNAc.
Therefore, the potential effect of site-specific O-GlcNA-
cylation on a selected protein can be assessed through
replacing serine with cysteine on the identified O-
GlcNAc sites [156]. Moreover, many studies used GlcN
to induce hyper-O-GlcNAcylation. However, GlcN treat-
ment affects not only O-GlcNAcylation but also N-
linked glycosylation [157]. Therefore, the consequence
of altered N-linked glycosylation resulting from GlcN
treatment should also be taken into consideration.
In terms of autoimmune or inflammatory diseases, in-

creased expression of X-linked genes, including OGT, is
linked with lupus in women [158]. Lack of Ogt in an ani-
mal model of autoimmune hepatitis in rats exacerbated
liver injury due to impaired Treg differentiation [159].
Therefore, modulation of the levels of O-GlcNAcylation
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may likely control the outcome of diseases, highlighting
the alternation of O-GlcNAcylation levels as a potential
treatment strategy. The development of potent and se-
lective OGT or OGA inhibitors may thus possess poten-
tial for the treatment of diseases that show abnormal O-
GlcNAcylation. Indeed, several OGT or OGA inhibitors
have been developed [103, 160–162]. OGA inhibitors
have recently entered early clinical trials for the treat-
ment of Progressive Supranuclear Palsy [163] as O-
GlcNAcylation of Tau blocks the pathological effects of
phosphorylation and aggregation of Tau [76]. It remains
to be evaluated if modulation of the functions of OGT
or OGA can be a good remedy for immune system-
related diseases. Nevertheless, the significant roles of O-
GlcNAcylation in various lineages of immune cells in
the physiological state may shed light on the develop-
ment of new strategies to boost or rejuvenate immune
responses against diseases, such as infection or cancer.
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