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The brain-computer interface (BCI) provides an alternative means to communicate and

it has sparked growing interest in the past two decades. Specifically, for Steady-State

Visual Evoked Potential (SSVEP) based BCI, marked improvement has been made in

the frequency recognition method and data sharing. However, the number of pubic

databases is still limited in this field. Therefore, we present a BEnchmark database

Towards BCI Application (BETA) in the study. The BETA database is composed of

64-channel Electroencephalogram (EEG) data of 70 subjects performing a 40-target

cued-spelling task. The design and the acquisition of the BETA are in pursuit of meeting

the demand from real-world applications and it can be used as a test-bed for these

scenarios.We validate the database by a series of analyses and conduct the classification

analysis of eleven frequency recognition methods on BETA. We recommend using the

metric of wide-band signal-to-noise ratio (SNR) and BCI quotient to characterize the

SSVEP at the single-trial and population levels, respectively. The BETA database can be

downloaded from the following link http://bci.med.tsinghua.edu.cn/download.html.

Keywords: brain-computer interface (BCI), steady-state visual evoked potential (SSVEP), electroencephalogram

(EEG), public database, frequency recognition, classification algorithms, signal-to-noise ratio (SNR)

1. INTRODUCTION

The brain-computer interface (BCI) provides a new way for brain interaction with the outside
world, and it is based on measuring and converting brain signals to the external commands
without involving the peripheral nervous system (Wolpaw et al., 2002). The BCI technology has
considerable scientific significance and application prospects, especially in the rehabilitation field
(Ang and Guan, 2013; Lebedev and Nicolelis, 2017) and as an alternative access method for
physically disabled people (Gao et al., 2003; Pandarinath et al., 2017). The Steady-State Visual
Evoked Potential (SSVEP) represents a stable neural response elicited by periodic visual stimuli, and
its frequency tagging attribute can be leveraged in the BCI (Cheng et al., 2002; Norcia et al., 2015).
Among a variety of BCI paradigms, the SSVEP-based BCI (SSVEP-BCI) has gained widespread
attention due to its characteristics of non-invasiveness and high signal-to-noise ratio (SNR) and
information transfer rate (ITR) (Bin et al., 2009; Chen et al., 2015a). Generally, the high-speed
performance of the BCI is accomplished by amulti-target visual speller, which achieves a reportedly
average online ITR of 5.42 bit per second (bps) (Nakanishi et al., 2018). Besides, the ease of use and
significantly lower rate of the BCI illiteracy (Lee et al., 2019) make it a promising candidate for
real-world applications.

In order to improve the performance of the BCI, rapid progress has been made to facilitate
frequency recognition of the SSVEP (Zerafa et al., 2018). Based on whether a calibration or training
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phase is required for the extraction of spatial filters, the
signal detection methods can be categorized into supervised
methods and training-free methods. The supervised methods
exploit an optimal spatial filter by a training procedure
and achieve the state-of-the-art classification performance in
the SSVEP-based BCI (Nakanishi et al., 2018; Wong et al.,
2020a). These spatial filters or projection direction can be
learned by exploiting individual training template (Bin et al.,
2011), reference signal optimization (Zhang et al., 2013), inter-
frequency variation (Yin et al., 2015), and ensemble reference
signals (Nakanishi et al., 2014; Chen et al., 2015a) in the
framework of canonical correlation analysis (CCA). Recently, the
task-related components (Nakanishi et al., 2018) and themultiple
neighboring stimuli (Wong et al., 2020a) have been utilized to
derive spatial filters in order to boost the discriminative power
of the learned model further. On the other hand, the training-
free methods perform feature extraction and classification in
one step without the training session in the online BCI. This
line of work usually use a sinusoidal reference signal, and the
detection statistics can be derived from the canonical correlation
(Bin et al., 2009) and its filter-bank form (Chen et al., 2015b),
noise energy minimization (Friman et al., 2007), synchronization
index maximization (Zhang et al., 2014), and additional spectral
noise estimation (Abu-Alqumsan and Peer, 2016).

Along with the rapid development of frequency recognition
methods, continuous efforts have been devoted to share the
SSVEP database (Bakardjian et al., 2010; Kolodziej et al., 2015;
Kalunga et al., 2016; Kwak et al., 2017; Işcan and Nikulin, 2018)
and contribute to public SSVEP database (Wang et al., 2017; Choi
et al., 2019; Lee et al., 2019). Wang et al. (2017) benchmarked a
40-target database comprising 64-channel 5-s SSVEP trials of 35
subjects who performed the offline cue-spelling task in six blocks.
Recently, Lee et al. (2019) have released a larger database of 54
subjects performing the 4-target offline and online task, and 62-
channel 4-s SSVEP data were obtained having 50 trials per class.
Choi et al. (2019) also provided a 4-target database, including
physiological data and the 6-s SSVEP data which are collected
from 30 subjects at three different frequency bands (low: 1–12Hz;
middle: 12–30 Hz; high: 30–60 Hz) during 2 days. Nevertheless,
the number of public databases in the SSVEP-BCI community
is still limited compared to other domains, such as computer
vision, where a growing number of databases plays a critical role
in the development of the discipline (Russakovsky et al., 2015).
Compared to the other BCI paradigms, e.g., the motor imagery
BCI, the SSVEP-BCI databases are also scarce (Choi et al., 2019).
Therefore, more databases are need in the SSVEP-BCI field for
the design and evaluation of methods.

To this end, we present a large BEnchmark database Towards
SSVEP-BCI Application (BETA) in this study. The BETA
database includes the data of 70 subjects performing the cued-
spelling task. As an extension of the benchmark database (Wang
et al., 2017), the number of targets is 40, and the frequency range
is from 8 to 15.8 Hz. A key feature of the proposed BETA database
is that it is developed for real-world applications. Different from
the benchmark database, the BETA consists of the data collected
outside the laboratory setting of the electromagnetic shielding
room. Since it is imperative to reduce the calibration time from

a practical perspective, the number of blocks is set to four
instead of six that are used in the benchmark. A QWERT virtual
keyboard is presented in flickers to approximate the conventional
input device better and enhance user experience. To the best
of our knowledge, so far, the BETA database has the largest
number of subjects for the SSVEP-BCI. Since a larger database
can capture the inter-subject variability better, the BETA database
makes it possible to reflect a more realistic EEG distribution and
potentially meet the demands of real-world BCI applications.

The remaining of the paper is organized as follows. First,
the data acquisition and curation procedures are presented in
section 2. The data record and availability are described in
section 3. In section 4, data validation is performed, and 11
frequency recognition methods are compared on BETA. We
discuss additional findings from the database in section 5. Finally,
the conclusions are given in section 6.

2. MATERIALS AND METHODS

2.1. Participants
Seventy healthy volunteers (42 males and 28 females) with an
average age of 25.14± 7.97 (mean± standard deviation, ranging
from 9 to 64 years) participated in our study. All the participants
had a normal or corrected to normal vision, and they all signed
a written consent before the experiment; for the participants
under 16 years old, the consent was signed by their parents.
The study was carried out in accordance with the Declaration of
Helsinki, and the protocol was approved by the Ethics Committee
of Tsinghua University (No. 20190002).

2.2. Recruitment and Inclusion Criteria
Participants were recruited on a national scale to take part in
the Brain-Computer Interface 2018 Olympics in China. The
competition was held to contest and award individuals with a
high performance of the BCI (SSVEP, P300, andMotor Imagery).
The 70 participants who participated in this study have also
participated in the second round of the contest (SSVEP-BCI
track), and none of them was naive to the SSVEP-BCI. Before
the enrollment, participants were informed that the data would
be used in non-commercial scientific research. Participants who
conformed to the experimental rules in the first round and were
available for the second round planed by the contest schedule
were included in the second round. All the participants met the
following criteria: (1) they had no history of epileptic seizures
or other neuropsychiatric disorders, (2) they had no attention-
deficit or hyperactivity disorder, and (3) they had no history of
brain injury or intracranial implantation.

2.3. Visual Speller
This study designed a 40-target BCI speller for visual stimulation.
In order to improve user experience, a graphical interface was
designed to resemble the traditional QWERT keyboard. The
virtual keyboard was presented on a 27-inch LEDmonitor (ASUS
MG279Q Gaming Monitor, 1,920 × 1,080 pixels) with a refresh
rate of 60 Hz. As illustrated in Figure 1A, 40 targets, including
10 numbers, 26 alphabets, and 4 non-alphanumeric signs (dot,
comma, backspace < and space _) were aligned in five rows,
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A B

FIGURE 1 | The QWERT virtual keyboard for a 40-target BCI speller. (A) The layout of a conventional keyboard with ten numbers, 26 alphabets and four

non-alphanumeric keys (dot, comma, backspace <, and space _) aligned in five rows. The upper rectangle is designed to present the input character. (B) The

frequency and initial phase of each target are encoded using the joint frequency and phase modulation.

with a spacing of 30 pixels. The stimuli had the dimension of 136
× 136 pixels (3.1◦× 3.1◦) for the square, and 966 × 136 pixels
(21◦× 3.1◦) for the space rectangle. The topmost blank rectangle
was for result feedback (Figure 1A).

A sampled sinusoidal stimulation method (Manyakov et al.,
2013; Chen et al., 2014) was adopted to present the visual flicker
on the screen. In general, the stimulus sequence of each flicker
can be generated by

s(f ,φ, i) =
1

2
{1+ sin[2π f (i/RefreshRate)+ φ]} (1)

where i denotes the frame index in the stimulus sequence, and
f and φ denote the frequency and phase values of the encoded
flicker that uses a joint frequency and phase modulation (JFPM)
(Chen et al., 2015a). The grayscale value of the stimulus sequence
ranges from 0 to 1, where 0 indicates dark, and 1 indicates the
highest luminance of the screen. For the 40 targets, the tagged
frequency and phase values can be respectively obtained by

fk = f0 + (k− 1) · 1f

8k = 80 + (k− 1) · 18
(2)

where the frequency interval 1f is 0.2 Hz, the phase interval
18 is 0.5 π , and k denotes the index from dot, comma, and
backspace, followed by a to z and 0–9, and space. In this work, f0
and80 are set to 8 Hz and 0, respectively. The parameters of each
target are presented in Figure 1B. The stimulus was presented
by MATLAB (MathWorks, Inc.) using Psychophysics Toolbox
Version 3 (Brainard, 1997).

2.4. Procedure
This study includes four blocks of online BCI experiments with
a cued-spelling task. The experiments were as follows. Each
block consisted of 40 trials, and there was one trial for each
stimulus target in a randomized order. Trials began with a 0.5
s cue (a red square covering the target) for gaze shift, which was
followed by flickering on all the targets, and ended with a rest
time of 0.5 s. The participants were asked to avoid eye blinking

during the flickering process. During the 0.5 s rest, the resulting
feedback, which represented one of the recognized characters,
was presented in the topmost rectangle after online processing by
a modified version of the FBCCA method (Chen et al., 2015b).
For the first 15 participants (S1–S15), the flickering lasted at least
2 s, and for the remaining 55 participants (S16–S70), it lasted at
least 3 s. In order to avoid visual fatigue, there was a short break
between two consecutive blocks.

2.5. Data Acquisition
The 64-channel EEG data were recorded by SynAmps2
(Neuroscan Inc.) according to the international 10-10 system.
The sampling rate was set 1,000 Hz, and the pass-band of the
hardware filter was 0.15–200 Hz. A built-in notch filter was
applied to remove the 50 Hz power-line noise. The event triggers
were sent from the stimulus computer to the EEG amplifier and
synchronized to the EEG data by a parallel port as an event
channel. The impedance of all the electrodes was kept below 10
k�. The vertex electrode Cz was used as a reference. During the
online experiment, nine parietal and occipital channels (Pz, PO3,
PO5, PO4, PO6, POz, O1, Oz, and O2) were selected for online
analysis to provide the feedback result. In order to record the EEG
data in real-world scenarios, the data were recorded outside the
electromagnetic shielding room.

2.6. Data Preprocessing
According to the previous study (Chen et al., 2015a,b), the
SSVEP harmonics in this paradigm have a frequency range of
up to around 90 Hz. Based on the finding, a band-pass filtering
(i.e., zero-phase forward and reverse filtering using eegfilt in
EEGLAB (Delorme andMakeig, 2004) between 3 and 100 Hz was
conducted to remove the environmental noise. Then, the epochs
were extracted from each block, and they included 0.5 s before
the stimulus onset, 2 s (for S1–S15) or 3 s (for S16–S70) of the
stimulation, and 0.5 s after the simulation. The last 0.5 s of the
epochs could contain the SSVEP data if the duration of the trial
was > 2 s (for S1–S15) or 3 s (for S16–S70). Since frequency
resolution could not affect the classification result of the SSVEP
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(Nakanishi et al., 2017), all the epochs were then down-sampled
to 250 Hz.

2.7. Metrics
The SSVEP data quality was evaluated quantitatively by the
signal-to-noise ratio (SNR) analysis and classification analysis. As
for the SNR-based analysis, in most of the previous studies (Chen
et al., 2015a,b; Xing et al., 2018), the narrow-band SNR metric
was used. The narrow-band SNR (in decibels, dB) can be defined
as a ratio of the spectral amplitude at the stimulus frequency to
the mean value of the ten neighboring frequencies (Chen et al.,
2015b)

SNR = 20log10
y(f )

∑5
k=1[y(f − 1f · k)+ y(f + 1f · k)]

(3)

where y(f ) denotes the amplitude spectrum at frequency f
calculated by the Fast Fourier Transform (FFT), and 1f denotes
the frequency resolution.

Along with the narrow-band SNR, we used the wide-band
SNR as a primary metric to characterize better both the wide-
band noise and the contribution of harmonics to the signals. The
wide-band SNR (in decibels, dB) can be defined as:

SNR = 10log10

∑k=Nh
k=1 P(k · f )

∑f=fs/2

f=0
P(f )−

∑k=Nh
k=1 P(k · f )

(4)

where Nh denotes the number of harmonics, P(fn) denotes the
power spectrum at frequency f , and fs/2 represents the Nyquist
frequency. In the wide-band SNR, the sum of power spectrum
of multiple harmonics (Nh = 5) is regarded as the signal and
the energy of full spectral band subtracted from the signal is
considered as noise.

The classification accuracy and the information transfer rate
(ITR) have been widely used in the BCI community to evaluate
the performance of different subjects and algorithms. The ITR
(in bits per min—bpm) can be obtained by (Wolpaw et al., 2002):

ITR = 60 · (log2M + Plog2P + (1− P)log2
1− P

M − 1
)/T (5)

where M denotes the number of classes, P denotes the
classification accuracy, and T (in seconds) denotes the average
target selection time. The variable T in the equation represents
the sum of gaze time and overall gaze shift time. To calculate
the theoretical ITR for offline analysis, a gaze shift time of 0.55 s
is chosen according to the previous studies (Chen et al., 2015b;
Wang et al., 2017), which was proven sufficient in an online
spelling task (Chen et al., 2015b).

2.8. Statistical Analysis
A linear regression was conducted to understand the relationship
between the SNR and ITR metrics. To meet the assumptions of
linear regression, the following procedures were conducted. A
scatter plot of SNR against ITR was diagrammed to establish the
linearity by visual inspection. The independence of residuals was
ascertained by using the Durbin-Watson test. The standardized

residuals were checked in the range of ±3 to ensure that there
were no outliers in the data. The homoscedascity was ensured
by assessing a plot of standardized residuals versus standardized
predicted values. The normality of residuals was guaranteed by
assessing a normal probability plot. The R2 and adjusted R2 were
calculated to reflect the goodness-of-fit of the regression model.
The statistical significance of the model is evaluated by analysis
of variance (ANOVA).

The ITR values obtained from different methods were
compared using a one-way repeated-measures ANOVA with
a within-subject factor of method. A Greenhouse-Geisser
correction was applied if the sphericity was violated, as assessed
byMauchly’s test of sphericity.When there was a significant main
effect (p < 0.05), post-hoc paired-sample t-tests were performed
and Bonferroni adjustment was applied for multiple comparison.
To reflect the effect size, partial eta-squared (η2) was calculated. A
Mann-Whitney U test was conducted to determine if there were
differences in the SNRmetrics. All the statistical procedures were
processed using SPSS Statistics 20 (IBM, Armonk, NY, USA).
Data were presented as mean ± standard error of the mean
(s.e.m.) unless otherwise stated.

3. RECORD DESCRIPTION

The database used in this work is freely available for scientific
research, where it is stored in the MATLAB .mat format. This
database contains 70 subjects, and each subject corresponds
to one mat file. The names of subjects are mapped to
indices from S1 to S70 for de-identification. Each file in the
database consists of a MATLAB structure array, which included
the 4-block EEG data and its counterpart supplementary
information as its fields. The website for accessing the database
is http://bci.med.tsinghua.edu.cn/download.html.

3.1. EEG Data
After data preprocessing, the EEG data were store as a 4-way
tensor, with a dimension of channel × time point × block ×

condition. Each trial included the 0.5-s data before the event
onset, and the 0.5-s data after the time window of 2 or 3 s.
For S1–S15, the time window was 2 s, and the trial length was
3 s, whereas for S16–S70, the time window was 3 s and the
trial length was 4 s. Additional information about the channel
and condition can be found in the following section about the
supplementary information.

3.2. Supplementary Information
The supplementary information is comprised of personal
information, channel information, BCI quotient, SNR, sampling
rate, and each condition’s frequency and initial phase. The
personal information contained information about the age and
gender of a subject. The channel information denoted a location
matrix (64 × 4), where the first column represented the channel
index, and the second and third columns represented the degree
and radius in polar coordinates, respectively; and the last column
represented the channel name. The SNR information consisted
of the mean narrow-band SNR and wide-band SNR values of
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A

B

C

FIGURE 2 | Typical SSVEP features in the temporal, spectral, and spatial domains. (A) Time course of average 10.6-Hz SSVEP of nine parietal and occipital channels

(Pz, PO3, PO5, PO4, PO6, POz, O1, Oz, and O2). The dash line represents stimulus onset. (B) The topographic maps of SSVEP amplitudes at frequencies in the

range from the fundamental signal (10.6 Hz) to the fourth harmonic (21.2, 31.8, and 42.4 Hz). The leftmost scalp map indicates the spectral amplitude at the

fundamental frequency before stimulus. (C) The amplitude spectrum of the SSVEP of the nine channels at 10.6 Hz. Up to five harmonics are visible in the amplitude

spectrum. The averaged spectrum across channels is represented in the dark line in (A,C).

each subject, which were calculated by Equations (3) and (4),
respectively. The initial phase was given in radius.

4. DATA EVALUATION

4.1. Temporal, Spectral, and Spatial
Analysis
In order to validate the data quality by visual inspection, nine
parietal and occipital channels (Pz, PO3, PO5, PO4, PO6, POz,
O1, Oz, and O2) were selected, and epochs were averaged with
respect to the channels, blocks, and subjects. For the sake of
consistency regarding the data format, the subjects from S16 to
S70 were chosen for analysis. Figure 2A illustrates the averaged
temporal amplitude at the stimulus frequency of 10.6 Hz. After
a delay, which was in the range of 100–200 ms, at the stimulus
onset, a steady-state and time-locked characteristic could be
observed in the temporal sequence, as shown in Figure 2A. The
data between 500 and 3,500 ms were extracted and padded
with 2,000 ms zeros, yielding a 0.2 Hz spectral resolution, as
shown in Figure 2C. In the amplitude spectrum, the fundamental
frequency (10.6 Hz: 0.266 µV) and three harmonics (21.2 Hz:

0.077 µV, 31.8 Hz: 0.054 µV, 42.4 Hz: 0.033 µV) could be
distinguishable from the background EEG. Note that at high
frequencies (> 60 Hz), the amplitude of both the harmonic
signals and noise was small due to the volume conduct effect
(van den Broek et al., 1998), which is why they are not shown
in Figure 2C.

Figure 2B illustrates the topographic mappings of the
spectrum at frequencies in the range from the fundamental
signal to the fourth harmonic. The result presented in Figure 2B

indicates that fundamental and harmonic signals of the SSVEP
are distributed predominantly in the parietal and occipital
regions. The frontal and temporal regions of the topographic
maps also show an increase in the spectrum, which can represent
noise or SSVEP oscillation from the occipital region (Thorpe
et al., 2007; Liu et al., 2017). In order to characterize the response
property of the SSVEP, the amplitude spectrum is represented
as a function of stimulus frequency in Figure 3. According to
the amplitude spectrum, the spectral response of the SSVEP
decreased rapidly with the number of harmonics; namely, up to
five harmonics are visible. A dark line at the response frequency
of 50 Hz results from the notch filtering. A bright line at the
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15.8 Hz response frequency can be distractor stimulus from the
SPACE target with a larger size.

4.2. SNR Analysis
As a metric independent of different classification algorithms,
the SNR measures available stimulus-evoked components in the
SSVEP spectrum. In the SNR-based analysis, the BETA database
was compared with the benchmark database of the SSVEP-
based BCI (Wang et al., 2017). The narrow-band and wide-band
SNR values were calculated for each trial by Equations (3) and
(4), respectively. For a valid comparison, the EEG data in the
benchmark database were band-pass filtered between 3 and 100
Hz (eegfilt in EEGLAB) before epoching. Trials in this database
were padded with zeros (3 s for S1–S15, and 2 s for S16–S70)
to provide a spectral resolution of 0.2 Hz. Figure 4 illustrates
the normalized histogram of the narrow-band (Figure 4A) and
wide-band SNRs (Figure 4B) for the trials in the two databases.
For the narrow-band SNR, the BETA database had a significantly
lower SNR (3.996 ± 0.018 dB) than the benchmark database
(8.157 ± 0.024 dB), with a p-value of < 0.001, z = −142.212,
Mann-Whitney U-test. Similarly, the wide-band SNR of the
BETA database (−13.779 ± 0.013 dB) was significantly lower
than the benchmark database (−10.918 ± 0.017 dB), with a
p-value of < 0.001, z = −121.571, Mann-Whitney U-test.
This was due in part to the individual differences in the SNR
values of the two studies and in part because the EEG data were
recorded outside the electromagnetic shielding room in the BETA
database. The comparable results of the two SNR values also
demonstrate the validity of the wide-band SNR metric that takes
into account additional information on the wide-band noise
and harmonics.

In addition, the characteristics of SNR were analyzed with
respect to each stimulus frequency. For the BETA database,
the wide-band SNRs were calculated for the zero-padded trials,
and the SNR associated with each condition was obtained
by averaging the values per block and per person. Figure 5
illustrates the wide-band SNR corresponding to the 40 stimulus
frequencies. In general, a declining tendency in SNR can be
observed as the stimulus frequency increases. However, at some
stimulus frequencies, e.g., 11.6, 10.8, 12, and 9.6 Hz, the SNR
bumps up compared to their adjacent frequencies. Specifically,
the average SNR value at 15.8 Hz was elevated by 1.49 dB
compared to 15.6 Hz, which presumably was due in part to the
larger region of visual stimulation.

4.3. Phase and Visual Latency Estimation
In order to further compare the BETA database with the
benchmark database in Wang et al. (2017), we estimated
the phase and visual latency of the BETA database. Nine
consecutive stimulus frequencies in the first row of the
keyboard were selected, and the SSVEP from the Oz
channel (70 subjects) was extracted for analysis. The
comparison procedure was performed according to that
in the previous study (Wang et al., 2017) using a linear
regression between the estimated phase and stimulus
frequency (Russo and Spinelli, 1999). The visual latency for
each subject using the slope k of the linear regression is obtained

as follows:

Latency = −500 · k (6)

Figure 6 illustrates the phase as a function of the stimulus
frequency, and the bar plot of the estimated latencies
estimated by (6). The mean estimated visual latency was
124.96 ± 14.81 ms, which was close to 136.91 ± 18.4
ms of the benchmark database (Wang et al., 2017) and
approximated to 130 ms. Therefore, a 130-ms latency was
added to the SSVEP epochs for the subsequent classification
analysis.

4.4. Accuracy and ITR on Various
Algorithms
In this study, 11 frequency recognition methods, including six
supervisedmethods and five training-freemethods, were adopted
to evaluate the BETA database. For S1–S15, the epoch length
of 2 s was used for analysis, and for S16–S70, the epoch length
was 3 s. A sliding window from the stimulus onset (latency
corrected) with an interval of 0.2 s was applied to the epochs for
offline analysis.

4.4.1. Supervised Methods
We choose six supervised methods, including the task-related
component analysis (TRCA, Nakanishi et al., 2018), multi-
stimulus task-related component analysis (msTRCA, Wong
et al., 2020a), Extended CCA (Nakanishi et al., 2014), modified
Extended CCA (m-Extended CCA, Chen et al., 2015a), L1-
regularized multiway CCA (L1MCCA, Zhang et al., 2013), and
individual template-based CCA (ITCCA, Bin et al., 2011) for
comparison. The leave-one-out procedure on four blocks was
applied to each subject to calculate the accuracy and ITR.
Figure 7 illustrates the average accuracy and the ITR of the
supervised methods. The results showed that the msTRCA
outperformed other methods at data lengths < 1.4 s, and the
m-Extended CCA achieved the highest performance at data
lengths from 1.6 to 3 s. The one-way repeated measures ANOVA
revealed that there were significant differences between the
methods in the ITRs for all time windows. Specifically, for
a short time window of 0.6 s, the main effect of methods
showed there was a statistically significant difference in ITR,
F(1.895,130.728) = 186.528, p < 0.001, partial η2 = 0.730.
Post-hoc paired t-tests showed that the order was as follows:
msTRCA > TRCA > m-Extended CCA > Extended CCA >

ITCCA > L1MCCA in ITR, where “>” indicates p was <0.05
in the ITR with Bonferroni correction for pairwise comparison
between the two sides. For a medium-length time window of 1.2
s, the main effect of methods showed there was a statistically
significant difference in ITR, F(1.797,124.020) = 197.602, p <

0.001, partial η2 = 0.741. Post-hoc paired t-tests showed the
following: msTRCA / m-Extended CCA / TRCA > Extended
CCA > ITCCA > L1MCCA (msTRCA vs m-Extended CCA:
p = 0.678; m-Extended CCA vs TRCA: p = 1.000; Bonferroni
corrected). The data length corresponding to the highest ITR
varied between different methods; namely, the following results
were achieved: msTRCA: 145.26 ± 8.15 bpm at 0.6 s, TRCA:
139.58 ± 8.52 bpm at 0.6 s, m-Extended CCA: 130.58 ± 7.53
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FIGURE 3 | The amplitude spectrum as a function of stimulus frequency (frequency range: 8–15.8 Hz; frequency interval: 0.2 Hz). The spectral response of SSVEP

decreases rapidly as the number of harmonics increases and up to 5 harmonics are visible from the figure.

FIGURE 4 | Normalized histogram of narrow-band SNR (A) and wide-band SNR (B) for trials in the benchmark database and BETA. The red diagram indicates the

BETA, and the blue diagram indicates the benchmark database.
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FIGURE 5 | The wide-band SNR corresponding to the 40 stimulus frequencies (from 8 to 15.8 Hz with an interval of 0.2 Hz). A general declining tendency of SNR

with the stimulus frequency can be observed. The SNR is higher at 15.8 Hz presumably because the target has a larger shape of the region.

bpm at 0.8 s, Extended CCA: 119.17 ± 6.67 bpm at 1 s,
ITCCA: 88.72 ± 6.75 bpm at 1 s, L1MCCA: 73.42 ± 5.31 bpm
at 1.4 s).

4.4.2. Training-Free Methods
In this study, five training-free methods, including the minimum
energy combination (MEC, Friman et al., 2007), canonical
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FIGURE 6 | The phase as a function of stimulus frequency (A) and the bar plot of estimated latencies (B). The SSVEP of Oz channel at nine consecutive stimulus

frequencies (row 1 of the keyboard) is extracted for the purpose of analysis. The error bar indicates the standard deviation.

FIGURE 7 | The average classification accuracy (A) and ITR (B) for six supervised methods (msTRCA, TRCA, m-Extended CCA, Extended CCA, ITCCA, and

L1MCCA). Ten data lengths ranging from 0.2 to 3 s with an interval of 0.2 s were used for evaluation. The gaze shift time used the calculation of ITR was 0.55 s.

correlation analysis (CCA, Bin et al., 2009), multivariate
synchronization index (MSI, Zhang et al., 2014), filter bank
canonical correlation analysis (FBCCA, Chen et al., 2015b), and
canonical variates with autoregressive spectral analysis (CVARS,
Abu-Alqumsan and Peer, 2016) are compared. As illustrated in
Figure 8, the FBCCAwas superior over the othermethods at data
lengths <2 s, and the CVARS outperformed the others at data
lengths from 2 to 3 s. Significant differences in ITR were found
between the methods by the one-way repeated measures ANOVA
for all the data lengths. For a medium-length time window of
1.4 s, the main effect of methods showed there was a statistically
significant difference in ITR, F(1.876,129.451) = 79.227, p < 0.001,
partial η2 = 0.534. Post-hoc paired t-tests with Bonferroni
correction showed the following result: FBCCA > CVARS >

CCA / MSI / MEC, p < 0.05 for all pairwise comparisons except
CCA vs MSI (p = 1.000), CCA vs. MEC (p = 1.000), MSI
vs. MEC (p = 1.000). As for the training-free methods, the
highest ITR was achieved after 1.2 s, and the result was as follows:
FBCCA: 98.79± 4.49 bpm at 1.4 s, CVARS: 93.08± 4.39 bpm at
1.6 s, CCA: 72.54 ± 4.54 bpm at 1.8 s, MSI: 74.54 ± 4.46 bpm at
1.8 s, MEC: 73.23± 4.43 bpm at 1.8 s.

Note that for the TRCA andmsTRCA, the ensemble and filter-
bank scheme were employed by default. Therefore, to ensure a

fair comparison, the number of harmonics Nh was set to 5 in all
the methods with sinusoidal templates except the m-Extended
CCA according to Chen et al. (2015a) (Nh = 2). For all the
methods without a filter bank scheme, the trials were band-pass
filtered between 6 and 80 Hz except for the CVARS method,
which was in line with the previous study (Nakanishi et al., 2015).

4.5. Correlation Between SNR and ITR
In order to explore the relationship between the SNR and
ITR metrics, the wide-band and narrow-band SNRs were both
investigated. The maximum ITR for each subject (after averaging
the ITR values by block) from the training-free FBCCA was
chosen for the analysis. Figure 9 illustrates the scatter plots of the
narrow-band and wide-band SNRs vs the ITR. As can be seen
in Figure 9, the ITR was positively correlated with the SNR for
both the narrow-band and wide-band values. For the narrow-
band SNR, the statistical analysis reveals that the metric could
significantly predict the ITR, F(1,68) = 45.600, p < 0.001, and
the narrow-band SNR accounted for 40.1% of the variation in the
ITR with adjusted R2 = 0.393. The wide-band SNR could also
statistically significantly predict the ITR, F(1,68) = 84.944, p <

0.001, accounting for 55.5% of the variation in the ITR with
adjusted R2 = 0.549. This result indicates that the metric of a
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FIGURE 8 | The average classification accuracy (A) and ITR (B) of five training-free methods (FBCCA, CVARS, MEC, MSI, and CCA). Ten data lengths ranging from

0.2 to 3 s with an interval of 0.2 s were used for evaluation. The gaze shift time used the calculation of ITR was 0.55 s.

FIGURE 9 | The scatter plot of narrow-band SNR vs. ITR (A) and wide-band SNR vs. ITR value (B). The dash line indicates a linear model regressed on the data (A:

adjusted R2 = 0.393, p < 0.001; B: adjusted R2 = 0.549, p < 0.001). The regression indicates that the wide-band SNR correlated better with the ITR than the

narrow-band SNR.

wide-band SNR is more correlated with and can predict better
ITR than a narrow-band SNR.

4.6. BCI Quotient
The electroencephalographic signals, including the SSVEP
showed individual differences in population. In this study, we
propose a BCI quotient to characterize the subject’s capacity
to use the SSVEP-BCI measured at the population level.
Equivalent to the scoring procedure of intelligence quotient
(IQ) (Wechsler, 2008), the (SSVEP-) BCI quotient is defined
as follows:

QuotientBCI = 15 ·
SNR− µ

σ
+ 100 (7)

where SNR represents the wide-band SNR, and the mean
and standard deviation in this study are µ = −13.78 and
σ = 2.31, respectively, as shown in Figure 10. The mean
and standard deviation can be estimated more accurately for
a larger database in the future. The BCI quotient rescales
an individual’s SNR of the SSVEP to the range of normal
distribution N (100, 15). Since the BCI quotient denotes a
relative value derived from SNR, and SNR is correlated with
the ITR, the BCI quotient has the potential to measure signal

quality and performance for individuals in the SSVEP-BCI.
Higher BCI quotient values indicate a higher probability of
good BCI performance. For instance, the BCI quotients of S20
and S23 were 74.71 and 139.21, respectively, which reveals a
prior to the individual level of the ITR, i.e., 73.09 bpm for
S20 and 192.63 bpm for S23. The BCI quotients for each
subject were listed in Table S1 and the result of a regression
analysis between the BCI quotient and ITR was provided in the
Supplementary Material.

5. DISCUSSION

5.1. Data Quality and Its Applicability
Compared to the benchmark database (Wang et al., 2017), the
BETA database had lower SNR and the corresponding ITR in the
classification (for the benchmark database: FBCCA, 117.96±7.78

bpm at 1.2 s; m-Extended CCA, 190.41 ± 7.90 bpm at 0.8 s;

CCA, 90.16 ± 6.81 bpm at 1.6s; 0.55-s rest time for comparison;

Chen et al., 2015b; Wang et al., 2017). This can be expected since,
in BCI applications, neither there is actually electromagnetic

shielding condition nor can be ensured that each subject has
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FIGURE 10 | The distribution of wide-band SNR and its fitting to a normal

distribution. An individual’s SNR of the SSVEP is rescaled to the range of

normal distribution by Equation (7) to obtain the BCI quotient.

a high SNR of the SSVEP. The discrepancy in SNR was due

in part to the distinct stimulus duration, which was 2 or 3 s

for the BETA database and 5 s for the benchmark database.

However, even at the same stimulus duration (a 3-s trial after
stimulus onset for 55 subjects in the BETA and 35 subjects in the

benchmark), the BETA database had significantly lower SNR than
the benchmark database (narrow-band SNR: BETA 4.296±0.021
dB, benchmark 5.218±0.020 dB, p < 0.001, z = −34.039, Mann-
Whitney U-test; wide-band SNR: BETA −13.531 ± 0.015 dB,
benchmark−12.912± 0.015 dB, p < 0.001, z = −28.814, Mann-
Whitney U-test). Therefore, the present BETA database poses
challenges to the traditional frequency recognition methods and
provides opportunities for the development of robust frequency
recognition algorithms intended for real-world applications.

A large number of subjects in the BETA database has the
merit of reducing the over-fitting and can provide an unbiased
estimation in the evaluation of frequency recognition algorithms.
Also, a large volume of the BETA provides an opportunity for
the research on transfer learning for the purpose of exploiting
common discriminative patterns across subjects. Note that in
the BETA database, the number of blocks of each subject is
smaller than that in the benchmark database. Since reducing the
training and calibration time is critical for the BCI application,
the proposed database can serve as a test-bed for the development
of supervised frequency recognition methods based on smaller
training samples or few-shot learning. It is noteworthy that the
application scenario of the BETA database is not limited to the
40-target speller presented in the study. Namely, practitioners
can select a subset of the 40 targets (e.g., 4, 8, 12 targets) and
design customized paradigms to meet the requirements of a
variety of real-world applications. However, since the paradigm
of the BETA database falls into the category of dependent BCI
where subjects were instructed to redirect their gaze during
target selection, the gaze shifting limits its applicability for
patient users challenged by oculomotor control. Specifically for

these scenarios, gaze independent SSVEP-BCI that is based on
covert selective attention (Kelly et al., 2005; Allison et al., 2008;
Zhang et al., 2010; Tello et al., 2016) or stimulation via closed
eyes (Lim et al., 2013; Hwang et al., 2015) could be deployed,
although the information throughput is low with only 2 or 3
targets and modest accuracy. Nevertheless, the BETA database
shows its potential to unlock new applications in SSVEP-BCI for
alternative and augmentative communication.With the advent of
big data, the BETA shows promise for facilitating brain modeling
at a population level and help developing novel classification
approaches or learning methodology, such as federated learning
(Mcmahan et al., 2017) based on big data.

5.2. Supervised and Training-Free Methods
In general, the state-of-the-art supervised frequency recognition
methods have the advantage of higher performance regarding
the ITR, and the training-free methods excel in ease of use.
In this study, two of the supervised methods (the m-Extended
CCA, and the Extended CCA) outperformed the five training-
free algorithms at all the data lengths. Specifically, at the short-
time window (0.2–1 s) the supervised methods (the msTRCA,
the TRCA, the m-Extended CCA, and the Extended CCA)
outperformed the training-free methods by a large margin
(see Figure S1). This was because the introduction of the
EEG training template and the learned spatial filters facilitated
the SSVEP classification. At the time window longer than
2 s (2.2–3 s), the post hoc paired t-tests showed that no
significant difference is between the m-Extended CCA and
the Extended CCA, between the FBCCA and the CVARS,
and among the ITCCA, the CCA, the MEC, and the MSI
(p > 0.05, Bonferroni corrected). Such a result suggests certain
common mathematical grounds shared by these algorithms
in principle (Wong et al., 2020b). Interestingly, as reported
in the previous study (Nakanishi et al., 2018), the TRCA
method performance decreased presumably due to the lack
of sufficient training block for subjects with low SNR. As
evidenced by the previous study (Nakanishi et al., 2018), for the
TRCA the number of training data greatly affects classification
accuracy (≈ 0.85 with 11 training blocks and ≈ 0.65 with
two training blocks for a 0.3-s time window). This implies
that methods with a sinusoidal reference template (e.g., m-
Extended CCA, Extended CCA, and FBCCA, etc.) may be
more robust than those without it (Wong et al., 2020b). To
sum up, the presented classification analysis demonstrates the
utility of different competing methods on the BETA. Besides,
the comparison of different methods on a single database
complements the previous work of Zerafa et al. (2018), where
the performance of various methods was not compared on the
same database.

5.3. SNR Comparison
The SNR-based analysis results showed that the wide-band SNR
was more correlated with the ITR than the narrow-band SNR. As
shown in Figure 4, a transition from the narrow-band SNR to the
wide-band SNR did not affect the relative relationship between
the SNRs of the two databases. Nevertheless, the wide-band SNR
metric reduces the skewness of data distribution from −0.708
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to −0.081 for benchmark database, and from −1.108 to −0.142
for the BETA database; the narrow-band SNR was followed by
the wide-band SNR, which makes the SNR characteristic be
more likely to follow the Gaussian distribution. According to
Parseval’s theorem, the spectral power of a signal is equal to
its power in the time domain, so the formulated wide-band
SNR has equivalent mathematical underpinning as a metric of
temporal SNR counterpart. Apart from its expressive power of
wide-band SNR, this metric is also intuitive in the description
of signal and noise due to the frequency tagging attribute of the
SSVEP.

6. CONCLUSION

In this paper, a BEnchmark database Towards BCI Application
(BETA) for the 40-target SSVEP-BCI paradigm is presented.
The BETA database is featured by its large number of
subjects and its paradigm that is well-suited for real-world
applications. The quality of the BETA is validated by the
typical temporal, spectral and spatial profile of the SSVEP,
together with the SNR and the estimated visual latency. The
BETA database compares eleven frequency recognition methods,
including six supervised methods and five training-free methods.
The result of classification analysis validates the data and
demonstrates the performance of different methods in one
arena as well. As for the metric to characterize the SSVEP,
we recommend adopting the wide-band SNR at the single-
trial level and use the BCI quotient at the population level.
We expect the proposed BETA database can pave the way
for the development of methods and paradigms for practical
BCI and push the boundary of the BCI toward real-world
application.
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