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Abstract

Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites
may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including
breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs
and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association
studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and
41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and
BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER)
and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds
ratio (OR) 0.92; 95% confidence interval (CI): 0.88–0.96), rs1052532 (OR 0.97; 95% CI: 0.95–0.99), rs10719 (OR 0.97; 95% CI:
0.94–0.99), rs4687554 (OR 0.97; 95% CI: 0.95–0.99, and rs3134615 (OR 1.03; 95% CI: 1.01–1.05) located in the 39 UTR of CASP8,
HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in
initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene
expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative
variants for the observed risk effects.
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Introduction

Breast cancer is the most common women’s cancer and is a

leading cause of cancer mortality [1]. Inherited genetic variation

has been associated with the initiation, development and

progression of breast cancer. Studies on twins have suggested that

hereditary predisposing factors are involved in up to one third of

all breast cancers [2]. Many genetic loci have been associated with

breast cancer risk and collectively explain approximately 35% of

the familial risk [3,4]. The largest genetic association study of

breast cancer to date identified 41 novel low penetrance

susceptibility loci [4] by selecting nearly 30,000 SNPs from a

meta-analysis of nine genome-wide association (GWA) studies and

genotyping them using 41,785 cases and 41,880 controls of

European ancestry from studies in the Breast Cancer Association

Consortium (BCAC). These 41 susceptibility loci probably

represent the tip of the ice berg, and additional SNPs from the

combined GWAS might explain a similar fraction of familial risk

to that attributed to the already identified loci [4].

Mature miRNAs are 20–23 nucleotide, single-stranded RNA

molecules that play a crucial role in gene expression regulation for

many cellular processes including differentiation potential and

development pattern. MiRNAs undergo a stepwise maturation

process involving an array of miRNA machinery components.

Drosha and DGCR8 mediate the cleavage of long primary

miRNA transcripts (pri-miRNAs) into shorter pre-miRNAs in the

nucleus [5,6]. The pre-miRNAs are then transported to the

cytoplasm where they are further cleaved by Dicer to produce

mature miRNAs [7]. MiRNAs interact by pairing with the 39

untranslated region (UTR), and also within the coding region and

59 UTR of the corresponding mRNAs leading to mRNA

destabilization, cleavage or translation repression. More effective

mRNA destabilization is achieved when miRNA targets the

3’UTR rather than other mRNA regions [8–10]. An individual

miRNA may regulate approximately 100 distinct mRNAs, and

together more than 1000 human miRNAs are believed to

modulate more than half of the mRNA species encoded in the

genome [11,12]. Additionally, most mRNAs possess binding sites

for miRNAs [13]. MiRNAs are involved in tumorigenesis in that

they can be either oncogenic when tumor suppressor genes are

targeted, or genomic guardians (tumour suppressor miRNAs)

when oncogenes are targeted [14]. Additionally it has been

suggested that they may modulate both metastasis [15] and

chemotherapy resistance [16]. MiRNAs have also been shown to

have altered expression levels in tumours compared to normal

tissue and between tumor subtypes in breast cancer among other

carcinoma types [17–19]. SNPs may affect miRNA machinery

genes or miRNAs activity; however SNPs can also create, abolish

or modify miRNA binding sites in their binding regions.

Polymorphisms in miRNA binding sites have been studied in

regard to the risk of several cancers [20], including breast cancer

[21–23]. These studies have found evidence for association of

miRNA related SNPs and cancer risk, but the study sample sizes

have been relatively small.

In this study, we investigate associations between miRNA-

related polymorphisms and breast cancer risk by using a meta-
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analysis of nine GWAS and subsequent genotyping of top hits

using 41,785 cases and 41,880 controls of European ancestry from

the BCAC. To our knowledge, this is thus far the largest

investigation of associations between miRNA-related polymor-

phisms and breast cancer susceptibility.

Materials and Methods

SNP selection and genotyping
SNPs in mature or pre-miRNAs, in genes of the miRNA

machinery and in 3’UTR regions of protein coding genes with a

potential effect on miRNA binding were systematically searched

from Ensembl (hg18/build36) and Patrocles databases [24].

Additionally, tagging SNPs for such with r2$0.8 were also

identified utilizing the public HapMap SNP database. By this in
silico approach we identified altogether 147,801 candidate SNPs

and 12,550 tagging SNPs. These SNPs were then overlayed with

those from the combined GWAS from the BCAC [4] and

altogether 2196 SNPs were present (either genotyped or imputed)

in the combined GWAS. These SNPs were genotyped with

Illumina or Affymetrix arrays, as described previously [25–32].

The combined GWAS data were imputed for all scans using

HapMap version 2 CEU as a reference in similar fashion to that

presented by Michailidou and colleagues [4] with the exception

that the HapMap version 2 release 21 was used at the time the

overlay was performed. Analysis using a 1-degree-of-freedom

trend test of these 2196 SNPs in the combined GWAS indicated

some evidence of association with breast cancer risk for 44 SNPs

(p,0.09). Notably, the combined GWAS included imputed data

generated using HapMap version 2 release 21 (based on NCBI

build 35 (dbSNP b125)), whereas the results presented here for the

combined GWAS are based on imputation using HapMap version

2 release 22 (based on NCBI build 36 (dbSNP b126)). In the

release 22, a number of SNPs were excluded due to mapping

inconsistencies in build 35 relative to build 36. Hence, the

estimates from the combined GWAS may slightly differ from the

initial association analysis. The 44 SNPs (including 30 candidate

and 14 tagging SNP) were genotyped on additional samples in the

BCAC using the custom Illumina Infinium array (iCOGS) which

included a total of 211,155 SNPs as described previously. The

detailed description of quality control process for combined

GWAS and iCOGS genotyping data was presented in [4].

Of the 42 SNPs that passed quality control [4], two were

located in miRNA genes (one candidate SNP located in pre-

miRNA hsa-miR-2110 and one tag SNP tagging a mature hsa-

mir-548l variant), and four SNPs were located in miRNA

machinery genes (SMAD5, SND1, CNOT4 and DROSHA).

The genotyped DROSHA SNP tags the 39 UTR miRNA binding

site variant in the DROSHA gene. The remaining 38 candidate or

tag SNPs were located in, or tagged to a predicted miRNA binding

site in the 39 UTR of protein coding genes. All 42 SNPs are

described in Table 1. The workflow of the SNP selection in

different stages is illustrated in Figure 1.

Study sample
The combined GWAS included nine breast cancer studies

totalling 10,052 cases and 12,575 controls of European ethnic

background. Details and study-specific subject numbers are

presented in Table S1. Since the GWAS were limited to patients

of European ethnic background we further utilized 41,785 cases

ascertained for their first primary, invasive breast cancer and

41,880 controls of European ancestry from 41 BCAC studies

genotyped using the iCOGS array (Table S2). For a subgroup

analysis of ER negative and ER positive cases, as well as cases aged

less than 50 years at diagnosis, we included all the cases for which

the respective data were available. The ER subgroup analysis was

based on 702 ER negative cases and 2,019 ER positive cases from

five GWAS studies and 7,200 ER negative cases from 40 BCAC

studies and 26,302 ER positive cases from 34 BCAC studies. The

analysis of cases aged less than 50 years at diagnosis was based on

3,470 cases from three GWAS studies and 9,483 cases from

35 BCAC studies. All participating studies conform to the

Declaration of Helsinki and were approved by the respective

ethical review boards and ethics committees (Tables S1 and S2),

and all participants in these studies had provided written consent

for the research.

Statistical methods
We used logistic regression to estimate per-allele log-odds ratios

and standard errors including the study as a covariate. We also

included principal components as covariates in order to correct for

potential hidden population structure. In the GWAS, for two

studies (UK2 and HEBCS) the estimates were adjusted for the first

three principal components and in the iCOGS analysis we used

the first six principal components and an additional component to

reduce inflation for the LMBC study, as described previously [4].

Subgroup analyses were carried out for ER negative and positive

subgroups and for the group aged less than 50 years at diagnosis.

For meta-analysis, we combined the estimates from the combined

GWAS and iCOGS with a fixed effects model using the inverse

variance weighted method. In the meta-analysis, the subjects

involved in both combined GWAS and iCOGS (1880) were only

taken into account once. In order to adust for P-values against

multiple testing, we used Benjamini Hochberg correction. The

adjusted P-values are shown in Table 2 along with the nominal P-

values. In the text we report the nominal P-values. The statistical

analyses were conducted using the R 2.14.0 statistical computing

environment (http://www.r-project.org/).

Results

For the 42 SNPs we successfully genotyped, estimates of

association from the combined GWAS and from iCOGS analysis

are shown in Table S3. Twenty-one SNPs showed consistent

Figure 1. Workflow of miRNA SNP selection.
doi:10.1371/journal.pone.0109973.g001
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associations with breast cancer risk in the combined GWAS and in

iCOGS analysis; results from the meta-analysis are shown in

Table 2. The most significantly associated SNP, rs702681 (OR

1.06 [95%CI 1.04–1.08]; P 3.9610210), is located in the 3’UTR

of MIER3, close to the known breast cancer susceptibility gene

MAP3K1. The SNP rs702681 is located at the same 5q11.2 locus

as the previously published risk SNP rs889312 [33] (correlation

r2 = 0.3). When the two SNPs were analysed in the same logistic

regression model, the association with rs889312, but not that with

rs702681 remained nominally statistically significant, suggesting

that rs702681 is unlikely to be the causal SNP at this locus. The

five SNPs with the significant novel associations from the meta-

analysis (P#5.0761023and adjusted P#3.5561022 after correc-

tion for multiple testing) were rs1045494, (OR 0.92 [95%CI 0.88–

0.96]; P = 5.9061025), rs1052532, (OR 0.97 [95%CI 0.95–0.99];

P = 7.7861024), rs10719, (OR 0.97 [95%CI 0.94–0.99];

P = 1.3561023) rs4687554 (OR 0.97 [95%CI 0.95–0.99];

P = 1.7161023) and rs3134615 (OR 1.03 [95%CI 1.01–1.05];

P = 5.0761023) located in 39 UTR of Caspase-8 (CASP8), HD

Domain Containing 3 (HDDC3), DROSHA, Musculoskeletal,

Embryonic Nuclear Protein 1 (MUSTN1) and V-Myc Myelocy-

tomatosis Viral Oncogene Homolog 1 (MYCL1), respectively

(Table 2). SNP rs1045494 is tagging the hsa-miR-938 binding site

SNP rs1045487 (r2 = 1.0) of CASP8 and the SNP rs1052532 in

HDDC3 is predicted to abolish the binding site for hsa-miR-1224-

3p. The SNP rs10719 is predicted to abolish the hsa-miR-1298

binding site in the 39 UTR of DROSHA. SNP rs4687554 tags the

hsa-miR-891b binding site SNP rs6445538 (r2 = 1.0) of MUSTN1
and rs3134615 is located at the binding site of hsa-miR-1827 of

MYCL1. There was no evidence for heterogeneity in the per-allele

OR for any SNP. The per study per allele ORs for these five

miRNA binding site SNPs from the combined GWAS along with

per-SNP heterogeneity variance P-values are shown in Figure S1

and from the iCOGS in Figure S2. Next we analysed the SNPs by

ER status-defined subtype, and for cases aged less than 50 years at

diagnosis, for risk associations in the meta-analysis of combined

GWAS and iCOGS (Tables S4, S5 and S6). These analyses did

not reveal any additional significant results. For rs1045494 in

CASP8, rs4687554 in MUSTN1 and rs3134615 in MYCL1 (OR

1.03 [95%CI 1.01–1.05]; P = 7.7561024) a more significant

association with breast cancer risk was found for the ER positive

subgroup than in the main analysis, but the result from the test for

heterogeneity by ER status was not significant (data not shown).

All associations were estimated using an additive inheritance

model. Dominant and recessive models did not improve the

estimates (data not shown).

Discussion

We investigated associations between genetic variation in

miRNAs, in the genes of the miRNA machinery and in the

miRNA binding sites and the risk of breast cancer. We identified

several SNPs that are predicted to abolish an miRNA binding site

and that are significantly associated with breast cancer risk.

Previous studies investigating miRNA related SNPs, especially in

miRNA binding sites have included predefined sets of genes.

Nicoloso and colleagues investigated 38 previously identified

breast cancer risk SNPs and found two to modify miRNA binding

sites in TGFB1 and XRCC1 in vitro [23]. Neither of these were

included in our data set. Liang and colleagues investigated 134

potential miRNA binding sites in cancer-related genes and found

six miRNA binding site SNPs that were associated with ovarian

cancer risk [34].T
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In the meta-analysis of combined GWAS and iCOGS for main

effects, for four of the five most significant miRNA binding site

SNPs, the minor allele was associated with a decreased breast

cancer risk. The minor allele of SNP rs3134615 in 39 UTR of

MYCL1 was associated with an increased breast cancer risk. All

the five most significant miRNA binding site SNPs locate in 39

UTR and have been predicted to abolish the miRNA binding site.

The defect in miRNA-mediated regulation would be expected to

lead to an increase in the translation of the corresponding encoded

protein. The five genes, whose regulation may be affected by the

miRNA-associated SNPs, include the pre-apoptotic gene CASP8,

HDDC3, miRNA biogenesis master regulator DROSHA, MYC-

family member MYCL1 and MUSTN1. CASP8 is involved in

apoptosis in breast cancer cells [35], and many studies have

reported polymorphisms in this gene to be associated with risks for

several cancers [36,37] including breast cancer [38,39], indicating

the importance of CASP8 in tumor development. SNP rs1045494

studied here is located close to the coding region SNP rs1045485

that has been previously shown to have a stronger protective effect

[38,40,41]. Interestingly, Michalidou and colleagues reported this

SNP as having only weak evidence for an association (P 0.0013 in

combined GWAS and iCOGS) [4], but these two SNPs

(rs1045485 and rs1045494) are not correlated (r2 = 0.001 in

Caucasian population). Neither is rs1045494 correlated with the

more strongly associated rs1830298 SNP, identified through fine-

mapping of the region (r2 = 0.02) [42]. Rs1045494 tags SNP

rs1045487 (r2 = 1.0) which is predicted to abolish the hsa-miR-938

binding site and thus may affect CASP8 expression. There is very

little reported evidence on the involvement of HDDC3 or the hsa-

miR-1224-3p in cancer, indicating a novel association with risk.

HDDC3 has been suggested to be involved in the starvation

response [43]. The HDDC3 gene is expressed at higher levels by

several different tumor types, including breast tumors, than by

normal tissue [44]. DROSHA is a miRNA master regulator. It is a

member of the RNase III enzyme family, belongs to the miRNA

biogenesis pathway and is the core nuclease that processes pri-

miRNAs into pre-miRNAs in the nucleus [5,6]. The SNP rs10719

in the 39 UTR of DROSHA is predicted to abolish the hsa-miR-

1298 binding site. Hsa-miR-1298 is predicted to target DROSHA
by the Patrocles prediction as well as by TargetScan [45] and

PITA [46] prediction algorithms. Recently a small Korean study

reported another SNP rs644236, tagging the SNP rs10719

(r2 = 0.955 in CEU population and r2 = 0.876 in Asian population

(combined CHB and JPT)) to be associated with elevated breast

cancer risk [47]. When taking into account the opposite major and

minors alleles in the Asian and European populations for SNPs

rs644236 and rs10719, this result is in concordance with our

results where both the combined GWAS as well as the iCOGS

analysis consistently indicated an association of the minor allele of

SNP rs10719 with reduced breast cancer risk. We also found the

minor allele of SNP rs3134615 in the 39 UTR of MYCL1 to be

associated with an increased risk. MYCL1 (L-MYC) belongs to the

same family of transcription factors as the known proto-oncogene

MYC (C-MYC) and they share a high degree of structural

similarity [48]. The MYCL1 gene has previously been reported to

be amplified and overexpressed in ovarian cancer [49]. A case-

control study by Xiong and colleagues reported SNP rs3134615 to

be significantly associated with increased risk of small cell lung

cancer [50]. SNP rs3134615 was predicted by Patrocles to abolish

the hsa-miR-1827 binding site. This has also been suggested by

functional studies where MYCL1 was found as the target of hsa-

miR-1827 and the SNP rs3134615 was also found to increase

MYCL1 expression [50]. The evidence from functional studies is

consistent with our finding that SNP rs3134615 might increase

breast cancer risk. MUSTN1 has been shown to be involved in the

development and regeneration of the musculoskeletal system [51].

Thus far no evidence of association between MUSTN1 and breast

cancer has been reported, but the MUSTN1 gene is expressed in

the mammary glands [52].

Since only a small fraction of miRNA binding sites has been

experimentally validated, we selected SNPs that had been

computationally predicted to affect miRNA binding sites. For

our original SNP selection we used the Patrocles database that

contains predicted miRNA binding sites and also compiles

perturbation prediction of SNP effects. There are a multitude of

prediction programs and their performance has been evaluated

[53]. Witkos and colleagues find target prediction algorithms that

utilize orthologous sequence alignment, like Patrocles, to be the

most reliable.

The followup of the 42 miRNA related SNPs identified five

significant associations with breast cancer risk. Although the

individual risk effects were subtle, considering that we could only

investigate a small proportion of our initial in silico data set of

miRNA related SNPs (over 140,000 SNPs) this may suggest that

genetic polymorphisms affecting the miRNA regulation could

have a considerable combined effect on breast cancer risk.

It should be noted that, until fine mapping studies are carried

out for these loci, it is not clear whether these miRNA-related

SNPs are the variants responsible for the observed associations.

This comprehensive analysis of miRNA related polymorphisms

using a large two stage study of women with European ancestry

provides evidence for miRNA related SNPs being potential

modulators of breast cancer risk.
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Beate Pesch, Sylvia Rabstein, Anne Lotz: Institute of the Ruhr University

Bochum (IPA), Bochum, Germany. Volker Harth: Institute for Occupa-

tional Medicine and Maritime Medicine, University Medical Center

Hamburg-Eppendorf, Germany.

kConFab Investigators. See http://www.kconfab.org/Organisation/

Members.aspx

AOCS. See http://www.aocstudy.org/org_coll.asp

Author Contributions

Conceived and designed the experiments: HN DG GCT AC RLM DFE

SK KM JCC AD MS MGC PH. Performed the experiments: SK DG KM

RLM DFE. Analyzed the data: SK DG KM RLM HN DFE. Contributed

reagents/materials/analysis tools: SK HN DG KM GCT AC RLM PDPP

UH MKS A. Meindl RW TH CB K. Aaltonen GGG DFE PAF MJH ILA

H. Brauch QW EJS H. Brenner AKD MSG FL TAM K. Aittomäki J. Liu
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