

Genomics Proteomics Bioinformatics

www.elsevier.com/locate/gpb www.sciencedirect.com

CORRIGENDUM

Corrigendum to "An Integrated Systems Biology Approach Identifies the Proteasome as A Critical Host Machinery for ZIKV and DENV Replication" [Genomics Proteomics Bioinformatics 19 (1) (2021) 108–122]

Guang Song^{1,#}, Emily M. Lee^{2,#}, Jianbo Pan^{3,#}, Miao Xu^{4,5,#}, Hee-Sool Rho¹, Yichen Cheng², Nadia Whitt⁴, Shu Yang⁴, Jennifer Kouznetsova⁴, Carleen Klumpp-Thomas⁴, Samuel G. Michael⁴, Cedric Moore¹, Ki-Jun Yoon^{6,7}, Kimberly M. Christian⁷, Anton Simeonov⁴, Wenwei Huang⁴, Menghang Xia⁴, Ruili Huang⁴, Madhu Lal-Nag^{4,*}, Hengli Tang^{2,*}, Wei Zheng^{4,*}, Jiang Qian^{3,*}, Hongjun Song^{6,7,8,9,10,*}, Guo-li Ming^{6,7,8,9,*}, Heng Zhu^{1,*}

The authors regret that there were errors in Figure 6E published in Issue 1, 2021. The correct Figure 6 is shown below. The authors would like to apologize for any inconvenience caused.

¹ Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA

² Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA

³ Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA

⁴ National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA

⁵ Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China

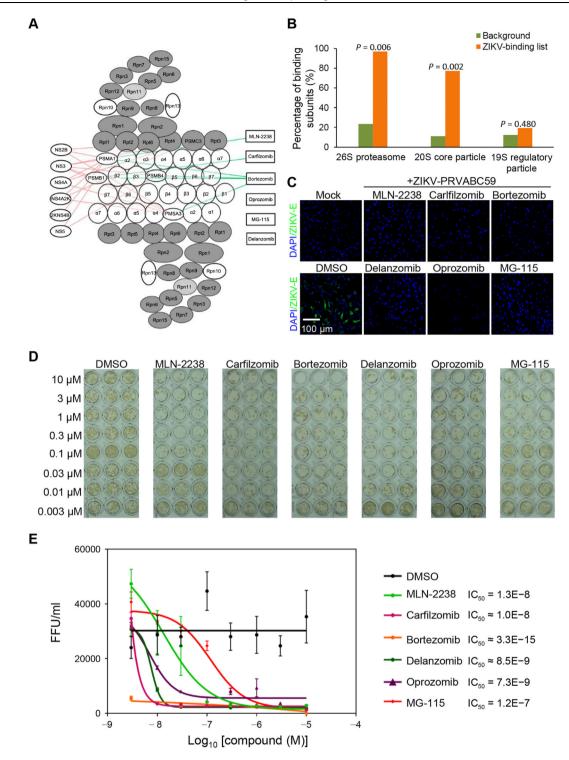
⁶ Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

⁷ Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

⁸ Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

⁹ Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

¹⁰ The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA


DOI of original article: https://doi.org/10.1016/j.gpb.2020.06.016. Corresponding authors.

E-mail: Madhu.Lal@nih.gov (Lal-Nag M), tang@bio.fsu.edu (Tang H), wzheng@mail.nih.gov (Zheng W), jiang.qian@jhmi.edu (Qian J), shongjun@pennmedicine.upenn.edu (Song H), gming@pennmedicine.upenn.edu (Ming Gl), hzhu4@jhmi.edu (Zhu H).

[#] Equal contribution.

Peer review under responsibility of Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China.

https://doi.org/10.1016/j.gpb.2022.12.009 1672-0229 © 2022 The Authors. Published by Elsevier B.V. and Science Press on behalf of Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

A. PPI network analysis of virus proteins and human proteasome subunits reveals that most of the interacting proteasome subunits are part of the 20S core particle. **B.** Percentage of the ZIKV-binding subunits in 26S proteasome and its two sub-complexes, the 20S core particle and the 19S regulatory particle. **C.** Inhibition of ZIKV expression in human glioblastoma cell line SNB-19 by a panel of proteasome inhibitors. The SNB-19 cells were infected by ZIKV PRVABC59 (MOI = 1) in the presence of 1 μ M of each inhibitor and then incubated for 48 h before the cultures were analyzed for ZIKV-E protein expression by immunostaining. Mock indicates cells without ZIKV infection. Scale bar: 100 μ m. **D.** and **E.** Sample images (D) and quantification (E) of titer assay to assess the potency of the proteasome inhibitors against infectious ZIKV production in SNB-19 cells. All data were normalized to that of 0 μ M for each compound. Dose-dependent antiviral activity is presented as fluorescent focus-forming units per ml (FFU/ml) and data are represented as mean \pm SD (n = 6). Curves represent best fits for calculating IC₅₀ values (listed to the right). MOI, multiplicity of infection; ZIKV-E, ZIKV envelope.