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a b s t r a c t 

Late gadolinium enhancement magnetic resonance imaging (LGE MRI) appears to be a promising alterna- 

tive for scar assessment in patients with atrial fibrillation (AF). Automating the quantification and anal- 

ysis of atrial scars can be challenging due to the low image quality. In this work, we propose a fully 

automated method based on the graph-cuts framework, where the potentials of the graph are learned on 

a surface mesh of the left atrium (LA) using a multi-scale convolutional neural network (MS-CNN). For 

validation, we have included fifty-eight images with manual delineations. MS-CNN, which can efficiently 

incorporate both the local and global texture information of the images, has been shown to evidently im- 

prove the segmentation accuracy of the proposed graph-cuts based method. The segmentation could be 

further improved when the contribution between the t-link and n-link weights of the graph is balanced. 

The proposed method achieves a mean accuracy of 0.856 ± 0.033 and mean Dice score of 0.702 ± 0.071 

for LA scar quantification. Compared to the conventional methods, which are based on the manual de- 

lineation of LA for initialization, our method is fully automatic and has demonstrated significantly better 

Dice score and accuracy ( p < 0.01). The method is promising and can be potentially useful in diagnosis 

and prognosis of AF. 

© 2019 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Atrial fibrillation (AF) is the most common arrhythmia observed

n clinical practice, occurring in up to 1% of the population and ris-

ng fast with advancing age ( Chugh et al., 2013 ). Radiofrequency

atheter ablation using the pulmonary vein (PV) isolation tech-

ique has emerged as one of the most common methods for the

reatment of AF patients ( Wilber et al., 2010; Calkins et al., 2012 ).

uantification of atrial scars is potentially beneficial in selecting

andidates and guiding ablation treatment. Late gadolinium en-

ancement magnetic resonance imaging (LGE MRI) is a promising

echnique to visualize and quantify the atrial scars ( Vergara and

arrouche, 2011 ). Many clinical studies mainly focus on the lo-
∗ Corresponding author. 
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ation and extent of scarring areas of the left atrium (LA) my-

cardium ( McGann et al., 2008; Vergara et al., 2011; Badger et al.,

010 ). 

Automatic delineation of scars from LGE MRI is still challenging

ue to various reasons. First, the image quality of LGE MRI could

e poor. Second, the prior model of scars is hard to construct on

ccount of the various LA shapes, the thin wall (mean thickness of

.89 ± 0.48 mm reported by Beinart et al., 2011 ), the surrounding

nhanced regions and the complex patterns of scars in AF patients.

ig. 1 illustrates and explains the challenges in more details. To

he best of our knowledge, little work has been reported in the

iterature to achieve the fully automatic quantification of LA scars

rom LGE MRI. 

The most widespread methods for atrial scar segmentation are

ainly based on thresholding ( Badger et al., 2010; Karim et al.,

013 ). Pontecorboli et al. (2016) provided an overall review of scar
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. The challenges of automatic delineation of scars from LGE MRI: (a) two typical LGE MRIs with poor quality; (b) thin atrial walls highlighted using bright white color 

in the figure; (c) surrounding enhanced regions pointed out by the arrows, where (1) and (2) respectively indicate the enhanced walls of descending and ascending aorta, 

(3) denotes the enhanced walls of right atrium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r  

h

 

o  

t  

t  

t  

s

 

o  

n  

f  

v  

e  

g  

p  

t  

l  

v  

i  

t  

v  

p  

f  

r  

o  

b  

c  

n  

t  

g  

o  

r  

t  

t

 

(  

C  

s  

p  

e  

a  

i  

e  

t  

(  

t  

t  

m  

w  

e  
segmentation using various threshold techniques. For these meth-

ods, an appropriate threshold value is decisive, but setting this

value can be subjective, eventually limiting the applicability and

reproducibility. Perry et al. (2012) proposed to use k-means clus-

tering to classify the normal and fibrosis tissue from manually seg-

mented LA walls. Karim et al. (2014) combined the scar inten-

sity priors and Gaussian mixture model (GMM) to construct a cost

function for scar segmentation, which was achieved by an opti-

mization using the graph-cuts framework. Yang et al. (2018) em-

ployed the super-pixel method and support vector machine (SVM)

to segment the atrial scars. 

Most of the reported methods rely on manual segmentation of

the LA or LA walls to provide an accurate initialization. In ISBI 2012

challenge ( Karim et al., 2013 ), manual segmentation of LA was pro-

vided. There was large variance in terms of segmentation accuracy,

especially for the pre-ablation cases, and the teams using manually

delineated LA walls generally obtained much better performance

than those using fully automatic approaches in the challenge. Their

benchmark study emphasizes the importance of an accurate initial-

ization. 

For LA segmentation, Ravanelli et al. (2014) proposed a method

using threshold for initialization, followed by the 3D fast march-

ing for segmentation. They required manual correction from the

clinicians to achieve reliable performance. Tao et al. (2016) com-

bined LGE MRI with another MRI sequence with better anatom-

ical information to segment the LA, and the combined segmen-

tation achieved better results than the method solely using LGE

MRI. Xiong et al. (2018) proposed a dual fully convolutional neu-

ral network for LA segmentation from LGE MRI with promis-

ing results. Later, they organized a LA segmentation challenge in

MICCAI 2018 ( Zhao and Xiong, 2018 ). For LA wall segmentation,

Veni et al. (2017) proposed an algorithm named ShapeCut, com-

bining a shape-based system and the graph-cuts approach to make

a Bayesian dual surface estimation. Ji et al. (2018) applied the

advanced two-layer level set with a soft distance constraint for

dual surface segmentation of LA and left ventricle (LV) walls. Their

method was 2D-based and required a manual initialization of the

endocardial boundaries. Karim et al. (2018) provided a benchmark

dataset for LA wall segmentation. For CT data, three algorithms

were evaluated, including the marker-controlled geodesic active

contours, level-set, and blood pool mesh vertex normal traversal

method. For MRI data, the level-set, region growing, and watershed

algorithms were studied. 

Recently, deep-learning based algorithms have been

successfully applied to the LV myocardial segmentation.

Xu et al. (2018) proposed an end-to-end framework, named

as OP-RNN, to segment myocardial infarction from cine cardiac

MRI without contrast agents. Moccia et al. (2019) employed a

fully convolutional neural network to segment scars of LV, as-

sisted by an initialization of manually segmented myocardium.

Lau et al. (2018) utilized a chained generative adversarial network,
eferred to as ScarGAN, to simulate scar tissues on LGE MRI of

ealthy patients for data augmentation. 

In summary, in previous studies atrial scar quantification relies

n an accurate segmentation of the LA or LA walls for initializa-

ion, but automating this segmentation is still an open question. In

his work, we propose a fully automatic method for LA scar quan-

ification and analysis, without the requirement of an accurate LA

egmentation. 

Firstly, we propose to perform scar quantification on a surface,

nto which the LA endocardium is projected. We neglect the thick-

ess of LA walls, because the clinical studies are generally per-

ormed by projecting the scars onto the LA endocardial surface for

isualization ( Peters et al., 2007; Knowles et al., 2010; Ravanelli

t al., 2014 ). In this framework, we represent the surface using a

raph, and formulate the classification as an energy minimization

roblem which can be solved by graph-cuts. We further propose

o explicitly learn the edge weights of the graph, i.e., n-link and t-

ink potentials ( Boykov and Jolly, 2001 ). This is achieved by a con-

olutional neural network (CNN), which learns features from the

mages ( Krizhevsky et al., 2012 ). Here, we do not directly compute

hese weights solely based on the intensity similarity, as the con-

entional graph-cuts methods do. This is because the enhancement

atterns in LGE MRI are complex and can vary greatly across dif-

erent patients, leading to inconsistent intensity patterns. Also, cur-

ently the automatic methods could have a few millimeters under

r over segmentation, leading to the estimated endocardial surface

eing misaligned to the ground truth. The proposed CNN scheme

an exploit both image features and spatial context by means of

eighborhood information, to provide more accurate estimation of

he graph weights. We finally obtain the classification based on the

raph-cuts framework, which mitigates the effect of misalignments

f the endocardial surface due to automatic LA segmentation er-

ors. Note that the graph-cuts in this work was not embedded into

he network for an end-to-end training, which could be computa-

ional inefficient (please c.f. Section 4 for details). 

Furthermore, we propose to employ the multi-scale patch

MSP) strategy ( Zhuang and Shen, 2016 ), and combine it with the

NN for graph potential learning. This is because distinguishing

cars can be challenging solely based on local texture information,

articularly in the area where the LA wall is surrounded by other

nhanced regions, such as the fibrosis of mitral valve, aortic wall

nd right atrial (RA) wall. The MSP method is developed from the

mage scale space theory, which can handle information at differ-

nt levels within a limited window and has been widely applied

o the tasks of feature extraction, detection and image matching

 Lorensen and Cline, 1987 ). The MSP strategy can incorporate both

he local fine texture features and the global structural informa-

ion into the CNN architecture. We refer to such MSP-based CNN as

ulti-scale CNN, i.e. MS-CNN. In addition, the MSPs are extracted

ith random offsets along the perpendicular direction of the LA

ndocardial surface, simulating the misalignments between the au-
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Fig. 2. Flowchart of the proposed framework for LA scar quantification and analysis. 
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omatically segmented LA surface and the ground truth. Therefore,

uch patches not only can model the multi-scale texture patterns

f the images, but also can further improve the robustness of the

roposed method against the LA segmentation errors. 

The remainder of the paper is organized as follows: the detailed

ramework of the proposed algorithm is presented in Section 2 .

ection 3 presents the experiments and results. Discussion and

onclusion are given in Section 4 . 

. Method 

Fig. 2 provides an overview of the proposed framework. First,

e use a well-developed multi-atlas whole heart segmentation

MA-WHS) to obtain an initial segmentation of the LA (see

ection 2.1 ). Then, we project the LA endocardium to gener-

te a surface mesh, where the quantification is performed (see

ection 2.2 ). The labeling of scars is achieved by optimizing a

ost function based on the graph-cuts framework (see Section 2.3 ),

hose potentials for edge weights are explicitly learned by the

roposed MS-CNN (see Section 2.4 ). Note that the graph-cuts

ased classification is performed on the surface mesh. This can

void the challenging segmentation of thin LA wall and can also

reatly reduce the computational cost. At the same time, both the

exture and anatomical features of the LA myocardium can be ad-

quately extracted by employing the MSP strategy. Thus, the fea-

ures of the nodes in the graph are represented by a set of MSPs,

nd the potentials are learned and predicted by the MS-CNN. 

.1. Initialization of atrial endocardium and pulmonary veins 

We use MA-WHS, which is based on multi-atlas segmentation

MAS), to obtain the geometrical information of the LA. This is be-

ause the LGE MRI covers the whole heart, and MA-WHS has been

ell developed and applied in recent years ( Zhuang and Shen,

016; Yang et al., 2018 ). MAS algorithm segments an unknown tar-

et image by propagating and fusing the labels from multiple an-

otated atlases using registration. As the LGE MRI could have rela-

ively poor image quality, we first apply MA-WHS on the anatom-

cal MRI (Ana-MRI), and then propagate the segmentation using

ffine registration from the Ana-MRI to LGE MRI. The Ana-MRI is

ormally acquired in the same MRI examination as LGE MRI, us-

ng the b-SSFP sequence, which generates higher quality images for

tlas-based segmentation. 

Having finished the WHS for LA and PV delineation, the march-

ng cubes algorithm ( Lorensen and Cline, 1987 ) is then used to ob-

ain a surface mesh of the LA endocardium which excludes the

itral valve. Note that the LA segmentation is generally reliable,

ut still contains errors leading to misalignments between the ex-

racted surface mesh and the ground truth. For example, the mean

ice score of our MA-WHS for LA is 0.898 ± 0.044 (please c.f.
ection 3.3 for details). However, the effect of inaccurate LA seg-

entation can be minimized by using the projection strategy and

he MS-CNN learning coupled with the randomly shifted MSP sam-

ling strategy. The reader is referred to Fig. 3 for illustration and

ollowing methodology sections for details. 

.2. Projection of the atrial endocardium 

We project the LA endocardium onto a surface mesh, and then

he atrial scars can be classified on a graphical surface. This is

ecause the clinical demands for scar quantification in AF pa-

ients mainly concern the location and extent of scarring areas

 Ravanelli et al., 2014 ). Williams et al. (2017) proposed a method to

imultaneously represent multiple parameters on a surface model

ased on the template of an average LA mesh. By projection, both

he errors due to LA wall thickness and misregistration of the WHS

an be mitigated. At the same time, the computational complexity

f the algorithm can be reduced dramatically. 

The endocardial surface is generated from the volumetric binary

egmentation result of the LA cavity using the marching cubes al-

orithm ( Lorensen and Cline, 1987 ). The resolution of the surface

esh is denser than the resolution of the image, which protects

he small scars. The projection from the LA geometry to the sur-

ace mesh can preserve the geodesic distances between two nodes.

his equidistant projection is required due to the definition of n-

ink weights in the proposed graph-cuts framework. In this formu-

ation, each vertex on the surface, i.e., node of the graph, should

nclude a profile that represents the texture information of the cor-

esponding location in the LGE MRI. Here, we represent this profile

sing MSPs, which can incorporate both global structural features

nd local texture information. 

.3. Graph formulation for scar segmentation 

Classification and quantification of scars on the LA surface

an be formulated as an energy minimization problem solved via

raph-cuts. The weights of the graph come from two parts, i.e.,

he regional term E R and the boundary term E B ( Boykov and

olly, 2001 ). The regional term encodes the intensity distributions

f different classes, and the boundary term maintains the continu-

ty between neighbors. 

Let G = {X , N } denotes a graph, where X = { x i } indicates the

et of graph nodes, and N = { < x i , x j > } is the set of edges. Here,

he weights of edges connecting graph nodes to the terminals

re known as t-link weight, and the weights of edges connecting

eighboring nodes are referred to as n-link weight ( Boykov and

olly, 2001 ). The two terminals respectively denote the scars and

ormal myocardium in our problem, analogous to the foreground

nd background of the general image segmentation task. Let l x i ∈
 0 , 1 } be the label assigned to x i , and l = { l x | x i ∈ X } be the label
i 
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Fig. 3. Pipeline of the projection and patch extraction phases: (a) target LGE MRI; (b) WHS result of LGE MRI propagated from Ana-MRI; (c) extracted LA and PV from WHS; 

(d) LA endocardial surface after projection; (e) patch along the normal direction of the LA endocardial surface; (f) patches with random shift in the training phase. 
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vector that defines a segmentation. The segmentation energy is de-

fined as follows, 

E(l) = E R (l) + λE B (l) 

= 

∑ 

x i ∈X 
W 

t-link 
x i 

(l x i ) + λ
∑ 

(x i ,x j ) ∈N 
W 

n-link 
{ x i ,x j } (l x i , l x j ) , (1)

where W 

t-link 
x i 

and W 

n-link 
{ x i ,x j } are respectively the t-link and n-link

weight, and λ is a balancing parameter. 

In conventional graph-based segmentation, the regional term

is generally obtained by optimizing based on a manual defined

initial model. For example, Boykov and Jolly (2001) manually se-

lected a number of seed points to construct such model, referred

to as graph cuts method, and Rother et al. (2004) manually de-

fined a bounding box for interactive segmentation, known as Grab-

Cut approach. The boundary term in these works was normally de-

fined according to the dissimilarity of intensity and distance be-

tween two connected nodes. Veni et al. (2017) designed a regional

term based on a generative image model incorporating both local

and global shape priors. The boundary term was defined for reg-

ularizing the smoothness of the estimated surface, i.e., minimizing

the squared difference of the offsets between neighboring vertices.

Lu et al. (2017) estimated a regional term combining three maps,

including a probability map, a thresholding map and a local ap-

pearance map. The boundary term they defined was related to the

intensity difference and distance of two connected nodes. 

In this work, we propose to directly learn and predict the t/n-

link potentials for the regional and boundary terms. This is dif-

ferent from the conventional means, where the profile of a graph

node is commonly represented by the intensity of a single pixel

or its local texture, which consists of limited information. In con-

trast, we combine the profile representation of graph nodes with

the MSP strategy, and learn the potentials using the proposed MS-

CNN. Fig. 4 illustrates the flowchart of constructing the graph. 

2.4. Explicit learning of graph potentials using MS-CNN 

Fig. 4 illustrates the computation of graph potentials for the

graph-cuts based classification of LA scars. 

2.4.1. Multi-scale patch and patch extraction 

We propose to extract MSPs from LGE MRI to represent the pro-

file of the graph node, and to feed the MS-CNN for training and

prediction. MSP can represent different levels of structural infor-

mation at a location in an image, with low scale capturing local

fine details and high scale providing global structural information

of the image ( Zhuang and Shen, 2016 ). 

Each graph node x i has its associated MSPs, denoted as P i =
{ p 0 x i 

, p 1 x i 
, . . . , p N s −1 

x i 
} , where N s indicates the number of scales. These

patches are extracted from the corresponding volumetric region in

the LGE MRI, by back projecting the node to the position in the

image. They are elongate-shaped and are defined along the nor-

mal direction of the LA endocardial surface, as Fig. 3 (e) shows,
nd their local orientations are maximally aligned to the common

orld coordinate system of the LGE MRI. The multi-scale strat-

gy is implemented by adjusting the sample spacing to generate

atches with different scales, corresponding to different resolu-

ions of the LGE MRI. We employ parallel convolutional pathways

or multi-scale processing, to feed the different scale information

f images to the neural network simultaneously, as Fig. 5 (a) shows.

.4.2. Multi-scale convolutional neural network 

We have two neural networks, i.e., T -NET and N -NET. T -NET

earns and predicts the t-link potentials, i.e., the probabilities of a

ode belonging to scars and normal walls respectively, as Fig. 5 (a)

hows. N -NET calculates the n-link potential between two con-

ected nodes, as Fig. 5 (b) shows. The sub-network for extracting

atch features in T -NET and N -NET is referred to as Patch -NET, as

ig. 5 (c) shows. 

For training of the t-link potentials, we define a sample for

ach node of a graph constructed from LGE MRI. The sample is

omposed of the MSPs associated to the node x i , and its label

robability L i generated from the ground truth label. As Fig. 5 (a)

hows, the training data of T -NET can be represented as D 

T =
(P 1 , L 1 ) , . . . , (P N , L N )] , i.e., N nodes with corresponding labels.

hus, the T -NET can be parameterized by θT as follows, 

ˆ T = arg min 

θT 

N ∑ 

i =1 

( ̂ L (P i ; θ T ) − L i ) 
2 , (2)

here P i = { p 0 x i 
, p 1 x i 

, p 2 x i 
} , and 

ˆ L is the estimated t-link weight. 

For training of the n-link, we define a sample for each pair of

wo neighboring nodes { x i , x j }, consisting of three elements, i.e., (1)

he pair of the two sets of MSPs associated with the two nodes, i.e.

P i , P j 

}
, (2) the geodesic distance between them, denoted as d ij ,

hich is computed using the length of the shortest path along the

dges connecting them, and (3) their ground truth label similarity

 ij , defined as L i × L j + (1 − L i ) × (1 − L j ) . 

As Fig. 5 (b) shows, the training data of N -NET can be repre-

ented as D 

N = [(P i , P j , d i j , M i j )] 
i, j= N 
i, j=1 

. The distance d ij is viewed as

n additional similarity feature, namely the labeling of two nodes

an be more similar if they are closer. To this end, we design a

ub-network, denoted as � F , to extract high-level and dense fea-

ures, i.e. � F (P) . We then obtain a new feature vector from P i and

 j , as follows, 

�
 

 i j = 

�
 F (P i ) × �

 F (P j ) + (1 − �
 F (P i )) × (1 − �

 F (P j )) . (3)

ach element of � G i j can be considered as a similarity metric in

he feature space. Finally, we combine � G i j and d ij , and feed them

o another sub-network for computing the label similarity, i.e., the

-link weight. Thus, the N -NET can be parameterized by θN as fol-

ows, 

ˆ N = arg min 

θN 

N ∑ 

i, j=1 

( ˆ M ( � G i j , d i j ; θN ) − M i j ) 
2 , (4)
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Fig. 4. Construction of the graph and the explicit learning of the graph potentials by MS-CNN (MSPs are integrated and represented using red cuboid in this work). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. The hierarchical architecture of the networks: (a) T -NET: the input is the MSPs of the target node, and the output is the predicted t-link weight; (b) N -NET: the input 

is the patch pair of two neighbor nodes, and the output is the predicted n-link weight; (c) Patch -NET: the input is a patch, and the output is the patch features. Note that 

the diagram takes 13 × 13 × 17 patch as an example. 
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here ˆ M is the estimated n-link weight. 

As Fig. 5 (c) shows, in Patch -NET the convolution layers with

ernel size 3 × 3 × 3 use 1 pixel stride and 1 pixel width

ero padding, and the max pooling layers use a stride equal to the

ooling size, i.e., 2. The number of parameters is about 7.27M in

he Patch -NET, 21.83M in the T -NET, and 21.82M in the N -NET. 

.4.3. Training and testing strategy 

In the training phase, we use weighted sampling to mitigate the

roblem of class imbalance in the training set, where the number

f the nodes belonging to normal myocardium in a subject could

e tens or even hundreds times more than that of scars. Hence,
nstead of extracting the patches of all nodes for training, we first

ount the total number of the nodes on scars and scar boundaries,

nd then randomly select the similar number of nodes from the

ackground to deal with the imbalanced training problem. In ad-

ition, we add a random shift, along with the normal direction, to

he center of the MSPs, to mitigate the effects from the inaccurate

elineation of the LA boundaries due to over or under segmenta-

ion. This is illustrated in Fig. 3 (d)–(f). This shift should be large

nough to overcome potential segmentation errors, while at the

ame time be small enough to avoid being too distant and cannot

apture the texture profile of the LA wall. We propose to assign

his random value in a given range, i.e. γ ∈ (−R , + R ) , to a node
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Fig. 6. Scatter point plot for analyzing the correlation between the LA segmenta- 

tion performance and scar quantification accuracy, both indicated by Dice scores. 

The Pearson coefficient and Spearman’s rank coefficient are respectively 0.1412 and 

0.0110. 
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in the training phase, where γ is the shift value, - and + represent

being inside and outside of the LA blood cavity, respectively. Note

that this random shift strategy is not needed in the testing phase. 

In the testing phase, one can compute the t-link and n-link po-

tentials of the graph, and the classification of scars on the LA sur-

face can be achieved by embedding these estimated weights into

the graph-cuts framework, i.e., 

 

t-link 
x i 

= 

ˆ L (P 

γ
i 

; θ T ) , (5)

and, 

 

n-link 
{ x i ,x j } = 

ˆ M (P 

γ
i 

, P 

γ
j 
, d i j ; θN ) = 

ˆ M ( � G i j , d i j ; θN ) . (6)

Note that the two normalized t-link weights of a node, respectively

indicating the potentials to the foreground and background, can

also be viewed as the probabilities of this node belonging to scars

or normal tissues. 

3. Experiments and results 

3.1. Data acquisition and experimental setup 

We collected fifty-eight post-ablation LGE MRI data from pa-

tients with longstanding persistent AF for experiments. Transverse

navigator-gated 3D LGE MRI was performed on a 1.5T Siemens

Magnetom Avanto scanner (Siemens Medical Systems, Erlangen,

Germany), which used an inversion prepared segmented gradient

echo sequence (TE/TR 2.2 ms/5.2 ms) 15 min after gadolinium ad-

ministration. The LGE MRI data were acquired at resolution of (1.4-

1.5) × (1.4-1.5) × 4 mm, and reconstructed to (0.7-0.75) × (0.7-

0.75) × 2 mm. For each patient, prior to contrast agent admin-

istration, coronal navigator-gated 3D b-SSFP (TE/TR 1 ms/2.3 ms)

data were acquired, with acquisition resolution of (1.6-1.8) × (1.6-

1.8) × 3.2 mm, and reconstructed to (0.8-0.9) × (0.8-0.9)

× 1.6 mm. Both LGE MRI and b-SSFP data were acquired dur-

ing free breathing with respiratory motion control ( Keegan et al.,

2014 ). 

The available data were randomly divided into two sets, one

for training (31 images) and the other for testing (27 images). T -

NET was trained using stochastic gradient descent optimizer, with

following hyper-parameters: momentum = 0.9, batch size = 50,

weight decay = 10 −4 , number of epochs = 15. The learning rate

was initially set to 0.01, and had a stepped decay rate of 0.8 every

10 0 0 iterations. The same configuration was used for N -NET except

that its number of epochs was 10. 

We first evaluated the accuracy of automatic segmentation of

LA in Section 3.3 . Then, we performed four parameter studies

to verify the effects of the parameters and explore their opti-

mal values. In Section 3.4.1 , we investigated the influence of dif-

ferent patch sizes to the proposed framework using the single-

scale CNN, and then compared the results with that of MS-CNN. In

Section 3.4.2 , we studied the proposed method with different val-

ues of the balancing parameter λ. Section 3.4.3 and 3.4.4 present

the studies of random shift and multi-scale learning, respectively.

The optimal parameters concluded from these studies were used

for the proposed method, in comparisons with other methods, in

Section 3.5 . Finally, Section 3.6 reports the performance of the pro-

posed method and results of the inter-observer study. 

3.2. Gold standard and evaluation 

All the LGE MRIs were manually segmented by an experienced

physicist specialized in cardiac MRI, to label the enhanced atrial

scarring regions, which are considered as ground truth in this

work. To assess the scar classification results, we generated the

ground truth reference by projecting the manually segmented scars

onto the LA surface. With regard to different initializations, i.e., the
anual (abbreviated as LA M 

) and automatic (abbreviated as LA auto )

elineation of LA, two different ground truths, respectively referred

o as GT M 

and GT auto , were generated for evaluation. In the com-

arison studies in Section 3.5 , the fully automatic methods were

valuated using GT auto , while the semi-automatic algorithms based

n LA M 

were evaluated using GT M 

. 

For evaluation, we computed the statistical measures, Dice

core of scars, referred to as Dice (scar), and the generalized Dice

core, denoted as G Dice. The statistical measures include accuracy,

ensitivity and specificity. G Dice is a weighted Dice score by eval-

ating the segmentation of all labels ( Crum et al., 2006; Zhuang,

013 ), and is formulated as follows, 

 Dice = 

2 

∑ N k −1 

k =0 

∣∣S auto 
k 

∩ S manual 
k 

∣∣
∑ N k −1 

k =0 
( 
∣∣S auto 

k 

∣∣) + ( 
∣∣S manual 

k 

∣∣) 
, (7)

here S auto 
k 

and S manual 
k 

indicate the segmentation results of label k

rom the automatic method and manual delineation, respectively,

nd N k is the number of labels. All the metrics are computed on

he projected LA surface. 

.3. Automatic segmentation of LA and correlation analysis 

To obtain an initialization of LA for scar segmentation, we de-

eloped the MA-WHS method using 30 b-SSFP MRI atlases. The 30

igh resolution atlases were constructed from the Left Atrial Seg-

entation Challenge (STACOM 2013) ( Tobon-Gomez et al., 2015 ).

he manual delineation of LA was regarded as the gold stan-

ard for this experiment. The MA-WHS results of Ana-MRI were

apped to LGE MRI from the same subject, and then generated

he initial LA labels. The average Dice score of this LA segmenta-

ion to the manual delineation was 0.898 ± 0.044. 

To analyze the relation between the LA segmentation error and

he scar quantification accuracy by the proposed method, we plot-

ed these two values for each of the 27 test subjects as two di-

ension scatter points in Fig. 6 . One can see that the plot shows

ittle direct relationship between them. We further performed lin-

ar regression, Pearson correlation and Spearman’s rank correla-

ion. The R 2 and Pearson coefficient were respectively 0.0199 and

.1412, indicating low linear correlation between Dice (scar) and

ice (LA); and the rank correlation coefficient was 0.0110, mean-

ng hardly monotonic relationship between them either. To con-

lude, the result illustrates the low correlation between the scar
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Fig. 7. Dice scores of the proposed method with different parameterizations: (a) performance against different patch sizes ( λ= 0.6); (b) performance against different values 

of the balancing parameter λ to weight the t-link and n-link terms in the graph-cuts framework; (c) performance against different random shift ranges R ; (d) performance 

against different numbers of scales N s . 
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uantification accuracy and the LA segmentation accuracy by the

roposed method. 

.4. Parameter studies 

.4.1. Study of the patch sizes 

We used one-scale MSP, namely only the original image (scale

) was used and the CNN was a single-scale network, for study-

ng the proposed method with different sizes of patches. The patch

izes ranged from 7 × 7 × 11 to 17 × 17 × 21 voxel, where

he voxel size is 1 × 1 × 1 mm. Then, we implemented the

hree-scale MSP and CNN with patch size 13 × 13 × 17 voxel,

or comparisons with the single-scale CNNs. The balancing param-

ter λ in this study was set to 0.6, and the random shift range R
as set to half of the patch length. 

Fig. 7 (a) shows that the average Dice score increases dramati-

ally at first with respect to the increased sizes of patches, then

tarts to converge after the patch size reaching 13 × 13 × 17

oxel. This is reasonable, as the larger size is used, the richer in-

ensity profile is included for feature training and detection. How-

ver, the increase of patch size generally requires more complex

etworks, either more kernels or more convolutional layers, which

ncreases computation load and memory requirements. This also

ationalizes our proposal to use MSP and MS-CNN. As Fig. 7 (a)

resents, our MS-CNN obviously increases the accuracy of the clas-
ification results, thanks to the usage of the MSP strategy which in-

orporates both local and global information of the images. In the

ollowing experiments, we adopted this three-scale setting (except

or Section 3.4.4 ) and patch size of 13 × 13 × 17 voxel. 

.4.2. Study of the balancing parameter 

In this study, we compared the results of the proposed scheme

sing different values for the balancing parameter λ, λ ∈ [0, ∞ ),

o demonstrate the effect of graph-cuts. Here, we set the values

anging from 0 to 2. The patch strategy was as follows, number of

cales was three, patch size was 13 × 13 × 17 voxel, and the

andom shift range R was set to a maximum of 8 mm. 

Fig. 7 (b) presents the results. One can see that the best perfor-

ance in terms of Dice score is obtained when λ is set to 0.4. This

ndicates that the inter-node relation (n-link) is important, and the

eighting between the t-link and n-link terms should be balanced

o achieve optimal performance. In the following experiments, λ
as set to 0.4 for the proposed method. 

.4.3. Study of the random shift range 

To demonstrate the effect of random shift, we compared the

erformance of the proposed method with different random shift

anges R , for γ ∈ (−R , + R ) . Here, we set R ranging from 0 to

2 mm. The patch size was 13 × 13 × 17 voxel, and λ was

et to 0.4. 
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Fig. 8. Boxplots of the Dice scores of scar segmentation by the nine methods. 
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Fig. 7 (c) provides the results of this study. The best Dice score

is obtained when R is set to 8 mm, i.e., half of the patch length

in the long-axis direction, and the performance of the proposed

method deteriorates when the shift range becomes larger than

8 mm. This is rational, because the shift range should cover all the

potential misalignments of the constructed surface to the ground

truth. When the random shift range R is greater than 8 mm, the

patch may not cover the regions which include the important fea-

tures for training and classification. 

3.4.4. Study of the scales 

To study the effect of multi-scale learning, we compared the re-

sults using different numbers of scales, i.e. N s = { 1 , 2 , 3 } . The patch

size of MSP was set to 13 × 13 × 17 voxel, λ was set to 0.4,

and the random shift range R was set to a maximum of 8 mm. 

Fig. 7 (d) presents the mean Dice scores of the method. This

study demonstrates that the effectiveness of the multi-scale learn-

ing. It indicates that the more scales we used the better accuracy

we obtained. It should be noted that when we tried to use more

scales, the training session failed, due to the limited computation

capacity of our computer. 

3.5. Comparison with other methods 

In this study, we implemented nine segmentation approaches,

including the proposed method, for comparisons. Here, LA M 

indi-

cates the methods adopt the manual segmentation of LA for ini-

tialization, and LA auto denotes the methods employ the automatic

segmentation from the MA-WHS approach described in Section 2.1 .

(1) LA M 

+ 2 SD : This is one of the most widespread thresholding

methods to detect atrial scars. It calculates a specific num-

ber of standard deviation (SD) above a reference value. The

reference value is generally set to the mean intensity from

the blood pool or LA wall. It is however generally patient-

specific and slice-specific, and different numbers of SD have

been used ( Karim et al., 2013 ). In our study, we obtained the

optimal performance by setting the threshold value to 2 SD

above the mean intensity of LA walls. Here, we constructed

the LA wall from a manual segmentation of the LA with a

morphological dilation, which was also used for the follow-

ing experiments when the LA wall was needed from LA M 

. 

(2) LA M 

+ Otsu : This method uses the Otsu algorithm

( Otsu, 1979 ) for automatic thresholding of the scarring

tissues from the LA wall obtained from LA M 

. 

(3) LA M 

+ M GM M : This method adopts the multi-component

Gaussian mixture model (MGMM) for scar segmentation

from the LA wall ( Liu et al., 2017 ). MGMM can deal with

the intensity heterogeneity of myocardium caused by the in-

farcts, and has been proven to be effective in myocardium

segmentation. 

(4) LA M 

+ M GM M + GC: This method further regularizes the spa-

tial continuity using the graph-cuts framework, based on the

result of MGMM. Here, we defined the boundary weight us-

ing the intensity difference between neighboring points, and

the regional weight was computed from the posterior prob-

ability map of scars generated from MGMM. 

(5) LA M 

+ MS-CNN : This method employs a 2D U-Net architec-

ture ( Ronneberger et al., 2015 ) for scar segmentation. The

U-Net is trained using a stochastic gradient descent op-

timizer, with following hyper-parameters: batch size = 25,

weight decay =10 −4 , number of epochs = 100. The learning

rate is initially set to 0.01, and has a stepped decay rate of

0.95 every 10 0 0 iterations. The input image is a 2D slice of

LGE MRI cropped into 128 × 128 centered on LA M 

. 

(6) LA M 

+ MS-CNN 

0 : This learning based method only uses the

two t-link weights estimated from T -NET to classify scars.
The two weights, i.e. respectively linked to the foreground

scar and background normal tissue, are normalized and con-

sidered as the posterior probability of the two labels. Here,

both training data and test data were initialized using manu-

ally segmented LA, so the random shift in the training phase

was set to zero, i.e. γ = 0. 

(7) LA auto + MS-CNN 

0 : This method uses the estimated t-link

weights from T -NET, similar to LA M 

+ MS-CNN 

0 
, to classify

scars. However, the LA here was automatically segmented

using MA-WHS. For comparisons with LA M 

+ MS-CNN 

0 
, here

we also set the random shift to zero ( γ = 0). 

(8) LA auto + MS-CNN : Similarly, this method uses the estimated

t-link weights from T -NET to classify scars, and the LA was

automatically segmented using MA-WHS. However, in the

training phase we set the random shift accordingly based on

the parameter study in Section 3.4.3 . 

(9) LA auto + LearnGC: This is the proposed method in which the

LA was initialized by MA-WHS and the weights of the graph

were learned and predicted using MS-CNN. Here, the bal-

ancing parameter λ was set to 0.4. Noted that when λ = 0 ,

LA auto + LearnGC becomes LA auto + MS-CNN . 

able 1 presents all the quantitative results of the nine meth-

ds, and Fig. 8 provides their boxplots of Dice scores of scars.

he proposed learning graph-cuts method, i.e. LA auto + LearnGC,

btained evidently better scar segmentation (Dice of scars) than

he conventional methods based on LA M 

. It also performed sta-

istically better than all the other eight methods in terms of

ice scores of scars ( p < 0.01). Compared to the conventional

ethods, LA M 

+ U-Net performed better than the two threshold-

ased methods ( p < 0.001), and achieved similar results to the

wo MGMM-based methods ( p > 0.1). Note that LA auto + MS-CNN 

0 

as a slightly better Dice (scar) than LA M 

+ MS-CNN 

0 but with-

ut statistical significance ( p = 0 . 255 ), even though the former is

ased on automatic segmentation of LA and the latter uses man-

al segmentations. When combined with the random shift strat-

gy, LA auto + LearnGC and LA auto + MS-CNN obtained evidently and

tatistical better Dice (scar) than the other methods ( p < 0.01). For

hem, LA auto + LearnGC is generally better, but the gain is marginal,

ue to the fact that the graph-cuts is considered as a built-in

moothness constraint to generate less patchy results. In this study,

A auto + LearnGC did not obtain the best figures in sensitivity or

pecificity metrics. Sensitivity measures the proportion of actual
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Table 1 

Summary of the quantitative evaluation results. G Dice denotes the generalized Dice score. Here, the asterisk ( ∗) in 

column Dice (scar) indicates the methods obtained statistically poorer ( p < 0.01) results compared to the proposed 

LA auto + LearnGC. The p value of the Dice (scar) between LA M + MS-CNN 0 and LA auto + MS-CNN 0 is 0.225. 

Method Accuracy Sensitivity Specificity Dice (scar) G Dice 

LA M + 2 SD 0.809 ± 0.074 0.168 ± 0.067 0.994 ± 0.005 0.275 ± 0.091 ∗ 0.758 ± 0.098 

LA M + Otsu 0.763 ± 0.188 0.346 ± 0.214 0.880 ± 0.289 0.396 ± 0.090 ∗ 0.726 ± 0.207 

LA M + M GM M 0.708 ± 0.160 0.781 ± 0.127 0.690 ± 0.236 0.545 ± 0.101 ∗ 0.716 ± 0.190 

LA M + M GM M + GC 0.716 ± 0.162 0.799 ± 0.124 0.694 ± 0.240 0.562 ± 0.102 ∗ 0.721 ± 0.192 

LA M + U-Net 0.832 ± 0.046 0.540 ± 0.149 0.920 ± 0.035 0.568 ± 0.083 ∗ 0.826 ± 0.052 

LA M + MS-CNN 0 0.798 ± 0.051 0.775 ± 0.099 0.805 ± 0.078 0.615 ± 0.083 ∗ 0.811 ± 0.047 

LA auto + MS-CNN 0 0.806 ± 0.052 0.743 ± 0.126 0.824 ± 0.088 0.631 ± 0.080 ∗ 0.814 ± 0.047 

LA auto + MS-CNN 0.846 ± 0.032 0.786 ± 0.118 0.886 ± 0.057 0.692 ± 0.069 ∗ 0.851 ± 0.030 

LA auto + LearnGC 0.856 ± 0.033 0.773 ± 0.132 0.883 ± 0.058 0.702 ± 0.071 0.859 ± 0.031 

Fig. 9. 3D visualization of the LA scar classification results using the nine methods. 

This is the median case selected from the test set in terms of Dice score of scars by 

the proposed method. The scarring areas are red-colored on the LA surface mesh, 

which can be constructed either from LA M (LA surface in white) or from LA auto (LA 

surface in light yellow). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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carring regions that are correctly identified, and specificity mea-

ures the proportion of actual normal wall regions that are cor-

ectly segmented. One can see the misleading of these two metrics

n evaluating the performance of a method from Table 1 , where

A M 

+ 2 SD and LA M 

+ M GM M + GC achieved the best specificity or

ensitivity, though their performance was actually poor in our vi-

ual assessment. 

In addition, we chose a representative case, the median in

erms of Dice (scar) from the test set by the proposed LA auto +
earnGC. Fig. 9 visualizes the 3D results by the nine methods.

ne can observe that the 3D visualization agrees well with the

uantitative analysis result using Dice (scar). Though the manu-

lly segmented scars in LA M 

and LA auto are projected onto two

ifferent reference surfaces, GT M 

and GT auto visually appear simi-

ar when we compare the location and extent of scars. Both the

wo threshold algorithms, 2SD and Otsu, tended to under estimate

segment) the scars, though Otsu generally performed better. The

esults of LA M 

+ M GM M and LA M 

+ M GM M + GC were acceptable,

ut the accuracy and automation needed improving. LA M 

+ U-Net

erformed reasonably well, but it tended to misclassify the scars

ith small areas, especially around the PV. The learning-based

ethods, from L A M 

+ MS-CNN 

0 
, L A auto + MS-CNN 

0 and L A auto +
S-CNN , to LA auto + LearnGC, improved the performance when

he new methodologies were introduced. Particularly, LA auto +
earnGC further reduced the noise and patchy segmentation re-
ults, and it obtained full automation and best Dice score of scar

uantification. 

.6. Performance of the proposed method and inter-observer study 

This study analyzes the performance of the proposed method

n detail. To provide a reference for the quantitative evaluation

etrics, we conducted a study of inter-observation variation from

wo manual delineations. We randomly selected ten cases from

he available data, and asked two experts to manually label the

cars separately. For each case, the two labelling results of scars

ere projected onto the LA M 

surface. The Dice (scar), generalized

ice, and accuracy of inter-observer variation were respectively

.695 ± 0.049, 0.868 ± 0.027 and 0.867 ± 0.026. 

Table 1 summarizes the quantitative evaluation results of the

roposed method, i.e. LA auto + LearnGC. The average Dice of scar is

.702 ± 0.071, which is comparable to the inter-observer variation

0.695 ± 0.049), and the difference is not significant ( p = 0.7783).

his conclusion also applies when we compare them using accu-

acy and G Dice evaluation metrics. We have repeated this experi-

ent another 3 times, by randomly selecting 31 subjects for train-

ng and the remaining 27 for test. The mean Dice scores of the

hree experiments are respectively 0.703 ± 0.082, 0.695 ± 0.094

nd 0.698 ± 0.083, which are generally stable. 

Fig. 10 provides 2D visualization of the axial view from three

xamples. These three cases were the first quarter, median and

hird quarter cases from the test set in terms of Dice (scar) by the

roposed method. This illustrates that the method could provide

romising performance for localizing and quantifying atrial scars of

A. In the median and third quarter cases, we highlight the errors,

articularly due to the enhanced adjacent regions, pointed out by

rrow (1), (2) and (3). These mis-classifications, representing the

ain challenges of this task, contributed to the major errors of scar

uantification by the proposed method. Another type of error was

aused by the misalignments of the automatic LA segmentation, as

rrow (4) pointed out. This happened in some local areas where

he errors occurred because of the different shapes of LA after re-

onstruction from the automatic segmentation. One can also see

hat even when it existed large LA segmentation errors, indicated

y arrow (5) in Fig. 10 , the proposed method still could identify the

cars at the corresponding location of the projected surface. This is

ainly attributed to the effective training of the MS-CNN, which

ssigns random shifts along the perpendicular direction of the sur-

ace when extracting the training patches. The multi-scale learning

lso contributes to the less demanding of accuracy from the auto-

atic LA segmentation, thus enables to achieve fully automated LA

car quantification. 
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Fig. 10. Axial view of the images, the ground truth scar segmentation and the re- 

sults by the proposed method. The red and white color labels represent the scar 

and normal wall, respectively. Arrow (1), (2) and (3) indicate the major classifica- 

tion errors of the proposed method caused by the surrounding enhanced regions, 

respectively from the right atrium wall, ascending aorta wall and descending aorta 

wall; arrow (4) shows an error from the misalignment between the automatic LA 

segmentation and the ground truth; arrow (5) illustrates that the proposed method 

can still perform well, even though the automatic LA segmentation contains obvi- 

ous errors. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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3.7. Computational time and computer systems 

The pre-processing includes LA segmentation and patch extrac-

tion. The LA segmentation, based on a multi-atlas segmentation

scheme, took about 18.22 min using a Lenovo D30 Workstation

with 32 cores to parallel run the image registration ( Zhuang and

Shen, 2016 ). The patch extraction took approximately 1.2 min for

one training image and 4.1 min for one test image. Note that the

random sample strategy in training phase reduced the time for

patch extraction. The inference of the T -NET and N -NET, with a

patch size of 13 × 13 × 17 pixel, required about 47 seconds

to process one test image, and the average computation time for

the graph-cut algorithm was about 12 seconds. 

4. Discussion and conclusion 

In this work, we have proposed a fully automatic framework for

segmentation and quantification of LA scars. Two major method-

ological contributions have been introduced. One is the formula-

tion of quantifying the LA scarring based on a surface mesh. The

classification and quantification are achieved via the surface pro-

jection and graph-cuts framework. The other is the adoption of the

multi-scale learning combined with CNN, i.e. MS-CNN. The multi-

scale learning is implemented using the MSP strategy, which ex-

tracts the features from both the local and global intensity pro-

files of LGE MRI. The MS-CNN learns both the label probability

of each node and the relations between connected nodes in the

graph. The surface projection in the proposed framework avoids

the difficulty of providing an accurate and demanding LA wall seg-

mentation, and the multi-scale patch-based learning, with the ran-

dom shift training strategy, further mitigates the effect of less ac-

curate LA initialization from a fully automatic approach, as demon-

strated in Section 3.4.3 . We employed fifty-eight images with man-
al delineation for experiments. The proposed method performs

etter when the size of extracted patches increases, but the per-

ormance converges when the size is larger than a certain value

see Section 3.4.1 ). The multi-scaling learning further improves the

erformance compared to the method with single-scale learning,

s demonstrated in Section 3.4.4 . Finally, the proposed learning

raph-cuts based method demonstrates evidently better perfor-

ance compared to the conventional approaches, and the mean

ccuracy and Dice (scar) for quantifying LA scars are respectively

.856 and 0.702, which are comparable to those of inter-observer

ariation (accuracy = 0.867, Dice = 0.695). 

Table 2 summarizes the related works from literature.

erry et al. (2012) evaluated their method on a dataset consist-

ng of 34 images. The mean Dice score was 0.807 ± 0.106, and the

nter-observation Dice was 0.786 ± 0.072. Their method required

n accurate initialization of LA walls from manual segmentation,

ollowed by a k-mean classification. Karim et al. (2014) employed

MM to model the enhancement of scar region, and used the

raph-cuts method to consider neighbouring regions. This method

sed LA segmentation for initialization, which was achieved from

 semi-automatic method with manual correction. They evalu-

ted the method using numerical phantoms as well as using 15

n vivo images. They obtained more than 0.8 Dice scores on the

wo datasets. Ravanelli et al. (2014) adopted a threshold based ap-

roach, where the normalized voxel intensity (NVI) of LA walls

as applied. The threshold value, NV I = 4 , was assigned accord-

ng to previous studies and visual validation by experts, base

n which they used a 2-D skeletonization algorithm to quantify

he atrial fibrosis. The authors evaluated both the fully automatic

ethod and the semi-automatic approach with manual correction.

he mean Dice scores of LA scar quantification increased from

.60 ± 0.21 to 0.85 ± 0.07 when the manual correction was in-

luded. Wu et al. (2018) proposed a fully automatic method for

A fibrosis quantification. They formulated the joint distribution of

mages based on the multivariate mixture model, and optimized

odel parameters using the iterated conditional mode algorithm.

hey tested the method on 36 cases and reported a mean Dice

core of 0.556 ± 0.187 and average accuracy of 0.809 ± 0.150.

hen et al. (2018a) developed a multi-view two-task recursive at-

ention model for simultaneous segmentation of LA and scars. The

ean Dice score of LA segmentation was 0.908 ± 0.031, which was

imilar to the result (Dice = 0.898 ± 0.044) from our study, though

heir average Dice score of scar quantification was 0.776 ± 0.146.

ang et al. (2018) employed the super-pixel algorithm and SVM to

egment the scars on 37 subjects. They obtained 0.790 ± 0.050

ice score, 0.87 segmentation accuracy, 0.89 sensitivity and 0.79

pecificity by using the leave-one-out cross-validation strategy.

his study yielded better Dice score than ours in this work, but

here was no evident difference in terms of the accuracy, sensitiv-

ty and specificity between these two works. It should be noted

hat among these six works, only one, i.e., Perry et al. (2012) , re-

orted the details of inter-observer variation. Also note that it can

e difficult to pursue an objective cross-study comparison due to

he difference of datasets, initialization methods, and evaluation

etrics. 

One of the challenges of LA scar quantification is to distinguish

rtifacts from the boundary regions, such as from the RA wall

nd aorta wall, as we discussed above and showed in Figs. 1 and

0 . Conventionally, providing accurate LA walls is the crucial step

 Karim et al., 2013; Perry et al., 2012 ). In this work, we pro-

ose to use multi-scale deep learning technology, with specifi-

ally designed training strategy, to tackle this challenge. However,

ue to the limited training data, the errors caused by this prob-

em could still happen. Secondly, the quantification of scars in our

ork is performed on the surface mesh projected from the LA en-

ocardium. Karim et al. (2018) discussed the importance of wall
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Table 2 

Overview of previous methods for scar quantification and segmentation in LA. Abbreviations: segmentation (seg); inter-observer vari- 

ation in terms of Dice (Inter-ob); Society of Photo-Optical Instrumentation Engineers (SPIE), IEEE Journal of Translational Engineering 

in Health and Medicine (TEHM), IEEE transactions on medical imaging (TMI), Medical physics (MP), Medical Image Computing and 

Computer-Assisted Intervention (MICCAI). 

Work No. subjects LA (wall) seg Scar seg method Result (Dice) Inter-ob 

Perry et al. (2012) , SPIE 34 manual k-means 0.807 ± 0.106 0.786 ± 0.072 

Karim et al. (2014) , TEHM 15 semi-auto GMM + Graph-cuts > 0.8 N/A 

Ravanelli et al. (2014) , TMI 10 semi-auto NVI + Manual correction 0.850 ± 0.070 N/A 

10 auto NVI 0.600 ± 0.210 N/A 

Wu et al. (2018) , MICCAI 36 auto Multivariate mixture model 0.556 ± 0.187 N/A 

Chen et al. (2018a) , MICCAI 100 auto Dilated attention network 0.776 ± 0.146 N/A 

Yang et al. (2018) , MP 37 auto Super-pixels + SVM 0.790 ± 0.050 N/A 
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hickness, particularly considering the potential that the ectopic

ctivity can prevail in scars that are non-transmural. However, they

lso emphasized that the relationship between the AF and the

hanges in wall thickness was not clear, and the thickness was dif-

cult to measure based on current MRI data. In clinical practice,

he location and extent of scarring areas are considered to have

reater clinical significance, which is however arduous to repre-

ent and to perform quantitative cross-subject comparisons. In the

uture work, visual assessment will be considered. Besides, a limi-

ation of this work is that the gold standard was constructed from

he manual segmentation of only one physicist. In the future, we

an combine the delineations from multiple experts to obtain an

verage and consensus gold standard. 

A major limitation of this work is the lack of an end-to-end

raining scheme. Specifically, the framework is split into two sub-

asks, i.e., the MS-CNN and graph-cut, resulting in offline post-

rocessing. Conditional random field (CRF), a probabilistic graph-

cal model, has been broadly used in semantic segmentation to

emove isolated false positives and to improve the localization of

bject boundaries. Chen et al. (2018b) employed a fully connected

RF as a post-processing step of deep CNN to capture fine edge

etails. Kamnitsas et al. (2017) used a 3D fully connected CRF net-

ork for post-processing to refine the output of a segmentation

etwork. Zheng et al. (2015) achieve an end-to-end CRF network,

nown as CRFasRNN, by formulating the inference of CRF as re-

urrent neural networks. Additionally, the graph convolution net-

ork ( Kipf and Welling, 2016 ) and PointNet ( Qi et al., 2017 ) can

ooperate with the neighbor information of nodes in an end-to-

nd style. In these studies, only the low dimensional features in

he corresponding positions of the nodes are used. By contrast, the

eatures associated with the nodes in the proposed LearnGC frame-

ork come from the image patches. The dimension of the patches

ould be thousands, e.g. the typical size of the patch is 13 × 13

17, whose dimension is 2873. Therefore, an end-to-end training

cheme of our method, with integral optimization based on the

hole graph, could be infeasible in practice, due to its expensive

ime and space complexity. A detailed discussion of this issue can

e found in the supplementary material document associated with

his manuscript, and an efficient end-to-end network is considered

s our future work. 
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