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Abstract: Approximately 10 percent of the mouse genome consists of endogenous retroviruses (ERVs),
relics of ancient retroviral infections that are classified based on their relatedness to exogenous
retroviral genera. Because of the ability of ERVs to retrotranspose, as well as their cis-acting
regulatory potential due to functional elements located within the elements, mammalian ERVs are
generally subject to epigenetic silencing by DNA methylation and repressive histone modifications.
The mobilisation and expansion of ERV elements is strain-specific, leading to ERVs being highly
polymorphic between inbred mouse strains, hinting at the possibility of the strain-specific regulation
of ERVs. In this review, we describe the existing evidence of mouse strain-specific epigenetic control
of ERVs and discuss the implications of differential ERV regulation on epigenetic inheritance models.
We consider Krüppel-associated box domain (KRAB) zinc finger proteins as likely candidates for
strain-specific ERV modifiers, drawing on insights gained from the study of the strain-specific
behaviour of transgenes. We conclude by considering the coevolution of KRAB zinc finger proteins
and actively transposing ERV elements, and highlight the importance of cross-strain studies in
elucidating the mechanisms and consequences of strain-specific ERV regulation.

Keywords: ERVs; epigenetic regulation; strain-specific; modifiers; metastable epialleles; KRAB zinc
finger proteins; transgenes

1. Introduction

Endogenous retroviruses (ERVs), a subclass of transposable element (TE), constitute approximately
10 percent of the mouse genome and arise either as a result of the successful integration of an
ancient exogenous retrovirus (XRV) into the germline of the host or, more commonly, due to the
retrotransposition of a previously integrated proviral sequence [1,2]. ERVs are classified based on the
sequence of their reverse transcriptase gene and their relatedness to the seven XRV genera—Gamma-
and Epsilonretrovirus; Alpha-, Beta-, and Deltaretrovirus; and Spumaretrovirus—into class I, II, and III
ERVs, respectively [3–6]. In the mouse, class I ERVs include murine leukaemia viruses (MLVs), class II
ERVs include early transposon/Mus musculus type D retrovirus (ETn/MusD) and intracisternal A-type
particle (IAP) elements, and class III ERVs include mouse endogenous retrovirus type L (MERV-L)
elements [5].

Full-length ERVs consist of 5′ and 3′ long terminal repeats (LTRs) that flank internal viral
genes (gag, pol, and, in some elements, env) which are both essential and necessary for autonomous
retrotransposition [7,8]. Non-autonomous elements, such as ETn elements, lack the reverse transcription
and integrase machinery required for transposition and thus, mobilisation of these elements relies on
trans-acting transposases encoded by other TEs. In fact, after IAPs, non-autonomous ETn elements are
responsible for the second highest number of murine germline mutations of any transposon type and
mobilise using the machinery of autonomous MusD elements [9,10]. Similarly, the non-autonomous
I∆1-type IAP, which has a 1.9kb deletion in gag-pol, accounts for the majority of IAP insertional
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mutations [11]. Whilst the majority of ERVs exist as solo LTRs which arise through inter-LTR
homologous recombination, these fragmented elements still pose a significant threat to genomic
integrity. This is due to the functional regulatory sequences contained within LTRs, as well as their
mobilisation potential through “hijacking” the machinery of transposition-competent full-length
elements [12]. In total, ERVs mainly of class I and II types are responsible for up to 12% of germline
mutations in mice [11]. Given the mutagenic potential of ERVs, both full-length elements and solo
LTRs are targeted for silencing via epigenetic mechanisms, as outlined in further detail below.

In inbred laboratory strains of mice, there has been a historic, and ongoing, expansion of ERV
families, most notably of IAP and ETn/MusD elements, which are highly polymorphic between
strains [13–16]. The susceptibility of the mouse genome to IAP mobilisation is strain-specific, with 84%
of germline IAP mutations (for which a strain of origin for the TE mutation could be determined)
occurring in the C3H genetic background [9]. Indeed, strain-specific diverse regions (SSDRs), which
show a higher diversity between strains than is normally seen between mouse and rat and account
for between 0.5% and 2.8% of the mouse genome, are enriched for recent long interspersed nuclear
element (LINE) and LTR insertions [17,18]. While there is little evidence so far that strain-specific
TE variants act as causal effectors of strain-specific gene expression changes or quantitative trait loci
(QTL), it is perhaps notable that intronic TE variants are more frequently associated with differentially
expressed genes than would be expected by chance [15].

The term “modifier gene” defines genetic variants which alter the phenotypic outcome of an
independent locus, but which have no phenotypic consequence of their own [19,20]. Strain-specific
morphological, physiological, and behavioural differences are well recognised, but the mechanisms
underlying inter-strain variation and the causative modifier loci remain largely uncharacterised due to
technical and practical limitations.

In this review, we discuss the key players in the silencing of ERVs, the existing evidence for the
mouse strain-specific epigenetic control of ERVs, and the implications of differential ERV regulation on
epigenetic inheritance. We reflect on lessons learned from the strain-specific behaviour of transgenes
and discuss the potential mechanisms by which the strain-specific epigenetic silencing of ERVs is likely
to occur.

2. Epigenetic Regulation of ERVs

Specific ERV classes are silenced by distinct epigenetic mechanisms in the early embryo and
embryonic stem cells (ESCs). In embryonic cells, class I and II ERVs are enriched for H3K9me3, a mark
deposited by the histone methyltransferase SETDB1 [21,22]. These ERVs are targeted for silencing in a
sequence-dependent manner by Krüppel-associated box domain zinc-finger proteins (KRAB-ZFPs),
which make up a large family of DNA binding proteins whose sequence specificity is determined
through their C-terminal zinc finger arrays [23,24]. Through their KRAB domain, KRAB-ZFPs recruit
KRAB-associated protein 1 (KAP1), which acts as a scaffold for other components of the transcriptional
silencing machinery, including SETDB1, HP1 (heterochromatin protein 1), NuRD/HDAC (nucleosome
remodelling and deacetylase complex), and DNA methyltransferases [25–27]. For a more detailed
description of KRAB-ZFP structure and function, we refer the reader to the following comprehensive
reviews [27,28]. In mouse ESCs and primordial germ cells (PGCs), whilst DNA methylation is
dispensable for ERV silencing as evident from bulk ERV type analysis, knocking out SETDB1 or KAP1
results in the upregulation of several class I and II ERVs [21,22,29,30]. In contrast, DNA methylation is
essential for ERV silencing in differentiated cell types and later embryonic time points, though the
extent of this is not known [31–33]. The silencing mechanisms for class III ERVs are less clear; in ESCs,
class III ERVs are largely devoid of H3K9me3 except at MERV-Ls, whose silencing and H3K9me2/3
deposition is dependent on G9a/GLP activity [34,35]. A role for the lysine-specific histone demethylase
LSD1/KDM1A in MERV-L silencing in early embryos and ESCs has been proposed, but is less well
defined [36,37].
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In the mouse, as in other mammals, there are tightly regulated periods of epigenetic reprogramming
whereby epigenetic modifications are globally erased and developmental potency is re-established.
This occurs immediately post fertilisation in the zygote and in PGCs and is generally recapitulated in
ESCs in vitro [38]. During development, the genome-wide removal of DNA methylation results in
the transient transcriptional activation of certain classes of ERVs, notably class III MERV-Ls, which
play a role in zygotic genome activation (ZGA) at the 2-cell stage in mice [39–41]. Retrotransposition
inhibition and the transcriptional control of other classes of ERVs is maintained during epigenetic
reprogramming implicating additional silencing pathways [42–46]. Other epigenetic mechanisms
associated with ERV silencing involve 3′ tRNA fragments [47], piRNA pathways [48], and histone
variants [49–52].

3. Evidence of Strain-Specific ERV Control

The high prevalence of polymorphic ERVs raises many questions about the similarities and
differences in transposon regulation between strains. The strain-specific expansion of ERVs in inbred
mice hints at the possibility of strain-specific ERV silencing, or lack thereof, and subsequent mobilisation.
Thus far, no unbiased or genome-wide screens to assess strain-specific ERV control have been carried
out. The few documented instances of strain-specific modifiers were identifiable due to obvious and
observable phenotypic differences. These are discussed in more detail below.

3.1. Dactylaplasia-Causing MusD Insertions at Fbxw4

Dactylaplasia is an inherited limb malformation which manifests as the absence of phalangeal
bones in the middle digits of each foot in mice. The first identified mutation (Dac1j) arose in the
SM7B/SC inbred strain and was found to be a homozygous lethal dominant allele [53]; a second
dactylaplasia-causing mutation (Dac2j) was reported several years later on the MRL/MpJ genetic
background [54]. Fine mapping and sequencing experiments established that both Dac1j and Dac2j

are due to independent, full length, highly similar (99.6% identical), and polymorphic MusD element
insertions, which lie either 10kb upstream (Dac1j) or within an intron (Dac2j) of the Fbxw4 gene locus,
a member of the F-box/WD40 gene family involved in protein ubiquitination and degradation [54–57]
(Figure 1A, top and middle panel). The mechanism by which these MusD insertions cause dactylaplasia
remains unknown [56,57].

The effects of both Dac1j and Dac2j were found to be modified by an unlinked allele Mdac (modifier
of Dac), which resulted in highly polymorphic phenotypes between inbred mouse strains [53–55].
The strains carrying the Mdac allele are hypermethylated and enriched for H3K9me3 at the 5′ LTRs of
Dac1j and Dac2j, resulting in the loss of aberrant MusD expression at the apical ectodermal ridge in
the limb bud seen in mdac strains and enabling normal limb development to occur [56] (Figure 1A,
bottom panel). The Mdac locus was first mapped to a 28Mb interval on Chromosome 13 and was
later refined to a 9.4Mb region containing 125 genes, including many known to be important for limb
development—e.g., Ror2, Msx2, Fgfr4, and Patched [55,56] (Figure 2). This 9.4Mb region contains a
KRAB-ZFP cluster of six KRAB-ZFP genes which, given their known role in ERV epigenetic targeting,
are possible Mdac candidates [58]. It is worth noting, however, that a recent study where this KRAB-ZFP
cluster (Chr13.1-cl KO) was deleted did not lead to a global upregulation of MusD elements in ESCs [59].
This is in line with the finding that a control MusD element was not differentially regulated according
to the mdac/Mdac genotype [56].



Viruses 2020, 12, 810 4 of 21

Viruses 2020, 12, 810 4 of 22 

 

 
Figure 1. Schematics for the insertion sites of endogenous retroviruses (ERVs) subject to strain-specific 
regulation (upper panel) and the effects of strain-specific modifier activity (lower panel) for (A) Dac1j 

and Dac2j, (B) clf1, and (C) Stab2-IAP. Sticks with closed circles represent methylated CpGs in the long 
terminal repeat (LTR) of the ERV; sticks with open circles represent unmethylated CpGs. Black dotted 
lines depict introns; thick black lines depict intergenic regions. The information is based on the latest 
patch release of the 2011 mouse assembly on the UCSC Genome Browser (GRCm38.p6); the 
coordinates given are mm10. 

Figure 1. Schematics for the insertion sites of endogenous retroviruses (ERVs) subject to strain-specific
regulation (upper panel) and the effects of strain-specific modifier activity (lower panel) for (A) Dac1j

and Dac2j, (B) clf1, and (C) Stab2-IAP. Sticks with closed circles represent methylated CpGs in the long
terminal repeat (LTR) of the ERV; sticks with open circles represent unmethylated CpGs. Black dotted
lines depict introns; thick black lines depict intergenic regions. The information is based on the latest
patch release of the 2011 mouse assembly on the UCSC Genome Browser (GRCm38.p6); the coordinates
given are mm10.
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3.2. Cleft Lip Palate-Causing IAP Insertions at Wnt9b

Nonsyndromic cleft lip with palate (CL/P) defects arise when the medial and frontal nasal
prominences fail to fuse; CL/P causes neonatal lethality in mice, as the pups are unable to suckle.
CL/P spontaneously occurs with a 20–30% frequency in the inbred mouse strain A/WySn, making it
a commonly used model to study clefting [60]. Similarly to the dactylaplasia phenotype, the CL/P
phenotype in A/WySn mice involves two unlinked genes, a recessive mutation (clf1), and a second
semi-dominant modifier locus (Clf2) [61]. The clf1 mutation was identified as an IAP element insertion
into a ncRNA, C130046K22Rik, located 6.6kb downstream of Wnt9b [62,63] (Figure 1B, upper panel).
The insertion is only present in “A” strains and is a I∆1-type IAP, the same type responsible for
the Agouti viable yellow (Avy) and Axin-fused (AxinFu) metastable epialleles (discussed below). Wnt9b
has been implicated in clefting previously: Wnt9b null embryos have deficient growth of the facial
prominences, resulting in CL/P, which possibly manifests via the downregulation of Fibroblast Growth
Factor (FGF) signalling in these mutants [64].

In A/WySn embryos with CL/P, the 5′ LTR of the clf1 IAP element is unmethylated [63,65–67]
(Figure 1B, lower panel). 5′ LTR initiated antisense IAP transcripts and reduced Wnt9b levels are
detected in CL/P A/WySn embryos compared to phenotypically normal A/WySn embryos, but the
mechanism by which this occurs is unknown [63,67]. On a C57BL/6J (B6J) genetic background with
the Clf2 modifier, the clf1 IAP element is more highly methylated, no IAP transcripts are detectable,
and Wnt9b expression is normal [66]. As assessed by Combined Bisulfite and Restriction Analysis
(COBRA), phenotypically normal A/WySn embryos appear to exhibit variable DNA methylation at
the 5′ LTR of the clf1 IAP element. This suggests this IAP is a metastable epiallele and it was thus
redefined as Wnt9bIAP by Juriloff et al. [63].

Once again, the modifier responsible for the strain-specific methylation of the CL/P-inducing IAP,
Clf2, has not yet been identified but has been mapped to a 3Mb region on Chromosome 13; this region
contains 48 genes and includes a known KRAB-ZFP cluster of more than 30 KRAB-ZFPs [58,66]
(Figure 2). Many of the KRAB-ZFP genes in this cluster contain divergent non-synonymous single
nucleotide polymorphisms (SNPs) between the B6J and A/WySn strains [28,66]. Though both are on
Chromosome 13, this KRAB-ZFP cluster is distinct from that identified in the mapping experiments of
the Mdac candidate.

3.3. Non-Ecotropic ERV Activation Links to Lupus

The mouse strains commonly used as models for human systemic lupus erythematosus
(SLE)—New Zealand Black (NZB), New Zealand White (NZW), and 129—have high gene expression
and protein levels of non-ecotropic ERV (NEERV) envelope glycoprotein gp70, concomitant with
nephritis. However, a causative link between NEERV dysregulation and lupus pathology has not been
established, and the mechanism for NEERV dysregulation is unknown. Previously, independent QTL
analyses in the NZB/NZW and 129 strains mapped the loci (Sgp3 in NZB and Gv-1 in 129) responsible
for the gp70 autoantigen expression to large intervals on Chromosome 13 [68,69].

A recent comparative RNA-seq study between B6J and C57BL/6N (B6N) found that the majority
of differentially expressed loci between these two sub-strains were NEERVs; the ERV envelope protein
and NEERV gene expression were significantly higher in B6N compared to B6J [70]. F1 hybrid mice
showed low NEERV gene expression and ERV envelope protein levels that were comparable to B6J
mice, indicating the presence of a dominant NEERV repressor in the B6J sub-strain. A QTL analysis
revealed a single QTL locus on Chromosome 13 responsible for NEERV dysregulation; an inter-strain
comparison and copy number analysis revealed a 1Mb deletion specific to B6N in the mapped interval.
This 1Mb region in B6J contains two genes, four non-coding RNAs, and four pseudogenes (Figure 2).
The knockouts of the two genes in this interval on a B6J genetic background phenocopied the NEERV
dysregulation seen in the B6N strain. The two genes are the KRAB-ZFP genes 2410141K09Rik and
Gm10324, renamed suppressor of NEERV (Snerv) 1 and 2.
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box domain zinc-finger protein (KRAB-ZFP) genes and non-KRAB-ZFP genes; the KRAB-ZFP clusters 
are highlighted and named as in [59]. Multiple isoforms are not shown. 
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Figure 2. The mapped intervals of four strain-specific ERV modifiers—Mdac, Clf2, Snerv1 and Snerv2
and Stab2-modifier—on Chromosome 13. The underlying genes are separated into Krüppel-associated
box domain zinc-finger protein (KRAB-ZFP) genes and non-KRAB-ZFP genes; the KRAB-ZFP clusters
are highlighted and named as in [59]. Multiple isoforms are not shown.
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The previously mapped intervals for Sgp3 and Gv-1 in NZB and 129, respectively, include Snerv1
and Snerv2. Additionally, the 1Mb deletion in B6N also appears to be deleted in NZB and 129,
indicating that the previously mapped Sgp3 and Gv-1 loci may be the same modifiers as Snerv1 and 2.
Complementation experiments found that hybrid F1 mice (Snerv1/2-/- X NZB/129) were unable to rescue
the NEERV repression phenotype, indicating that the strain-specific absence of these KRAB-ZFPs,
previously identified as Sgp3 in NZB and Gv-1 in 129, may drive the NEERV dysregulation and lupus
pathology in lupus-prone strains, NZB and 129.

3.4. IAP-Driven Stabilin2 Expression in DBA/2J Mice

Stabilin2 (Stab2) encodes a type I transmembrane receptor which functions via clathrin-mediated
endocytosis as a scavenger receptor for hyaluronans (HA), heparin, and pro-collagen peptides, amongst
other macromolecules [71,72]. The main phenotype of Stab2 null mice, which were generated on B6J
and BALB/cJ genetic backgrounds, is a 10-fold higher plasma HA concentration compared to wild
type [73,74]. Independently, one study reported that wild-type DBA/2J (DBA) mice have a more than
10-fold higher plasma HA concentration than 129S6 or B6J mice, a phenotype which was mapped to
the Stab2 locus [75]. Recently, it was shown that a 5.5kb I∆1-type IAP element inserted 220bp upstream
of the canonical Stab2 transcription start site (TSS), providing an alternative TSS which drives the
ectopic expression of Stab2 [76] (Figure 1c, upper panel). The IAP element (Stab2-IAP), alternative TSS,
and ectopic Stab2 expression are unique to the DBA genetic background.

In B6J x DBA (BxD) F1 hybrid heart tissue, IAP-driven Stab2 expression is completely abrogated,
indicative of a single dominant modifier in the B6J strain targeting the Stab2-IAP for silencing and
preventing aberrant transcription. A congenic line homozygous for the DBA-specific Stab2-IAP in an
otherwise 129S6/Sv (129S6) genetic background exhibited Stab2 expression levels that were significantly
reduced compared to DBA but that were higher than a pure 129S6 genetic background. The lack
of the complete transcriptional repression of the IAP-driven transcripts suggests that an additional
locus or loci are responsible for targeting the DBA-specific IAP on the 129S6 genetic background.
The 5′ LTR of the Stab2-IAP is highly methylated on the DBA and 129S6 genetic background, as
assessed by clonal bisulfite sequencing (75.7% vs. 85.0%, respectively), indicating that a mechanism
besides DNA methylation may also be involved in the strain-specific behaviour of this IAP element [76]
(Figure 1C, lower panel). The methylation status of the Stab2-IAP was not assessed on a B6J background.
The small increase in DNA methylation at the Stab2-IAP on a 129S6 genetic background may be a
secondary consequence of other repressive epigenetic modifications, such as increased H3K9me3,
which prevent ectopic transcription initiating from the LTR. Besides DNA methylation, additional
epigenetic modifications at the Stab2-IAP were not assayed.

Utilising the BxD recombinant inbred lines and gene expression data from the Hybrid Diversity
Panel, the most prominent trans expression QTL (eQTL) locus was mapped to Chromosome 13 and
refined to 59.7–73Mb [76] (Figure 2). The region overlaps the modifiers (and KRAB-ZFP clusters)
mapped for Mdac (56–65 Mb), Clf2 (64.95 -67.9 Mb) and Snerv1/2 (65.66–66.7 Mb). In the other three
examples of strain-specific regulation discussed so far, the modifiers appear to be single dominant loci.
This seems to hold true for the Stab2-IAP in a B6J F1 background. However, on a 129S6 F1 background,
the Stab2-IAP is not fully repressed, as assessed by the elevated Stab2 expression and the methylation
status of the 5′ LTR. In this regard, the strain-specific modifier acting on Stab2-IAP is particularly
interesting, as it exhibits both strain-specific absence/presence polymorphism (B6J and 129S6 vs. DBA)
and a strain-specific mode of action (B6J vs. 129S6). It is worth pointing out that when a single locus is
mapped, there may be multiple modifiers that are always inherited together capable of recognising the
target ERV, making it seem like the Mendelian segregation of a single gene. This is especially pertinent
given that all of the mapped intervals contain KRAB-ZFP clusters, which are known to expand through
segmental duplication, resulting in individual KRAB-ZFPs with highly redundant roles [59].
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3.5. Epigenetic Inheritance of Metastable Epialleles, Avy and AxinFu

Metastable epialleles are regions of the genome which display variable epigenetic states between
genetically identical individuals [77,78]. The most comprehensively studied metastable epialleles
to date, Avy and AxinFu, result from the variable silencing of IAP element insertions upstream of,
or within, endogenous gene loci, and were identified due to observable phenotypic differences between
littermates [79–83]. Whilst no strain-specific modifiers have been identified that specifically act on the
IAP elements responsible for the Avy or AxinFu alleles, it is clear that genetic background influences
the heritability of these loci as well as the susceptibility of these alleles to environmental stimuli,
two features for which these loci are particularly well known.

The Avy-causing IAP insertion first arose spontaneously on a C3H/HeJ (C3H) genetic background
in pseudoexon 1A of the coat colour gene Agouti, 100kb upstream of the coding exons [79,84] (Figure 3A,
upper panel). In wild-type mice, the Agouti expression is regulated by a hair cycle-specific promoter;
transient expression at the beginning of each hair follicle cycle results in a sub-apical yellow band on an
otherwise black hair follicle and the “agouti” coat pattern. In Avy mice, transcription originating from
a cryptic promoter within the LTR of the I∆1-type IAP element drives the ectopic expression of Agouti
(Figure 3A, lower panel). The excess paracrine signalling molecule causes hair follicle melanocytes
to constitutively synthesise yellow pigment (phaeomelanin), resulting in mice with yellow coats as
well as adult-onset obesity, diabetes, and an increased susceptibility to tumours [85,86]. Isogenic
individuals have variable DNA methylation at the IAP element, which inversely correlates with ectopic
Agouti expression levels: highly-methylated individuals retain endogenous levels of expression and
are indistinguishable from wild type (termed pseudoagouti); lowly-methylated individuals have high
levels of ectopic expression and have a yellow coat, diabetes, and obesity; intermediately methylated
individuals have an intermediate mottled coat-colour phenotype [80,84] (Figure 3A, lower panel).

Similarly, the AxinFu allele resulted from a spontaneous I∆1-type IAP element insertion in the sixth
intron of Axin1 in the Bussey Institution stock of mixed genetic backgrounds [81,82] (Figure 3B, upper
panel). At a low rate, the intronic IAP causes aberrant splicing, which results in both wild-type and
mutant transcripts which contain the IAP; the inclusion of the AxinFu IAP in the mRNA is predicted to
generate a truncated AXIN1 protein [82] (Figure 3B, lower panel). Transcripts initiating within 100 bp
downstream of the 3′ LTR of the AxinFu IAP have also been detected and may result in truncated
peptides consisting of intron 6 and exons 7–10 [83]. The resultant kinked tail phenotype is attributed to
the abnormal development of the posterior somites and axial duplications, which leads to vertebral
fusions via atypical Wnt signalling [82,83]. Among isogenic individuals, tails range from kinked to
completely normal, with the phenotypic severity inversely correlating with the DNA methylation
status of the intronic AxinFu IAP element [83] (Figure 3B, middle and lower panels).

Hybrid experiments to assess whether the Avy mutation was pleiotropic provided the first evidence
that the Avy IAP was sensitive to genetic background; 12% of the B6JxVY-Avy hybrids were pseudoagouti,
compared to 58% of the AKR/LwNIcr (AKR)xVY-Avy hybrids [87] (Figure 4A, lower panel). This may
be indicative of an AKR-specific modifier(s) that more robustly recognises the Avy IAP for silencing and
“pushes” the offspring towards the pseudoagouti end of the phenotypic spectrum. Subsequent studies
showed that the phenotypic distribution and physiological outcomes of Avy mice shifted dependent
on genetic background [86,88–91]; similar findings have been reported for the AxinFu locus [92,93].
In addition, the phenotypic shifts in the offspring of Avy dams subjected to methyl-supplemented
diets differ depending on the genetic background of the dam, likely reflecting differences in methyl
metabolism between strains [90,91]. Figure 4A summarises the breeding experiments on Avy conducted
by Wolff spanning almost 30 years.
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Figure 3. Schematics depicting the insertion sites of the metastable epialleles (A) Avy and (B) AxinFu.
Upper panel shows the intracisternal A-type particle (IAP) insertion relative to the affected gene;
lower panel shows the functional consequence of the variably methylated IAP element. Coordinates
are mm10. Sticks with closed circles represent methylated CpGs in the LTR of the ERV; sticks with
open circles represent unmethylated CpGs. Black dotted lines depict introns; thick black lines depict
intergenic regions.



Viruses 2020, 12, 810 10 of 21

Viruses 2020, 12, 810 11 of 22 

 

 
Figure 4. The effect of genetic background on the phenotypic spectrum and inheritance of Avy upon 
maternal or paternal transmission. (A—upper) Maternal and paternal transmission of the Avy allele 
on VY/Wf (VY), YS/ChWf (YS), or AT/Wf (AT) genetic backgrounds. The percentage of pseudoagouti 
(PA) offspring depends upon the maternal coat colour phenotype, but not the paternal coat colour 
phenotype. Paternal transmission of Avy results in a higher percentage of PA offspring than the 
maternal transmission of Avy. Both maternally and paternally transmitted alleles are sensitive to 

Figure 4. The effect of genetic background on the phenotypic spectrum and inheritance of Avy upon
maternal or paternal transmission. (A—upper) Maternal and paternal transmission of the Avy allele on
VY/Wf (VY), YS/ChWf (YS), or AT/Wf (AT) genetic backgrounds. The percentage of pseudoagouti (PA)
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offspring depends upon the maternal coat colour phenotype, but not the paternal coat colour phenotype.
Paternal transmission of Avy results in a higher percentage of PA offspring than the maternal transmission
of Avy. Both maternally and paternally transmitted alleles are sensitive to genetic background effects,
albeit in different ways. (A—lower) Paternal transmission of Avy is largely influenced by the genetic
background of the dam. Paternal coat colour information is not included, as it is not available for all
of the inter-strain crosses. B6J = C57BL/6J; AKR = AKR/LwNIcr. The data shown in the upper and
lower panel are combined (based on the genotype and parent-of-origin) and adapted from [87,89,90].
(B—upper) On a C57BL/6J background, the maternal coat colour phenotype influences the coat colour of
the Avy/a offspring, but the paternal coat colour phenotype has no effect on the phenotypic distribution
of the offspring. When the Avy allele is paternally inherited through a 129P4/RrRk-fertilised oocyte,
the paternal coat colour phenotype influences the coat colour of the Avy/a offspring; the percentage
of PA and mottled is increased after passage through a 129P4/RrRk-fertilised oocyte compared to
a C57BL/6J-fertilised oocyte. (B—lower) On a 129P4/RrRk background, the maternal and paternal
tail kink phenotype influences the tail kink phenotype in the AxinFu/+ offspring. The phenotypic
distributions are different upon the maternal versus paternal transmission of the allele. When the AxinFu

allele is paternally inherited through a C57BL/6J-fertilised oocyte, the tail kink phenotype of the sire has
no bearing on the phenotypic distribution in the AxinFu/+ offspring. The data shown in the upper and
lower panel are adapted from [80,83]. Pedigrees: circle—female; square—male; diamond—unspecified.

Both the Avy and AxinFu alleles display strain-specific epigenetic inheritance across generations
(Figure 4B). On a B6J genetic background, Avy displays partial inheritance when transmitted maternally,
whilst the AxinFu allele on a 129P4/RfRk (129P4) genetic background is inherited upon both maternal
and paternal transmission [80,83]. Interestingly, Avy also displays paternal inheritance when Avy/a
B6J males are crossed with AxinFu/+ 129P4 females (Figure 4B, upper panel). Conversely, AxinFu

is no longer paternally transmitted when AxinFu/+ 129P4 males are crossed with Avy/a B6J females,
indicating that the inheritance of the AxinFu allele is strain-specific, rather than an intrinsic property of
the locus [83] (Figure 4B, lower panel). These findings suggest that paternally inherited alleles are
subject to the full erasure of DNA methylation during epigenetic reprogramming by B6J-fertilised
oocytes, but not 129P4-fertilised oocytes. Indeed, immediately following fertilisation and in line with
the rest of the genome, the paternal Avy allele undergoes rapid demethylation, whereas the maternal
Avy allele does not in the B6J strain [94–96]. However, importantly, both the paternal and maternal
alleles exhibit a comparable absence of DNA methylation at Avy at the blastocyst stage, which suggests
that DNA methylation is not the inherited epigenetic mark [96].

Our group recently performed a genome-wide systematic screen of IAP elements in B6J to identify
novel metastable epialleles, which we termed variably methylated IAP elements (VM-IAPs) [97].
Although VM-IAPs are not commonly associated with transcriptional changes, nor do they retain a
memory of the parental methylation level in the offspring, we do find that VM-IAPs are sensitive to
genetic background and parent-of-origin effects, in line with the Avy and AxinFu alleles [98]. Given that
VM-IAPs are naturally occurring alleles that are polymorphic between strains, they represent an
attractive model in which to study the modifiers and mechanisms involved in the strain-specific
epigenetic regulation of IAP elements. Taken together, in depth cross-strain analyses on Avy, AxinFu,
and VM-IAPs are likely to provide mechanistic insight into the establishment and maintenance of
these unique loci.

4. Lessons from Transgenes

The similarities between metastable epialleles and the epigenetic targeting of transgenes have been
highlighted previously [77,78,99–102]. Methylated transgenes and endogenous metastable epialleles
are loci with varying degrees of DNA methylation that can exhibit parent-of-origin effects upon
transmission. In addition, the genetic background in which transgenes and metastable epialleles are
studied affects their methylation state and heritability, suggesting that strain-specific modifiers are
acting on these loci.
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The strain-specific silencing of ERVs is particularly reminiscent of the decades-spanning work
on a transgene designed to study the rearrangement of immunoglobulin genes in the Storb lab.
The transgene was designed as a marker of V-J recombination: the construct contains a mouse
metallothionein-1 promoter upstream of the bacterial xanthine/guanine phosphoribosyltransferase (gpt)
gene, whose translation is dependent on V-J rearrangement to form an upstream in-frame initiation
codon [103]. The transgene was named HRD (heavy chain enhancer, rearrangement by deletion),
and was found to recombine 100% of the time in a transfected pre-B cell line [103,104]. When maintained
on the DBA genetic background, the HRD transgene is unmethylated. Upon crossing the founder
transgenic mice to B6J, the HRD transgene becomes highly methylated and no longer undergoes V-J
recombination in the lymphoid organs of the offspring [105]. The further crossing of B6J mice with the
HRD transgene to DBA or SJL/J (SJL) mice resulted in offspring with a methylated HRD transgene.
Crossing these F1 hybrids (B6Jx DBA or SJL) back to DBA or SJL mice resulted in offspring (N1) with
an unmethylated, partially methylated, or methylated HRD transgene, suggestive of a dominant B6J
modifier that had been lost in some of the backcrossed N1 individuals. The single dominant B6J allele
responsible for HRD transgene methylation, Strain-specific modifier 1 in C57BL/6J (Ssm1b), was found to
be concordant with the B allele of Fv-1, a resistance allele to the Friend leukaemia virus, which mapped
Ssm1b to Chromosome 4 [105]. Ssm1b was later fine-mapped to a 0.5Mb interval on Chromosome
4, a region containing ~12 genes, six of which are KRAB-ZFPs [106]. Several overlapping bacterial
artificial chromosomes (BACs) covering the mapped region were injected into fertilised eggs carrying
the HRD transgene on an unmethylated genetic background (C3H x DBA hybrids). Two of the BACs
containing a single gene in common resulted in the methylation of the HRD transgene, enabling the
identification of Ssm1b as Zfp979 (NCBI designation is 2610305D13Rik) [106].

Zfp979 has a KRAB-A box and three functional C2H2 zinc fingers interspersed with three
non-functional zinc fingers. It resides in a cluster which contains 20 other KRAB-ZFPs on Chromosome
4. Zfp979 is widely expressed during embryonic development until embryonic day 8.5 (E8.5). Whilst
ESCs on a DBA background have 0% DNA methylation at the HRD transgene, B6J ESCs have ~40%
DNA methylation, indicating that the methylation of the HRD transgene likely occurs peri-implantation,
coincidental with the rest of the genome [107]. In a B6J or hybrid BxD background, methylation at
the HRD transgene increases from 40% to almost 100% between E8.5 and E9.5 and relies on the de
novo methyltransferase DNMT3B [106]. The direct binding of ZFP979 to the HRD transgene and the
existence of a ZFP979:KAP1 interaction have not yet been shown. A recent analysis of KRAB-ZFP
clusters established that ZFP979/2610305D13Rik binds to IAPEY-int elements [59].

Ssm1b was originally identified due to the differential methylation of the HRD transgene in B6J
(methylated) and DBA (unmethylated) genetic backgrounds. In total, when maintained on an F1
background with DBA or SJL, the HRD transgene is methylated in seven strains of mice (C57BL/6J,
FVB/NJ, C57L/J, LP/J, 129/SvJ, BALB/cJ, and A/J) and unmethylated in six strains of mice (DBA/2J,
C3H/HeJ, SJL/J, CBA/J, SM/J, and AKR/J) [108]. The reference genomes for 16 strains were recently
generated but there remain significant gaps in this region, likely due to the repetitive nature of
the KRAB-ZFPs within this cluster, which are predicted to have arisen through segmental gene
duplications [17,59,109]. This makes inter-strain sequence alignments of Zfp979 currently impossible.
The generation of new reference genomes using long-read sequencing technologies will alleviate these
issues and enable inter-strain comparisons at KRAB-ZFP clusters and other repeat-dense regions in
the future.

Indeed, the variable epigenetic state of both transgenes and metastable epialleles has been utilised
to screen for modifiers involved in their epigenetic targeting: large-scale N-ethyl-N-nitrosourea (ENU)
mutagenesis screens have identified dominant and recessive genes capable of modifying GFP transgene
variability in mice [102,110–116]. The hits from these screens have been named Modifiers of Murine
Metastable Epialleles (Mommes), and the effect of some of these mutants on the phenotypic spectrum of
Avy has been assessed [111,112]. Many of the candidates from the screen are known components of the
ERV epigenetic silencing pathway, but it is not yet known if, and to what extent, these modifiers act
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in a strain-specific manner. In this regard, a screen focussing on the strain-specific modifiers of ERV
silencing would be timely.

5. KRAB-ZFPs as Effectors of Strain-Specific ERV Regulation

Thus far, the most compelling examples of strain-specific ERV regulation involve I∆1-type IAP
elements, with the exception of the dactylaplasia-causing MusD insertion at Fbxw4. This is perhaps
unsurprising, given the strain-specific expansions of IAP and MusD/ETn elements [9,11,13,15]. Whilst
the two I∆1-type IAP elements whose modifiers map to overlapping regions, clf1 and Stab2-IAP,
are permissive in different strains, they are both targeted for silencing on a B6J genetic background,
raising the possibility that their respective modifiers, Clf2 and Stab2-modifier, may in fact be the same
(Table 1). As these strain-specific modifiers have been discovered due to observable phenotypes rather
than specially designed screens, only dominant-acting alleles have been detected so far. Aside from
the NEERV effectors, 2410141K09Rik and Gm10324, specific modifiers for the other ERVs subject to
strain-specific regulation are yet to be identified. It is worth noting that many of the modifiers linked to
strain-specific ERV regulation reside on Chromosome 13 and overlap known KRAB-ZFP clusters, one
of which includes KRAB-ZFPs Rsl1 and Rsl2 (Figure 2 and Table 1) [66,70,76,117]. Rsl1 and Rsl2 are
strain-specific KRAB-ZFPs that regulate sexually dimorphic gene expression in the liver. One of the
target genes of Rsl1, sex-limited protein (Slp), lies 2kb downstream of an ancient ERV [118,119]. In KAP1
knockout livers, there is an upregulation of Rsl1/Rsl2-target cytochrome P450 genes, implicating
the KRAB-ZFP/KAP1 pathway, with its already established role in ERV silencing, in the functional
mechanism of RSL1 and RSL2 [27,120]. The KRAB-ZFP cluster (Chr13.2-cl) containing Rsl1 and Rsl2
has previously been identified as being highly variable between mouse strains [121]. It is possible that
certain clusters contain KRAB-ZFPs with particularly rapid evolution in response to the amplification
of active ERV elements, making them more polymorphic across mouse strains than other clusters.
This may explain the strain-specific modifiers mapping predominantly to Chr13.2-cl, as well as the
Ssm1b cluster, Chr4-cl.

Table 1. Overview of mapped strain-specific modifiers.

Disrupted
Locus
(ERV
Type)

Documented
Strains with

ERV Mutation

Strain-Specific
Phenotype

Dominant
Modifier

Documented
Permissive

Strains

Documented
Repressive

Strains

Coordinates of
Modifier Locus

(mm10)
References

Dac1j/2j

(MusD)
Dac1j—SM/Ckc

Dac2j—MRL/MpJ
Dactylaplasia Mdac

BALB/cJ, A/J,
129/J, SM/Ckc,

LG/Ckc,

CBA/J, C3H/J,
C57BL/6J,
DBA/2J,

AKR/J, SWR/J

chr13:56–65Mb [54–56]

clf1
(I∆1-type

IAP)

A/HeJ, A/WySnJ,
A/J

Cleft lip with
palate Clf2 “A” strains C57BL/6J chr13:64.95–67.9Mb [63,66,122]

NEERVs -

NEERV
dysregulation

and lupus
pathology

Snerv1 and
2

C57BL/6N,
129S1/Sv, NZB C57BL/6J chr13:65.66–66.7Mb [70]

Stab2-IAP
(I∆1-type

IAP)
DBA/2J Elevated plasma

HA Stab2-modifier DBA/2J C57BL/6J,
129S6/Sv chr13: 59.7–73Mb [76]

HRD
transgene -

Transgene no
longer

undergoes V-J
recombination

Ssm1b

DBA/2J,
C3H/HeJ,

SJL/J, CBA/J,
SM/J, AKR/J

C57BL/6J,
FVB/NJ,

C57L/J, LP/J,
129/SvJ,

BALB/cJ, A/J

chr4: 147.4–147.9Mb [108,109,111]

KRAB-ZFPs are attractive candidates for strain-specific modifiers of ERVs due to the sequence
specificity endowed by their C-terminal ZFPs, which are under strong positive selection [123–125].
Indeed, it is worth noting that many of the ERVs subject to strain-specific regulation are the same
type of TE (I∆1-type IAP: clf1, Stab2-IAP, Avy, and AxinFu), providing support for the role of sequence
in the strain-specific epigenetic targeting of these elements. Furthermore, the positive correlation
that exists between the number of LTR retrotransposons and the number of zinc finger domains
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across mammalian species is indicative of concurrent waves of KRAB-ZFP and TE expansion [124,125].
The varying KRAB-ZFP gene content between strains, and even sub-strains of mice with less than
75 years divergence in the case of B6N and B6J, may underlie differing ERV activity and epigenetic
regulation between strains of inbred laboratory mice [17,70,126,127]. In particular, the C3H strain is
particularly susceptible to IAP mobilisation, and it is tempting to speculate that this may be explained
by a KRAB-ZFP cluster or gene deletion, as has occurred in the B6N, 129, and NZB strains, causing
NEERV dysregulation [9,70]. The coexistence of strain-specific ERVs and strain-specific KRAB-ZFPs
provides intriguing complexity to the KRAB-ZFP/TE coevolution debate in light of the non-mutually
exclusive “arms race” and “domestication” models [27,28,128]. Future attempts to functionally
characterise strain-specific KRAB-ZFPs in detail may be difficult. In addition to the high prevalence
of gaps currently in the reference genomes at KRAB-ZFP clusters and repetitive regions, the high
level of redundancy in the KRAB-ZFP-targeting of ERVs will make the identification and validation
of candidate modifiers challenging [23,125,129]. This high level of redundancy may explain why
KRAB-ZFPs were not identified in the Mommes mutagenesis screen [102,116].

It is not yet clear whether modifier loci are required for the establishment or maintenance of
strain-specific epigenetic states at ERVs and transgenes. The identification and emphasis of KRAB-ZFPs
as strain-specific modifiers so far in this review suggests the focus may be on the strain-specific
“establishment” of an epigenetic state, although some KRAB-ZFPs are known to play a protective role
maintaining germline-derived DNA methylation marks during early embryonic development, notably
ZFP57 and ZFP445 at imprinted loci [32,130–132]. Whilst 75% of ZFP57 binding sites are located
in ERVs, the loss of this protein does not affect H3K9me3 deposition or DNA methylation at ERVs,
nor does it lead to the loss of transcriptional repression of ERVs in ESCs [130,131,133]. This perhaps
reflects the highly redundant nature of KRAB-ZFP-mediated ERV repression, or it may suggest that
ZFP57 does not play a role at these TEs. Interestingly, instances of strain-specific ZFP57 binding have
been reported previously, conferred by genetic variation either in the ZFP57 binding motif itself or in
neighbouring regions between strains, causing strain-specific differential methylation and subsequent
ZFP57 binding [131]. Recently, the strain-specific loss of imprints in ESCs (129 v B6J) was mapped
by QTL analysis to an interval spanning 52Mb-67.7Mb on Chromosome 13, overlapping entirely or
partially with the Mdac, Clf2, Snerv1/2, and Stab2-modifier loci [134]. Needless to say, the establishment
of a strain-specific epigenetic state may occur via mechanisms outside of the KRAB-ZFP targeting
pathway. Whilst our understanding of these processes is limited, it is possible that strain-specific
epigenetic states could arise through the strain-specific protection (by KRAB-ZFPs or other proteins) or
the strain-specific removal of epigenetic modifications during epigenetic reprogramming or at other
time points in development.

6. Concluding Remarks

It is well established that the genetic background of mouse models can result in large phenotypic
differences not attributable directly to the phenotype-associated genetic locus itself. Historically,
these strain differences have been largely overlooked due to the technical challenges associated with
identifying the underlying modifier genes. This has resulted in specific strains of mice being used
in the study of certain traits, as is the case with the “A” strain mice and clefting. We note that while
attention to genetic background as a variable across experiments is necessary to ensure experimental
reproducibility as well as cross-strain, and potentially cross-species, generalisability, we hope that
here we have emphasised the biological and mechanistic value of cross-strain experiments. Currently,
the annotations of KRAB-ZFP clusters are poor even in the C57BL/6J reference genome. Advances
in long-read sequencing technologies and the resultant high-quality mouse strain reference genomes
with full coverage over KRAB-ZFP clusters and their target TEs will be required to enable large-scale
inter-strain experiments and provide further mechanistic insight into the complex relationship between
repetitive elements, the KRAB-ZFP machinery, and their coevolution.



Viruses 2020, 12, 810 15 of 21

The strain-specific modifiers outlined in this review were identified due to observable phenotypic
differences between permissive and repressive strains. The extent to which polymorphic ERVs,
and indeed polymorphic ERV regulation, act as drivers of phenotypic variation between inbred mouse
strains remains unclear. However, it is important to note that inbred laboratory mouse strains suffer
from severe inbreeding depression, which may put an unusual strain on the host defence mechanisms
against TE mobilisation. Experiments using wild-derived mice alongside laboratory strains would help
elucidate whether these effects are reflective of host-TE dynamics in natural populations. Additionally,
the studies discussed in this review serve as an important reminder that seemingly complicated
epigenetic phenomena are sometimes explained by underlying genetic differences, highlighting the
mutual dependence and interrelatedness of genetic and epigenetic pathways.
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