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ABSTRACT
Intestinal microbiota, dominated by bacteria, plays an important role in the occurrence and the 
development of alcohol-associated liver disease (ALD), which is one of the most common liver 
diseases around the world. With sufficient studies focusing on the gut bacterial community, chronic 
alcohol consumption is now known as a key factor that alters the composition of gut bacterial 
community, increases intestinal permeability, causes intestinal dysfunction, induces bacterial trans-
location, and exacerbates the process of ALD via gut-liver axis. However, gut non-bacterial com-
munities including fungi, viruses, and archaea, which may also participate in the disease, has 
received little attention relative to the gut bacterial community. This paper will systematically 
collect the latest literatures reporting non-bacterial communities in mammalian health and disease, 
and review their mechanisms in promoting the development of ALD including CLEC7A pathway, 
Candidalysin (a peptide toxin secreted by Candida albicans), metabolites, and other chemical 
substances secreted or regulated by gut commensal mycobiome, virome, and archaeome, hoping 
to bring novel insights on our current knowledge of ALD.
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Introduction

Alcohol-associated liver disease (ALD) is a common 
disease caused by alcohol use disorder (AUD), ran-
ging from asymptomatic liver steatosis to alcohol- 
associated hepatitis (AH), cirrhosis, and potentially 
hepatocellular carcinoma (HCC). ALD is the leading 
indication for liver transplantation in the United 
States.1,2 Globally, about 2 million people die of 
liver diseases each year. In Western Europe, one- 
third of liver cirrhosis can be attributed to alcohol.3 

Moreover, it has been estimated that 60–80% of 
liver-related deaths can be attributed to alcohol 
consumption.4 Currently, the pathogenetic mechan-
isms have not been fully elucidated, but they might 
be related to oxidative stress, acetaldehyde-induced 
toxicity, cytokine, and chemokine-induced 
inflammation.5 There is no effective therapeutic 
method for ALD till now except for liver transplan-
tation. A great number of studies have reported that 
gut microbiota has an intimate relationship with 
ALD, which provides broader insights and opportu-
nities for understanding and treating this disease.6–14 

However, most studies put emphasis upon the inter-
actions between gut bacteria and ALD, while the 
roles of non-bacterial communities remain unclear. 
Hence, this review mainly focuses on addressing the 
relationships between ALD and the non-bacterial 
communities (fungi, viruses, and archaea) in the 
gut, and the possible pathogenetic mechanisms 
mediated by those microorganisms.

The gut-liver axis

The term gut-liver axis was first described by Volta 
et al in 1987, which pointed out the interaction 
between intestine and liver.15 During the embryo-
nic stage, both the liver and intestine originate from 
the same foregut, and the two organs are anatomi-
cally connected by the portal vein system after 
reaching their maturity.16 About 70 ~ 80% of the 
blood from the portal vein flows to the liver,17 

transmitting a variety of signals generated by diet-
ary, genetic, and environmental factors.(Figure 1)18 

As a virtual metabolic organ, the gut-liver axis 
achieves close-knit functional collaboration and 
forms a sophisticated network structure through 
substance metabolism, immune regulation, and 
interaction with the neuroendocrine system.

Normally, the healthy intestinal barrier is com-
posed of the mucus barrier, the intestinal epithelial 
barrier, and the gut vascular barrier (GVB),18–21 

which together protects the body against external 
insults (Figure 1(a)). In the colon, the mucus layer 
usually consists of a microbiota-colonized outer 
layer and an almost sterile inner layer. These 
inner and outer layers work together to provide 
the needed nutrients for microorganisms survival 
and unique niches for microorganisms 
inhabitation.22,23 Below the mucus barrier is the 
epithelial barrier, which is a single layer formed 
by the epithelial cells including enterocytes, goblet 
cells, tuft cells, and enterochromaffin cells.24 The 
neighboring epithelial cells also remain in close 
contact through tight junctions.25–27 Epithelial bar-
rier’s main functions are regulating the interactions 
between gut microbiota and the host immune sys-
tem, and selectively absorbing water, electrolytes, 
and nutrients.28,29 The GVB identified in 2015 is 
comprised of vascular endothelial cells, pericytes, 
and glial cells, which prevents the invasion of 
microbiota.30,31 As the deepest protective layer 
and the last defense line of the gut barrier, once 
the GVB is injured, the intestinal pathogens will go 
into the blood stream and reach other organs 
(Figure 1(b)). Hence, in order to fight against exo-
genous substances in the gut lumen, these three 
layers summarized above constitute the body’s 
first line of defense.

Once the intestinal barrier collapses, the liver 
becomes the first organ to encounter intestinal pro-
ducts, which makes it susceptible to pathological 
changes.32,33 Liver sinusoidal endothelial cells 
(LSECs), a major member of the hepatic barrier, 
provide a second line of defense against gut-derived 
antigens and inflammatory factors.34 LSECs are 
highly fenestrated cells (Figure 1(c)). The diameters 
of transcellular pores on LSECs are 50 ~ 200 nm 
and these LSECs usually act as a dynamic filter 
under physiological conditions.35,36 For example, 
small molecules, such as chylomicron remnants, 
plasma proteins, and lipoproteins, can cross fenes-
trae and reach the space of Disse for uptake and 
utilization by hepatocytes and HSCs.37 

Furthermore, LSECs can remove recycled waste 
products and toxicants, including enteric 
viruses,38,39 bacteriophages,40 lipopolysaccharides 
(LPS),41 and immune complexes.42 LSECs can also 
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maintain the quiescent state of hepatic stellate cells, 
induce hepatic immune tolerance and exert an anti- 
inflammatory effect.43,44 Due to the existence of 
the second line of defense, the sole injury of the 
intestinal barrier is unlikely to lead to significant 
liver damage, which has been confirmed experi-
mentally in the previous studies.32,33

However, when LSECs are impaired by intestinal 
pathogenic factors, all the above functions are 
repressed. LSECs become capillarized45 and their 
phenotype is transformed into a pro-inflammatory 
pattern, with the formation of the basement mem-
brane, a significant reduction of fenestrae, and 
increased expression of pro-inflammatory media-
tors such as tumor necrosis factor α (TNF-α), 
macrophage inflammatory protein 1 alpha (MIP- 
1α), monocyte chemoattractant protein-1 (MCP- 
1), and chemokine (C-C motif) ligand 5 (CCL5).46 

At the same time, LSECs recruit immune cells and 
activate HSCs and Kupffer cells to induce liver 
inflammation.47 (Figure 1(d)). Inflammatory 

factors and metabolites secreted by the injured 
liver will further aggravate dysfunction of the 
intestinal barrier, creating a vicious circle even-
tually. In the future, understanding the mechanism 
of barrier damage and repair, finding damage mar-
kers that are easily detectable, developing drugs to 
repair the barrier are important steps for the treat-
ment of liver and intestine-related diseases, and 
achieving the transformation from basic research 
to clinical implementations.

A complete gut-liver axis relies on not only the 
intact intestinal barrier and normal liver function 
but also the healthy gut microbiota. Gut microbiota 
is composed of 500 to 1000 different species 
belonging to more than 70 genera.48,49 The number 
of bacteria residing in the human body is close to 
the number of human cells.50,51 Not merely can 
they participate in digestion, absorption and meta-
bolism of food but can also influence the intestinal 
structure and immune function both directly and 
indirectly. Therefore, clarifying the changes and 

Figure 1. The double line of defense in the gut-liver axis. a. The first line of defense is the gut barrier, which is composed of the mucus 
barrier, the intestinal epithelial barrier, and the GVB. The mucus layer consists of a microbiota-colonized outer layer and an almost 
sterile inner layer. The epithelial barrier below the mucus layer is formed by epithelial cells. The deepest protective layer is the GVB. 
Under physiological circumstances, the healthy intestine barrier allows the absorption of nutrients while prevents the penetration of 
most toxic and harmful substances. b. Once it is damaged, intestinal microorganisms and their metabolites will move into the liver 
through the portal vein. c. LSECs are highly fenestrated cells, which can remove recycled waste products by endocytosis and 
degradation to protect liver against microorganisms and toxicants. They can also induce hepatic immune tolerance and keep the 
quiescence of HSCs and Kupffer cells. d. Injured LSECs become capillarized and the main characteristics of capillarization are formation 
of basement membrane, reduction of fenestrae and increased expression of pro-inflammatory mediators. They recruit immune cells 
and activate HSCs and Kupffer cells to cause liver inflammation. GVB: gut vascular barrier; LSECs: liver sinusoid endothelial cells. HSCs: 
hepatic stellate cells.
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roles of gut microbiota in ALD is of great impor-
tance for us to understand its pathogenesis and to 
develop effective treatment strategies. Whereas an 
immense number of reviews have covered gut bac-
teria in detail,52–56 thus we center our discussion on 
the gut mycobiome, virome, and archaeome in 
human and animal models.

Gut mycobiome

Fungi are ubiquitous in the natural environment 
and are important parts of the earth’s ecosystem.57 

The fungal community is considered as 
a fundamental component of the human micro-
biota, coexisting and interacting with other micro-
organisms in the gut.58 However, they are usually 
neglected in studies owing to their relatively low 
abundance in the human body. For instance, there 
have been almost 100 times more research reports 
on microbiota than on mycobiota from 2008 to 
2018.59 With the increase of related research data 
and the development of methodology, scientists 
begin to realize its indispensable role in metabo-
lism, immune regulation, and pathophysiology of 
the host.

Composition and colonization

Fungi occupy a relatively small proportion of the 
human microbiota. Fungi comprise approximately 
0.03% of the fecal microbiome.60,61 However, this 
does not mean that it is meaningless to study fungi. 
Conversely, some scientists contended that pre-
vious efforts might underestimate the proportion 
of fungi in gut microbiota owing to limited anno-
tated reference sequences.62 Besides, fungal cells are 
generally larger than bacterial cells, indicating that 
fungi contain much more biomass and metabolites, 
which cannot be reflected by simple genome- 
counting.62 Thus, more data and further studies 
are required for accurately estimating the amount 
of living gut fungi and completing the annotated 
fungal genome.

The gut fungi in adults are mainly composed of 
three phyla, Ascomycetes, Basidiomycetes, and 
Zygomycetes,63 which are regulated by many factors 
such as environment,64 diet,65–67 host immunity,68 

etc. Both human and animal studies have con-
firmed that the composition of the intestinal myco-
biome is dynamic over time and much more 
mutable than the component of gut bacteria.69,70 

A previous study indicated that intestinal fungi 

Figure 2. The mechanisms of ALD induced by the gut mycobiota. a. Ethanol abuse leads to disordered gut mycobiota. Epicoccum, 
Galactomyces, and Debaryomyces decrease, while Candida increases significantly in the intestine. 1,3-β-glucan, a main component of 
fungal cell walls, and Candidalysin, a fungal metabolite, translocate into the systemic circulation through the injured intestinal barrier 
and reach the liver first. b. 1,3-β-glucan binds to dectin-1 of Kupffer cells. Src kinases phosphorylate tyrosine residue of dectin-1 and 
recruit Syk, which can activate the CARD9/BCL10/MALT1 complex. Then NF-κB will be activated by the complex and produce pro-IL-1β. 
Syk also promotes the secretion of caspase-1 through the activated NLRP3/ASC/pro-caspase-1 complex. Caspase-1 then cleaves pro-IL 
-1β into mature IL-1β, mediating liver inflammation and damage. Syk, spleen tyrosine kinase; CARD9, caspase recruitment domain 9; 
BCL10, B-cell lymphoma 10; MALT1, mucosa-associated lymphoid tissue lymphoma-translocation gene 1; NF-κB, nuclear factor kappa 
B; NLRP3, NOD-like receptor family pyrin domain containing 3; ASC, apoptosis-associated speck-like protein containing a CARD.
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have colonized in human 10 days after birth.71 But 
recently, fungi were found in the first-pass meco-
nium, suggesting that colonization of gut fungi may 
exist earlier than expected.72 In the gut of 10-day to 
3-month-old infants, the fungal species that had the 
highest abundance are Debaryomyces hansenii and 
Rhodotorula mucilaginosa, while S. cerevisiae 
becomes the most abundant fungal species in the 
gut of babies 1–2 years after birth.71 From that 
timepoint and on, the gut fungi develops and gets 
closer and closer to the intestinal fungal compo-
nents of the adult. Therefore, given the variability 
of fungal components, some scholars advocate that 
fungi do not colonize the gastrointestinal tract in 
healthy adults, and they may originate from the 
fungi already present in the mouth or diet, and 
persistent fungal colonization may be a symptom 
of disease.67 In their study, when a healthy adult 
volunteer increased the frequency of cleaning teeth, 
the abundance of C. albicans in stool was lowered 
10-fold to 100-fold, suggesting that the oral cavity 
may be the primary source of C. albicans detected 
in the stool of healthy people.67 Indeed, existing 
research rarely consider the influence of oral and 
dietary fungi, especially in the studies of exploring 
changes in the gut fungi compositions. It is difficult 
to determine whether differences in stool fungi are 
due to increased transient fungi or due to real 
intestinal colonization. Overall, the colonization 
and composition of intestinal fungi are still in 
their infancy. In the future, further studies with 
a larger sample size should be done in this field, 
and sequencing methods with higher sensitivity 
and accuracy need to be invented to detect intest-
inal fungi at various time points of embryonic 
development.

Intestinal fungi and alcohol-associated liver disease

The studies on the correlation between gut myco-
biota and ALD are limited and mostly focus on the 
changes in fungal composition and exploration of 
potential pathogenic mechanisms. Previous studies 
reported a decrease in the diversity of mycobiota in 
the feces of alcohol consumers, with a significant 
overgrowth of Candida, and a decrease in 
Epicoccum, unclassified fungi, Galactomyces, and 
Debaryomyces.73,74 Similarly, recent research 
reported mycobiota dysbiosis with an overgrowth 

of Candida as well.75–77 Although there were differ-
ences in the severity of alcohol-related liver disease, 
there were no significant differences in the intest-
inal mycobiota among patients with non- 
progressive alcohol-associated liver disease, alco-
hol-associated hepatitis, and alcoholic cirrhosis.73

As for the role of gut fungi in the pathogenesis of 
ALD, there remain two main pathways at present: 
one is dependent on the C-type lectin domain 
family 7 member A (CLEC7A) pathway of Kupffer 
cells in liver and the other is independent of that 
pathway (Figure 2(a)).

CLEC7A (also called dectin-1) is a pattern recog-
nition receptor primarily located on the surface of 
Kupffer cells and macrophages in the liver.73 

CLEC7A is capable of recognizing 1,3-β-glucan,78 

which is widely found in fungal cell walls, and plays 
an important role in resisting fungi and fungal 
products.(Figure 2(b))79 Upon ligand binding, tyr-
osine residue of dectin-1 is phosphorylated by Src 
kinases, which creates a docking site for spleen 
tyrosine kinase (Syk), then Syk activates the caspase 
recruitment domain 9 (CARD9)/B-cell lymphoma 
10 (BCL10)/mucosa-associated lymphoid tissue 
lymphoma-translocation gene 1 (MALT1) com-
plex, which leads to the activation of nuclear factor 
kappa B (NF-κB) and promotes cytokines expres-
sion including pro-interleukin-1β (pro-IL-1β).80,81 

Furthermore, Syk can activate NOD-like receptor 
family pyrin domain containing 3 (NLRP3) inflam-
masome, which usually forms a complex with 
apoptosis-associated speck-like protein containing 
a CARD (ASC) and pro-caspase-1. ASC can acti-
vate pro-caspase-1 into caspase-1, which will cleave 
pro-IL-1β to produce mature IL-1β and lead to liver 
damage by activating downstream cascade.82,83 An 
animal study reported that the development of 
ALD required IL-1β which was activated via 
a caspase-1-dependent process, and that IL-1β sig-
naling was essential for alcohol-induced inflamma-
tion, steatosis, liver damage, and fibrosis.84 

A subsequent study73 also revealed that chronic 
alcohol intake could increase the number of fungi 
in mice intestine, and that overgrowth of fungi 
could produce more fungal products such as 1,3-β- 
glucan, which can be translocated into the liver 
through already dysfunctional enteric tight junc-
tions, bind to the Dectin-1 of Kupffer cells, and 
finally lead to the secretion of IL-1β to promote 
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liver inflammation. However, one study indicated 
that water-insoluble polysaccharides (WIP), 
a 1,3-β-glucan from Wolfporia cocos, alleviated the 
hepatic inflammatory injury and steatosis effec-
tively in mice with alcoholic hepatic steatosis 
(AHS), which suggested the protective effect of 
1,3-β-glucan in liver diseases but the mechanism 
needs to be further studied.85

Another fungus-related mechanism is mainly 
associated with its metabolites. As an opportunistic 
pathogen in the intestine, Candida albicans has 
attracted extensive attention because of its over-
growth in ALD patients.73 Recent studies have pro-
ven that Candida albicans could secrete a type of 
peptide toxin called Candidalysin, which directly 
damages epithelial membranes and activates host 
immune responses.86 One previous study found an 
interesting phenomenon that the number of 
Candidalysin positive C. albicans increased in 
patients with AH and the expression of the extent 
of cell elongation 1 (ECE1) gene encoding 
Candidalysin also increased significantly.87 In addi-
tion, clinical studies suggested that Candidalysin 
was positively associated with the severity and mor-
tality of AH.87 With regard to the underlying 
pathogenic mechanisms of Candidalysin, however, 
it does not affect the intestinal permeability nor 
interacts with the glucan receptor CLEC7A, but it 
increases the expression of IL-1β, CXCL1, and 
CXCL2 in mice liver, which contributes to recruit 
immune cells and induce hepatocyte death. In brief, 
the specific molecular mechanisms need further 
research.

A recent research also found the contribution of 
fungi-induced metabolite – prostaglandin E2 
(PGE2) to the development of ALD.85 They 
observed an overwhelming increase of the com-
mensal fungus Meyerozyma guilliermondii and 
hepatic PGE2 in mice with alcoholic hepatic stea-
tosis (AHS). By introducing antifungal agents, the 
level of liver PGE2 was significantly reduced. 
Interestingly, it is still unclear whether PGE2 is 
produced directly by the gut fungi or indirectly by 
the fungi-stimulated liver. To sum up, the concrete 
mechanisms of gut fungi-induced PGE2 in the 
development of ALD awaits further study.

In addition, the host immune response plays 
a key role in the process of ALD as well. A recent 
study74 revealed a novel finding that the level of 

serum anti-Saccharomyces cerevisiae antibodies 
(ASCA) was significantly higher in patients with 
AH compared with alcohol use disorder and non-
alcoholic controls. As a marker of the host immune 
response to fungus and fungal products, ASCA was 
positively associated with mortality in AH patients.

In summary, it is not difficult to find that a few 
potential noninvasive indicators, such as the level 
of serum ASCA, serum Candidalysin, serum 1,3-β- 
glucan, and the expression of ECE1 in stool, can 
help us determine the progress or prognosis of 
ALD. In addition, inhibiting the increase of alco-
hol-related gut fungi, especially some specific anti-
fungal drugs against harmful mycobiome, may be 
a promising therapeutic method for ALD, but its 
clinical application has yet to be confirmed in large- 
scale cohort studies. Also, further compelling inves-
tigations should explore the causal relationship 
between the specific fungus strain isolated from 
the gut and the pathogenesis of ALD.

Probiotic fungi

In 2014, the International Scientific Association of 
Probiotics and Prebiotics (ISAPP) defined probio-
tics as “live microorganisms that, when adminis-
tered in adequate amounts, confer a health benefit 
on the host”.88 There are many types of probiotics, 
such as Bifidobacterium bifidus, Lactobacillus, and 
Saccharomyces boulardii, of which S. boulardii is 
probably the most commonly used probiotic 
fungi. Animal studies have confirmed that 
S. boulardii could change gut microbiota and 
attenuate liver injury, inflammation,89–91 and 
fibrosis,92 potentially indicating its protective and 
therapeutic role in liver diseases. A recent study 
revealed that most strains of Saccharomyces and 
non-Saccharomyces yeasts evaluated in their work 
are safe microorganisms, and those could be 
regarded as a valid alternative to the widely avail-
able probiotic yeast S. boulardii.93 However, some 
side effects of S. boulardii, mainly presented as 
fungemia, were reported in clinical application, 
which are usually found in the elderly, immuno-
suppressed, and patients with broad-spectrum 
antibiotics.94–97 Furthermore, macrofungi with 
large sporocarps or fruiting bodies, also known as 
mushrooms, particularly showed their medicinal 
properties.98 Some types of macrofungi including 
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Agaricus bisporus99–101 and Pleurotus ostreatus102 

also possess hepato-protective activity. In conclu-
sion, supplementing probiotic fungi to prevent or 
treat liver diseases can be expected in the future.

Gut virome

Composition and distribution

Viruses have their own important roles in the intes-
tine. As the most numerous biological entities in 
nature,103,104 viruses are composed of endogenous 
retroviruses, eukaryotic viruses, and bacteriophages. 
Most viruses in the human body reside in the gastro-
intestinal tract.

The gut viruses, even called virus fingerprints, 
are unique to each person and mainly consist of 
bacteriophages.105 However, identifying viral 
sequences in large and mixed gut microbiota is 
extremely challenging because viruses lack 
a universal viral marker.106 Thus, an overwhelming 
number of gut bacteriophages remain uncultured 
and unclassified till now, and their specific hosts 
and infection strategies have not been clarified 
either. Scientists also named gut viruses “the dark 
matter” in the intestine, which showed that relevant 
research on them were far from enough.107–109

Fortunately, the Gut Virome Database (GVD)110 

and the Gut Phage Database111 have been established 
and are continuously updating, which will advance 
research of gut virome considerably. According to 
the GVD,110 97.7% of viral populations are phages, 
2.1% are eukaryotic viruses, and 0.1% are archaeal 
viruses. About 1015 bacteriophages settle in a healthy 
human intestine, which is 10 times the number of 
symbiotic bacteria.112 The main phages come from 
the order Caudovirales including Siphoviridae, 
Myoviridae, and Podoviridae.113,114 Some phages 
are highly specific to certain bacterial strains, while 
others have broader ranges of host cells.115 After 
infection of host by phages, highly virulent phages 
often cause cell lysis (lytic cycle) while mild phages 
either lyse the host cell or keep the host cell alive and 
reproduce normally (lysogenic cycle).116,117

In summary, large-scale efforts are still required 
urgently in order to culture and catalog gut phages, 
which is much like the process of building collec-
tions and genome databases of bacterial strains in 
the human microbiome.118

Is it pathogens?

Phages are regarded as potential human 
pathogens.119 This was probably first suggested 
with the genome of lambdoid phages that could 
encode Shiga toxins (Stx),120 which poses a severe 
and lethal threat to human health. Moreover, ani-
mal models revealed that phages may act as patho-
gens by affecting the gut bacterial communities and 
increasing the gut permeability.121 Besides, An 
increasing number of evidence indicates that 
human diseases, such as inflammatory bowel 
disease,109,122 diabetes,123 acquired immune defi-
ciency syndrome,124 and colorectal cancer,125 are 
closely related to the gut viruses. Nevertheless, it is 
difficult to determine whether the changes in the 
gut virome are a cause or a result of those diseases. 
And the boundary between ‘normal’ and patho-
genic virome is blurred because the same virus 
can be either a symbiont or a pathogen depending 
on the conditions such as the health status and 
development stage of the host. On the whole, the 
current knowledge of symbiotic viruses lags far 
behind that of pathogenic viruses.126

Gut virome and alcohol-associated liver disease

The exact role of gut virome in the etiology of ALD 
is still unclear, as not only the complex pathogenesis 
of ALD but also our fragmented understanding of 
the gut viruses and limited relevant studies. In 2020, 
scientists systematically described an intestinal vir-
ome signature in AH patients for the first time. They 
observed an increased viral diversity in the stools of 
patients with ALD. In AH patients, Escherichia-, 
Enterobacteria-, and Enterococcus phages were over- 
represented and mammalian viruses such as 
Parvoviridae and Herpesviridae significantly 
increased. Staphylococcus phages and Herpesviridae 
were associated with severity and mortality of 
ALD.127128 Above findings were consistent with pre-
vious research. In fecal samples, most detected 
Herpesviridae such as herpesvirus-6128,129 and 
herpesvirus-8130,131 are associated with the severity 
of ALD, and they could be classified into Epstein- 
Barr virus (EBV). EBV infection often causes liver 
inflammation, but the pathogenesis remains 
unknown.129 A retrospective study of patients with 
liver cirrhosis found that EBV-positive patients had 
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higher Child-Pugh scores, more severe liver injury 
and a higher rate of chronic acute liver failure,132 

which suggested the reactivation of EBV might con-
tribute to the development of alcoholic hepatitis.

Gut virome may regulate the pathogenesis of ALD 
through multiple interactions with symbiotic 
bacteria.133 Phages, as the main component of the 
gut virome, are able to mediate bacterial cells lysis 
and regulate the abundance of bacteria. A recent study 
confirmed that the interaction between bacteria and 
phages in patients with cirrhosis and hepatic encepha-
lopathy centered on Streptococcus species.134 

Moreover, gut bacteria have access to additional gen-
omes (such as antibiotic-resistance genes or bacterial 
virulence factors) transferred by phages, which will 
adjust bacterial virulence and adaptability and modify 
the composition of intestine microbiota.135

Furthermore, gut virome can interact with the 
host immune system directly. The intestinal immune 
system is mainly comprised of intestinal intraepithe-
lial lymphocytes (IELs), lamina propria lymphocytes 
(LPLs), and Peyer’s patches (PPs),136 which could be 
important in the pathogenesis of ALD. Among them, 
commensal viruses can be recognized by retinoic 
acid-inducible gene 1 (RIG-1) signaling in antigen- 
presenting cells (APCs), and RIG-1 signaling can 
promote IL-15 production, prevent inflammation 
and tissue damage as well as maintain the home-
ostasis of IELs.137 Moreover, scientists found that the 
immune cells including CD4+ and CD8+ T cells 
increased in the germ-free mice treated with bacter-
iophages, and the increased abundance of bacterio-
phages can exacerbate intestinal colitis through toll- 
like receptor 9 (TLR9) and interferon-gamma (IFN- 
γ), indicating that phages can alter mucosal immu-
nity to impact mammalian health.138 But, the 
mechanism of the phage recognition by the mucosal 
immune system needs more studies in animal mod-
els. Moreover, some studies on pathogenic entero-
viruses, such as norovirus and rotavirus, have 
revealed several signaling pathways of intestinal 
recognition of viral nucleic acids.139,140 Thus, the 
gut virome either commensal or pathogenic viruses 
is a hot topic in host immune response.

To sum up, gut virome may promote the progres-
sion of ALD through interventions with the symbio-
tic bacteria and immune system141 . However, it is 
still unclear for patients with ALD what specific 
impacts of increased gut viruses are on the other 

microorganisms or the host body. We do not know 
yet whether liver inflammation or damage is caused 
by the virus itself, or its metabolites, or changes of 
other microbes induced by the altered gut virome. 
The studies of gut virome are just starting and more 
studies are needed to help us understand the correla-
tions between the gut virus, the health of the host 
and liver diseases.

Phage therapy of ALD
Recent animal studies creatively revealed the 
importance of phages in the treatment of ALD. 
According to a study in 2019,142 Enterococcus fae-
calis was significantly increased in fecal samples 
and the cytolysin-positive (cytolytic) E. faecalis cor-
related with the severity and mortality of AH 
patients. Then, researchers screened out bacterio-
phages that can lyse the cytolytic E. faecalis to treat 
mice transplanted with the gut microbiota of AH 
patients, which significantly reduced the levels of 
cytolysin in mice liver and attenuated alcohol- 
induced liver inflammation.

Editing intestinal microbes to treat or improve 
diseases related to microbial dysbiosis seems to be 
a quite promising direction. After all, antibiotics are 
not suitable for precise editing due to their broad 
spectrum, instead, some bacteriophages are highly 
specific to bacteria, suggesting a unique advantage of 
manipulating microbiota.143,144Certainly, the clinical 
application of phage therapy still needs the support of 
large-scale human data. In addition, the limitation of 
phage therapy may be due to its high specificity. 
Different patients need to deploy different phages in 
order to better efficacy, so its mass production-like 
antibiotics may be unrealistic in some extent. In the 
future, it is necessary to construct a huge phage bank, 
which will efficiently help us screen out concrete 
phages and make a personalized treatment within 
a short period of time.

Gut archaeome

Composition and distribution

Archaea were originally discovered and isolated 
from ecosystems with extreme conditions, includ-
ing environments with high temperature, strong 
acid or base, and high ion concentration. 
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However, with the continuous advancing of detec-
tion techniques, archaea had also been found in 
some mild environments such as the ocean 
ecosystems.145–149 Archaea are similar to bacteria 
in terms of shape, size, and genetic information 
expression including DNA replication, RNA tran-
scription, and protein synthesis. Beside these simi-
larities, there are also some obvious differences 
between archaea and bacteria. For instance, the 
archaeal cell walls do not contain 
peptidoglycans,150 and their cell membranes are 
composed of L-glycerol-ether/isoprenoid lipids, 
which are more stable and rigid than bacterial.151 

Moreover, due to its special metabolic patterns, 
archaea can use sunlight, inorganic or organic sub-
stances as energy sources.152

The most abundant archaea in the human gastro-
intestinal tract are Methanobacteriales and 
Methanomassiliicoccales.153 The former, mainly con-
sisting of Methanobrevibacter smithii and 
Methanosphaera stadtmanae,154 is identified as 
a keystone species that has a noticeable impact on 
the composition and function of other gut 
microbiome.155,156 The species of archaea are usually 
affected by various factors such as diet, environment, 
age, genetics, etc., and they are also related to non- 
archaea members of the host microbiota. 
Interestingly, the abundance of M. smithii was 
recently found to be stable over time, even after 
major changes in diet.157 In addition, the archaea 
present highly specific adaptability in the gastroin-
testinal tract, and they often evolve unique features 
such as modifications of cell surface (adhesin-like 
proteins (ALPs), glycans, bile salt hydrolases, and 
biofilm formation), which are not found in wide 
archaea, to escape the host-defense mechanism.158

Generally speaking, as an important part of the 
gastrointestinal microbiota of humans and animals, 
the role of archaea may be far more underestimated 
owing to the methodological shortcomings.159 For 
instance, most of the so-called “universal” 16S 
rRNA primers fail to picture the diversity of 
archaeal signatures and thus are unable to detect 
certain archaeal lineages in specific sample 
types.160161 The archaea research is still in its 
infancy and the academics of microbiology lack 
relevant knowledge as well.

Archaea and human diseases

Whether archaea are pathogens or not has always 
been a controversial topic.158 Some studies verified 
the change of archaeome in certain human diseases. 
For example, M. smithii was found in urinary tract 
infections.161 M. oralis was reported in periodonti-
tis, and its quantity increased as the illness severity 
increased, but it was no longer present after heal-
ing, which highlighted the close association of 
M. oralis with the inflamed site.162 The abundance 
of M. stadtmanae increased three-fold in inflam-
matory bowel disease (IBD) patients when com-
pared to healthy individuals, indicating this 
archaeon might be involved in pathologic process 
within the human gut.163

Metabolites produced by archaea such as 
methane can also affect the health status of the 
host. In dog models, methane can weaken gastro-
intestinal motility.164 In a population with irritable 
bowel syndrome (IBS), the subjects with the con-
stipation-dominant disease (IBS-C) were shown to 
have a higher proportion of methane producers 
than individuals with the diarrhea-dominant dis-
ease (IBS-D).165

Furthermore, people have also found the inter-
action between archaea and the human immune 
system. When stimulating the immune system 
with M. stadtmanae,154 high levels of proinflamma-
tory cytokines including interleukin and interferon 
were released.166,167 Only recently was it demon-
strated that RNA from M. stadtmanae was a potent 
immune stimulator, and toll-like receptor 7 (TLR7) 
and TLR8 were identified as the involved pattern 
recognition receptors. Moreover, this molecular 
interaction induced TLR8-dependent NLRP3 
inflammasome activation.168 The proinflammatory 
ability of archaea also varies from species to species. 
For example, M. stadtmanae is capable of inducing 
a stronger immune response than both M. smithii 
and M. luminyensis.166,169 There are some specula-
tions attempting to explain the mild response 
induced by M. smithii stating that M. smithii has 
the capacity to produce glycans which is similar to 
those found in the gut,170 and thus may help 
M. smithii escape from the host immune system. 
In conclusion, understanding the molecular 
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mechanisms of how archaea induce inflammation 
in the body is thus an important step in uncovering 
how such diseases might develop.

The impact of ALD on the composition of archaea 
is rarely reported. According to a recent research, the 
proportion of archaea among the healthy control 
group, the alcohol use disorder group, and the alco-
holic hepatitis group was 0.6%. 0.3%, and 0.0% respec-
tively, which indicated that the abundance of archaea 
was reduced as the disease progresses.171 However, it is 
not clear which archaea have modified, nor is it clear 
whether these changes are a result of or a cause for the 
disease. But considering the proinflammatory ability, 
it is worthwhile to study the interspecies communica-
tion between archaea and other gut microbes, the 
potential role of archaeal metabolites, and the relation-
ship of archaea and chronic liver diseases.

Conclusion

Although we have generally devoted significant efforts 
on studying the gut bacteriota, it is worth noting that 
non-bacterial communities also have potential func-
tions. All these microbes will interact with the host and 
also with each other, in combination or alone, to 
influence the health and disease of the host. 
Eventually, we will unveil the role of non-bacterial 
microbiota in human with the remarkable develop-
ment of technologies for the detection of fungi, 
viruses, and archaea. Furthermore, human microbiota 
investigations have now reached a critical inflection 
point. In the future, we need to move rapidly from 
mere description or correlation to causation, and ulti-
mately to translation.172

To accomplish such a great mission, much 
work remains ahead of us. The first is the 
improvement of methodology. At present, 
there are three kinds of methods commonly 
used in studying intestinal microbiota: culture- 
dependent methods, culture-independent meth-
ods, and high-throughput sequencing (HTS). 
There are also several excellent literatures eval-
uating these methods in gut mycobiome,173 

virome,174 and archaeome.160 Nevertheless, 
most research tools still have some defects. 
Culture methods are time-consuming and also 
susceptible to environmental factors. Scientists 

might misestimate the abundance of certain gut 
microorganisms owing to the incompleteness of 
annotated gene databases or improper primers. 
In addition, the amount of relic DNA in human 
gut remains unknown currently, and a few 
fungi DNA can even be detected after years of 
organism decomposition. Thus, we need to be 
more prudent in face of the results of DNA- 
based sequencing. The study of gut non- 
bacterial microbiota will be more efficient 
through establishing a uniform, accurate, and 
highly operable detection system for non- 
bacteriota. And ensuring that the microbiome 
from different regions, races, and species can be 
compared or referenced is highly expected in 
future work.

Secondly, it is necessary to expand the genomics, 
transcriptomics, and metabolomics data of fungi, 
viruses, and archaea in the existing database, so that 
future research can accurately and quickly identify 
the corresponding microbiota in multiple dimen-
sions. Moreover, the study of microbiome cannot 
simply stop at the macroscopic appearance of the 
gut community composition changes, it should be 
conducted from bacterial species to specific strains, 
from cells to subcellular organs, from metabolites 
to molecular regulation. Study in such detail will 
provide a fresh and fundamental perspective for 
manipulating and editing the gut microbiota logi-
cally and efficiently in the future. Finally, the com-
mensal microbiota in the intestine is an emerging 
and promising field that has aroused great interest 
from scientists, physicians and patients. With 
a deeper understanding and transformation of the 
gut-liver axis, the investments may be rewarded 
and the management of ALD patients will also be 
improved.
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