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Abstract

The Unfolded Protein Response (UPR) maintains homeostasis in the endoplasmic reticulum (ER) and defends against ER
stress, an underlying factor in various human diseases. During the UPR, numerous genes are activated that sustain and
protect the ER. These responses are known to involve the canonical UPR transcription factors XBP1, ATF4, and ATF6. Here,
we show in C. elegans that the conserved stress defense factor SKN-1/Nrf plays a central and essential role in the
transcriptional UPR. While SKN-1/Nrf has a well-established function in protection against oxidative and xenobiotic stress,
we find that it also mobilizes an overlapping but distinct response to ER stress. SKN-1/Nrf is regulated by the UPR, directly
controls UPR signaling and transcription factor genes, binds to common downstream targets with XBP-1 and ATF-6, and is
present at the ER. SKN-1/Nrf is also essential for resistance to ER stress, including reductive stress. Remarkably, SKN-1/Nrf-
mediated responses to oxidative stress depend upon signaling from the ER. We conclude that SKN-1/Nrf plays a critical role
in the UPR, but orchestrates a distinct oxidative stress response that is licensed by ER signaling. Regulatory integration
through SKN-1/Nrf may coordinate ER and cytoplasmic homeostasis.
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Introduction

The endoplasmic reticulum (ER) is responsible for multiple

functions in protein synthesis and processing, lipid metabolism,

xeno/endobiotic detoxification, and Ca2+ storage (reviewed in

[1,2]). The ER forms a continuous structure with the nuclear

envelope and maintains extensive contact with mitochondria [3,4].

Consequently, the ER is well positioned to sense and respond to

changes in the cellular environment.

All secretory and membrane-bound proteins are synthesized in

the rough ER, a process that is highly regulated so that only

properly folded and modified proteins are released to the Golgi

[1,2,5,6]. Maturation and folding of these proteins involves

glycosylation and formation of appropriate Cys-Cys crosslinks.

When its protein folding capacity is exceeded (ER stress), the ER

protects itself through the Unfolded Protein Response (UPR)

(Figure S1A) [2,5,6]. This signaling and transcription program

decreases protein translation, expands ER size and folding capacity,

and directs misfolded proteins to be degraded in the cytosol. The

UPR functions continuously to maintain ER homeostasis, but is

amplified and diversified under ER stress conditions [5,7–10]. In

response to severe ER stress, the UPR promotes ER absorption

through autophagy and ultimately may induce cell death. ER stress

and the UPR have been implicated in many human diseases,

including diabetes, inflammatory disease, neurodegenerative dis-

ease, secretory cell malignancies, and other cancers [6,11,12].

The canonical metazoan UPR is orchestrated by three major

ER transmembrane signaling proteins (IRE1, PERK, and ATF6),

and three bZIP-family transcription factors (XBP1, ATF4, and

cleaved ATF6) (Figure S1A) [2,5,6]. The most ancient of these

transmembrane proteins, IRE1, is a cytoplasmic endoribonuclease

and kinase that senses unfolded proteins in the ER. In response to

ER stress, the IRE1 RNAse initiates cytoplasmic splicing of the

mRNA encoding XBP1, the transcription factor that is most

central to the UPR. The IRE1 kinase contributes to ER

homeostasis by regulating the IRE-1 endonuclease activity, and

transmits signals through JNK, p38, and other pathways. The

kinase PERK phosphorylates the translation initiation factor

eIF2a, thereby globally decreasing translation. This reduces the

ER protein-folding load, but also favors translation of mRNAs that

encode protective proteins, including ATF4. ATF6 resides in the

ER membrane but is transported to the Golgi and cleaved in

response to ER stress. The activation status of these transmem-

brane proteins is influenced by their interactions with the ER

chaperone BiP (HSP-3/-4 in C. elegans).

The ER lumen maintains an oxidative environment, in contrast

to the cytoplasm, because the ER enzyme systems that form

disulfide bonds generate reactive oxygen species (ROS) [1,13,14].

Accordingly, ER stress may eventually lead to cellular oxidative

stress and activation of oxidative stress defense genes [15].

Metazoan oxidative and xenobiotic stress responses are orches-

trated mainly by the Nrf bZIP-family transcription factors (Nrf1, 2,

3 in mammals). Nrf-family proteins regulate genes involved in

various small molecule detoxification processes, including gluta-

thione biosynthesis and conjugation, and have been implicated in

longevity assurance in invertebrates and mammals [16–21]. These
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transcription factors have recently been shown to function in

proteasome regulation, stem cell maintenance, and metabolism,

suggesting that they may control a wider range of processes than

previously realized [22–26]. It has been reported that mammalian

Nrf1 and Nrf3 associate with the ER membrane and nuclear

envelope [27–30], and that Nrf2 is phosphorylated by PERK

[31,32]. While these last observations are intriguing, it is unknown

whether Nrf-family proteins might actually be involved in ER

stress defenses, either through mobilizing an oxidative stress

response or participating in the UPR itself.

The nematode C. elegans has been a valuable system for

investigating how Nrf proteins function and are regulated in vivo,

because of its advantages for employing genetics to elucidate

regulatory networks, and performing whole-organism analyses of

stress resistance and survival. The C. elegans Nrf ortholog SKN-1

plays a critical role in resistance to oxidative and xenobiotic stress,

and in various pathways that extend lifespan [16,17,19,23,33].

Here we describe a comprehensive analysis of whether SKN-1

might be involved in the UPR. We found that under ER stress

conditions SKN-1 directly activates many genes involved in ER

function, including canonical ER signaling and transcription

factors that in turn induce skn-1 transcription. Importantly, this

response is distinct from that which SKN-1 mobilizes under

oxidative stress conditions. SKN-1 is required for resistance to ER

stress, including reductive stress, a surprising finding given the

importance of SKN-1 for oxidative stress defense. Unexpectedly,

UPR signaling is needed for SKN-1 to mobilize an oxidative stress

response, suggesting that the ER has a licensing and possibly

sensing role during oxidative and xenobiotic stress responses.

Results

SKN-1 Directly Regulates ER Stress Genes
Several observations led us to investigate whether SKN-1/Nrf

might be involved in ER stress defenses. Expression profiling that

we performed in C. elegans under normal and oxidative stress

conditions suggested that SKN-1 regulates a number of genes that

are involved in UPR or ER functions [21]. These included atf-5

(UPR transcription factor ATF4), ckb-4 (choline kinase), pcp-2

(prolyl carboxypeptidase), and many genes encoding xenobiotic

metabolism enzymes that localize to the smooth ER (Table S1).

Moreover, a genome-wide Chromatin Immunoprecipitation

(ChIP) analysis of C. elegans L1 stage larvae (MOD-ENCODE)

[34] detected binding of transgenically expressed SKN-1 at the

predicted regulatory regions of numerous genes involved in UPR-

or ER processes, including UPR signaling and transcription (ire-1,

xbp-1, pek-1, and atf-6), Ca++ signaling, and protein folding and

degradation (Table S1).

To investigate whether SKN-1 might be involved in the UPR,

we first used quantitative (q) RT-PCR to investigate whether it is

needed for expression of representative ER stress-induced or ER

maintenance genes, many of which are predicted to be SKN-1

targets (Table S1). In these initial gene expression studies we

induced ER stress by treating C. elegans with the N-linked

glycosylation inhibitor tunicamycin (TM), at a concentration that

readily induces the UPR but does not cause detectable toxicity

(5 mg/ml, Figure S1B) [15]. TM treatment resulted in skn-1-

dependent upregulation of numerous canonical or predicted UPR-

or ER-related genes (Figures 1A and 1B, Table S1). skn-1 was also

required for the basal expression of psd-1, R05G6.7, and cnb-1,

even though these genes were not activated by TM (Figures 1A

and 1B). TM-induced ER stress also upregulated two direct SKN-

1 targets that are involved in glutathione metabolism (gcs-1 and gst-

4) [19] in a skn-1–dependent manner, and transgenic reporter

analysis detected gcs-1 activation in the intestine, the C. elegans

counterpart to the gut, liver, and adipose tissue (Figures 1C and

1D). Importantly, however, ER stress did not activate various

other genes that are typically induced by SKN-1 under oxidative

stress conditions (Figure S1C). Taken together, the data indicate

that SKN-1 mediates a response to ER stress, but also that this

response does not correspond simply to its oxidative stress defense

function.

To investigate whether SKN-1 activates genes directly during

ER stress, we used ChIP to detect endogenous SKN-1 and

markers of transcription activity at pcp-2, atf-5, and gst-4, each of

which is flanked by SKN-1 binding sites and upregulated by

oxidative and ER stress in a skn-1-dependent manner [21]

(Figures 1B and 1C). SKN-1 was readily recruited to these genes

in response to either TM-induced ER stress or Arsenite (AS)-

induced oxidative stress (Figures 2A, 2E, 2I, and S2A-S2C).

During transcription, RNA Polymerase II (Pol II) is phosphory-

lated on Ser 2 of its C-terminal domain (CTD) repeat (P-Ser2)

[35]. At each gene we examined, ER stress increased Ser 2

phosphorylation levels (Figures 2B, 2F, and 2J). Also consistent

with transcriptional activation, at these loci ER stress increased

acetylation of Histone H3, another marker of transcription activity

[36], but reduced overall Histone H3 occupancy (Figures 2C, 2D,

2G, 2H, 2K, and 2L). Taken together, our findings suggest that

SKN-1 directly activates a major transcriptional response to ER

stress.

Dependence of Core UPR Gene Induction on SKN-1
We next investigated whether SKN-1 might regulate expression

of core UPR signaling and transcription factors, as predicted by

the MOD-ENCODE data [34]. XBP-1 is central to the UPR, and

in mammals it controls transcription of other core UPR genes

(atf4/atf-5, and BiP/hsp-4) along with many downstream genes

[6,37]. During the UPR, xbp-1 expression is regulated at the level

of transcription, as well as through cytoplasmic splicing of its

mRNA by the IRE-1 endoribonuclease (Figure S1A) [5,6]. The

spliced form of the xbp-1 mRNA (xbp-1s) encodes the transcrip-

tionally active form of XBP-1 (XBP-1s). When SKN-1 was lacking,

Author Summary

Proteins that are placed in membranes or secreted are
produced in a cellular structure called the endoplasmic
reticulum (ER). An accumulation of misfolded proteins in
the ER contributes to many disease states, including
diabetes and neurodegeneration. The ER protects against
a toxic buildup of misfolded proteins by activating the
unfolded protein response (UPR), which maintains ER
homeostasis by slowing protein synthesis and enhancing
ER functions such as protein folding and degradation.
Many of these processes are controlled by three canonical
ER/UPR gene regulatory factors. Here we identify the gene
regulator SKN-1/Nrf as also playing a critical role in the
UPR. SKN-1/Nrf is well known for its functions in oxidative
stress defense and longevity. We now report that SKN-1/
Nrf mobilizes an ER stress gene network that is distinct
from its oxidative stress response, and includes regulation
of other central UPR factors. Surprisingly, we also find that
ER- and UPR-associated mechanisms are needed to
‘‘license’’ SKN-1/Nrf to defend against oxidative stresses.
Our findings show that UPR and oxidative stress defense
mechanisms are integrated through SKN-1/Nrf, and sug-
gest that this integration may help maintain a healthy
balance between ER and cytoplasmic functions, and stress
defenses.

Integrated SKN-1/Nrf and ER Functions
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ER stress failed to induce accumulation of each xbp-1 mRNA form

and, remarkably, decreased the ratio of xbp-1s to the unspliced xbp-

1 form (xbp-1u) (Figures 3A, 3B, and S3A). The xbp-1 locus

includes a predicted SKN-1 binding site (not shown), and ChIP

results indicated that endogenous SKN-1 accumulates at the xbp-1

site of transcription in response to ER stress (Figure 3C). This

evidence that SKN-1 directly regulates xbp-1 could account for the

reduction in total xbp-1 mRNA, but not the apparent effect of

SKN-1 on xbp-1 splicing. A plausible explanation is that lack of

SKN-1 also reduced basal and ER stress-induced expression of ire-

1 (Figures 3D and 3E). Moreover, we observed that SKN-1 is

recruited to the ire-1 locus in response to ER stress (Figure 3F),

consistent with MOD-ENCODE evidence that ire-1 may be a

SKN-1 target [34].

SKN-1 was also required for expression of other core UPR

genes. Mutation or RNAi knockdown of skn-1 prevented ER

stress-induced expression of the unfolded protein chaperone and

sensor HSP-4 (BiP) (Figure S1A)(Figures 3G, S3B, and S3C).

Binding of SKN-1 at hsp-4 was not detected in the MOD-

ENCODE study of L1 larvae [34], but our ChIP evidence

indicated that both SKN-1 and XBP-1 bind directly to the hsp-4

locus (Figures S3D and S3E), which includes predicted SKN-1

binding sites (not shown). SKN-1 similarly contributed to

expression of the core UPR factors pek-1 and atf-6 (Figures 3D

and 3E). Our evidence that SKN-1 is important for transcriptional

induction of core UPR signaling and regulatory factors predicts

that it should be important for C. elegans survival under ER stress

conditions. Treatment with TM at a 7-fold higher concentration

(35 mg/ml) than is sufficient to induce the UPR impaired the

survival of skn-1 mutants but not wild type animals (Figure 3H and

Table S2). We conclude that SKN-1 plays a critical role in the

UPR through its direct transcriptional regulation of core UPR

factors, along with many downstream genes.

Activation of SKN-1 by ER Stress Independently of
Oxidative Stress

We next examined whether expression of skn-1 itself is

increased when the ER becomes stressed, and whether various

conditions that cause ER stress affect SKN-1 activity. Treatment

with TM increased the levels of multiple mRNA species that

encode SKN-1 isoforms (Figure 4A and S4A). In addition, non-

lethal treatment with either the Ca++ pump inhibitor thapsigargin

(Thap) or the proteasome inhibitor Bortezomib upregulated

transcription of skn-1, and various SKN-1-regulated genes

(Figures 1, 4A, and S4B–S4C). Finally, knockdown of either the

ER chaperone hsp-4 or the UPR transcription factor atf-6 resulted

in transcriptional upregulation of skn-1 and many of its ER stress

targets in the absence of drug treatment, presumably because of

an elevated level of ER stress (Figures 4A, S4D and S4E). We

conclude that skn-1 transcription and activity are increased in

response to a variety of conditions that are associated with ER

stress.

Figure 1. SKN-1 regulates diverse functions in response to ER stress. (A, B) ER stress induces skn-1-dependent activation of ER- or UPR-
associated genes. qRT-PCR was performed after RNAi Control (pL4440 in all panels) or skn-1 RNAi, and Control or 5 mg/ml TM treatment. Known or
predicted functions of these genes are described in Table S1. Genes are grouped in (A) or (B) according to the extent of TM-induced activation, and
plotted on different scales. All analyses of TM-regulated gene expression involved a 16 hr TM treatment, based upon a time-course experiment
(Figure S1B) and published work in C. elegans [15]. Shorter time courses were chosen for other ER stress treatments (Figure 4, legend). (C)
Upregulation of SKN-1-regulated oxidative stress defense genes in response to TM. Error bars represent SEM, * p#.05, ** p#.01, *** p#.001, relative
to pL4440 Control. All qRT-PCR p-values were calculated as one or two-sided t-test as appropriate with n$3. (D) Activation of the gcs-1::GFP transgene
in the intestine, with GFP expression scored as High, Medium, or Low. *** p,.0001 chi2 method. See Experimental Procedures for scoring method.
See also Figure S1 and Table S1.
doi:10.1371/journal.pgen.1003701.g001

Integrated SKN-1/Nrf and ER Functions
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An important hallmark of the UPR is a decrease in the overall

levels of translation [5,6]. This relieves stress on the ER, and

allows translation of atf4 and other protective genes to be

maintained or even increased. We investigated whether SKN-1

translation is similarly ‘‘spared’’ under ER stress conditions.

Supporting this idea, TM treatment increased SKN-1 protein

levels, a trend that was observed in Western and IP-Western

analyses of whole animals with two specific SKN-1 antibodies

(Figures 4B and S4F–S4I). Based upon its size, this approximately

85 kD SKN-1 species is likely to represent SKN-1a, the largest

SKN-1 isoform. While this size is larger than the expected SKN-1a

MW of 70 kD, SKN-1 is phosphorylated and predicted to be

glycosylated, as is characteristic of Nrf1 and Nrf3 (not shown)

[17,28,38–40]. Our finding that SKN-1 protein levels are

increased by ER stress is consistent with earlier evidence that

SKN-1 translation seemed to be preserved when translation

initiation was inhibited [41].

Prolonged ER stress leads to accumulation of reactive oxygen

species (ROS) and induction of an oxidative stress response

[15,42], making it important to determine whether ER stress

treatments might activate SKN-1 simply through a secondary

response to oxidative stress. Arguing against this interpretation,

even though SKN-1 is well known to defend against oxidative

stress, we found that reductive ER stress also induced a SKN-1-

dependent response. The reducing agent dithiothreitol (DTT)

initiates the UPR through reduction of Cys-Cys bonds in the ER

[43]. DTT treatment resulted in transcriptional induction of skn-1

and many of its target genes, and increased SKN-1 protein levels

Figure 2. SKN-1 directly regulates target genes during the UPR. (A–L) ER stress-induced SKN-1 recruitment and transcriptional activation was
analyzed at the SKN-1-regulated genes pcp-2 (A–D), atf-5 (E–H), and gst-4 (I–L). TM treatment leads to SKN-1 recruitment (A, E, I), accumulation of Pol II
that is phosphorylated at CTD Ser 2 (P-Ser2) (B, F, J), decreased Histone H3 occupancy (C, G, K), and increased H3-AcK56 density (D, H, L) at the site of
transcription. Maps mark qPCR amplicons relative to the predicted transcription start site, with exons marked as black boxes. % ChIP signal is relative
to input, and normalized to the highest signal for each run [44]. In (D, H, L), a ratio of acetyl histone to histone signal is presented. For ChIP
experiments in this study error bars represent SEM, and * p#.05, ** p#.01, *** p#.001, relative to pL4440 Control calculated using one-sided student’s
t-test. See also Figure S2.
doi:10.1371/journal.pgen.1003701.g002

Integrated SKN-1/Nrf and ER Functions
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(Figures 4C and S4J). SKN-1 appeared to be required for its

downstream targets to be activated by DTT-induced reductive

stress (Fig. S4K), and knockdown of either skn-1 or hsp-4 rendered

C. elegans comparably sensitive to reductive stress from DTT

(Figure S4L and Table S3). Another way to reduce oxidation in

the ER is through inhibiting expression of the oxidase ERO-1,

which promotes Cys-Cys crosslinking [43]. ero-1 RNAi decreases

ROS levels, initiates the UPR, and extends lifespan [15]. As

observed with DTT, ero-1 RNAi transcriptionally activated skn-1

and several of its downstream targets (Figure 4D).

Additional lines of evidence support the idea that SKN-1 acts in

the UPR independently of its role in oxidative stress defense.

Many genes that are activated by SKN-1 under oxidative stress

conditions were not upregulated by ER stress (Figures S1C and

S4M). Oxidative stress from AS treatment induced the

SKN-1::GFP (green fluorescent protein) fusion to accumulate to

high levels in intestinal nuclei, as previously described (Inoue, et

al., 2005), but this did not occur in response to ER stress (Figure

S4N). Finally, we did not observe increased levels of oxidized

proteins under conditions of TM-induced ER stress (Figure S4O).

Taken together, the data show that ER stress directs SKN-1 to

activate a specific set of its target genes independently of any

secondary oxidative stress response.

Regulation of SKN-1 by UPR Factors
If ER signaling pathways regulate SKN-1, then key UPR

signaling and transcription factors should be required for ER stress

to activate SKN-1 and its target genes. Accordingly, RNAi or

mutation of ire-1, atf-5, pek-1, or hsp-4 essentially prevented ER

stress from inducing transcription of skn-1 and several of its target

Figure 3. SKN-1 regulates core UPR genes. (A) SKN-1 is required for TM-induced accumulation of spliced xbp-1 mRNA. Levels of xbp-1 mRNA
forms were analyzed by qRT-PCR with isoform-specific primers, and are presented as the xbp-1s/xbp-1u ratio in (B). skn-1 RNAi and mutant animals
were analyzed compared to wild type. skn-1 refers to skn-1 RNAi, and skn-1 mutant refers to the skn-1(zu67) allele in all figures unless otherwise
indicated. (C) ER stress induces SKN-1 recruitment along the xbp-1 gene. ChIP analysis is presented as in Figure 2. (D, E) Importance of skn-1 for
expression of core UPR genes under basal (D) and TM-treatment (E) conditions, assayed by qRT-PCR. (F) Binding of SKN-1 to the ire-1 locus, analyzed
by ChIP. (G) SKN-1-dependence of TM-induced hsp-4/BiP expression, assayed by qRT-PCR. (H) skn-1 mutants are sensitized to TM-induced ER stress.
Survival of wild type and skn-1 mutant animals was assayed after 7 days of Control or high-dose TM treatment (35 mg/ml). Error bars represent SEM,
and * p#.05, ** p#.01, *** p#.001, relative to pL4440 Control calculated using student’s t-test. See also Figure S3 and Table S2.
doi:10.1371/journal.pgen.1003701.g003

Integrated SKN-1/Nrf and ER Functions
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genes (Figure 5A). Knockdown of xbp-1 under control conditions

increased background expression of some SKN-1 isoforms and

target genes (skn-1b, pcp-2, gst-4, hsp-4), possibly because ER stress

was increased, but also interfered with ER stress-induced

activation of several of these genes (skn-1a, pcp-2, gcs-1, hsp-4)

(Figure S5A). RNAi against ire-1, which is essential for XBP-1s

expression [5,6], also blocked TM-induced accumulation of SKN-

1, Pol II, or P-Ser2 at the gst-4, pcp-2, and atf-5 loci (Figures 5B–

5E, S5B and S5C). Knockdown of hsp-4 or pek-1 had a similar

effect (Figure S5D–S5G). The evidence indicates that, in general,

core UPR factors are required for ER stress to upregulate

expression of SKN-1 and its target genes.

The most straightforward mechanism through which ER stress

could increase skn-1 transcription is through the direct regulation

of skn-1 by one or more of the canonical UPR transcription

factors. During the UPR, downstream gene transcription is

controlled largely by XBP1 and ATF4, which may regulate each

other directly, with ATF-6 playing a more specialized role

[8,15,37]. The skn-1 locus contains possible XBP-1 and ATF-6/

XBP-1 binding elements (not shown), and genome-wide ChIP

studies suggest that mammalian Nrf3 may be a direct XBP1 target

[37]. We determined that XBP-1 binds within the skn-1 locus in

response to ER stress, suggesting direct regulation (Figure 5F), a

remarkable parallel to the direct regulation of xbp-1 by SKN-1

(Figure 3C). Moreover, ATF-6 was also recruited to the skn-1 locus

in response to ER stress (Figure 5G). In mammals, XBP-1 may

regulate its own expression [37]. Our ChIP analysis indicated that

SKN-1 also binds to its own locus with ER stress (Figure 5H),

suggesting that SKN-1, XBP-1, and ATF-6 together regulate skn-1

transcription. ER stress also resulted in XBP-1 and ATF-6

recruitment to the direct SKN-1 targets pcp-2 and gst-4 (Figures

S5H–S5K). Together, the evidence suggests that SKN-1, XBP-1,

and ATF-6 may function together to regulate several downstream

genes. We conclude that SKN-1 is transcriptionally integrated into

the UPR, in which it functions upstream, downstream, and in

parallel to the known core UPR transcription factors.

The mammalian SKN-1 orthologs Nrf1 and Nrf3 have been

detected in association with the ER (see Introduction), raising the

question of whether this might also be true for a proportion of

SKN-1. Consistent with this idea, Nrf1 and the SKN-1a isoform

each contain a predicted transmembrane domain [27] (Figure

S6A). To investigate whether SKN-1 might be present at the ER,

we asked whether it might be detected in association with the ER-

resident chaperone BiP (HSP-3/-4)(Figure S1A). We performed

co-immunoprecipitation (IP) analyses of intact worms that had

been crosslinked with formaldehyde as in our ChIP experiments.

These conditions capture direct and indirect in vivo interactions

that occur within approximately 2 Å, and allow for high-

stringency detergent and salt-based washings that minimize non-

specific binding [44,45]. Under both normal and ER stress

conditions, association between HSP-4 and SKN-1 was readily

detected by high-stringency IP performed in either direction

(Figure 6A and 6B). As in Figure 4B, the size of this SKN-1 species

suggested that it may correspond to SKN-1a. The data suggest

that some SKN-1 may be produced at the ER and might remain

associated with this organelle.

Figure 4. ER stress activates SKN-1 independently of oxidative stress. (A) Treatment with TM (16 hrs), thapsigargin (Thap, 2 hrs), or
bortezomib (6 hrs) increased skn-1 mRNA levels, as determined by qRT-PCR. RNAi knockdown of hsp-4 or atf-6 also increased skn-1 mRNA levels. (B)
Increased endogenous SKN-1 protein levels in response to TM-induced ER stress. SKN-1 was detected by Western blotting with the polyclonal
antibody, with GAPDH serving as the loading control. (C) Induction of skn-1 expression and SKN-1-regulated UPR target genes by reductive ER stress
(DTT treatment for 2 hrs), assayed by qRT-PCR. (D) Induction of the UPR, skn-1 expression, and SKN-1 target genes by ero-1 RNAi, assayed by qRT-PCR.
Different primer sets were used to distinguish among mRNAs that correspond to different skn-1 isoforms. Error bars represent SEM, and * p#.05, **
p#.01, *** p#.001, relative to pL4440 Control calculated using student’s t-test. See also Figure S4 and Table S3.
doi:10.1371/journal.pgen.1003701.g004

Integrated SKN-1/Nrf and ER Functions
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Given that BiP has been found in other cellular locations besides

the ER [46], we also investigated whether SKN-1 is present in a

cellular fraction that is enriched for the ER (Figure S6B). SKN-1

was readily detectable in an ER fraction that included HSP-4, but

not the cytoplasmic protein GAPDH (Figures 6C and 6D). The

interaction between endogenous SKN-1 and HSP-4 was con-

firmed within this ER fraction by a co-IP that was performed

without crosslinking (Figure 6E). Together, our findings suggest

that the association of SKN-1/Nrf proteins with the ER is

evolutionarily conserved.

SKN-1-Mediated Oxidative Stress Responses Depend
upon ER Signaling

Our finding that UPR factors are required for SKN-1 activity to

be increased under ER stress conditions raised a related question:

might UPR-related mechanisms also be involved in SKN-1

responses to oxidative stress? Surprisingly, we found that RNAi

or mutation of core UPR signaling and transcription factors (atf-5,

pek-1, ire-1, hsp-4 and xbp-1) impaired oxidative stress (AS)-induced

activation of several SKN-1 target genes, including skn-1 itself

(Figures 7A, 7C, and S7A). Similarly, ire-1 RNAi attenuated

Figure 5. UPR factors required for ER stress-induced SKN-1 activation. (A) ER stress-induced activation of skn-1 and its target genes requires
core UPR factors. RNA levels were assayed by qRT-PCR after RNAi against core UPR genes or in core UPR factor mutants (indicated by M) after TM
treatment. (B-E) IRE-1 is required for ER stress-induced SKN-1 accumulation and activity at SKN-1 target genes gst-4 and pcp-2. Presence of SKN-1 and
transcription markers was assayed by ChIP as in Figure 2, and ire-1 was knocked down by RNAi. (F–H) Endogenous XBP-1 (F), ATF-6 (G), and SKN-1 (H)
bind within the skn-1 gene locus in response to TM-induced ER stress, with binding assayed by ChIP. Multiple start sites are noted within the skn-1
locus. Error bars represent SEM, and * p#.05, ** p#.01, *** p#.001 by student’s t-test, relative to pL4440 Control unless otherwise indicated. See also
Figure S5.
doi:10.1371/journal.pgen.1003701.g005
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activation of the gcs-1::GFP reporter in the intestine (Figure S7B).

This impairment of the oxidative stress response is particularly

striking because ire-1 RNAi actually increased oxidized protein

levels, in contrast to the mild AS treatment conditions used for

gene expression analyses (Figure S4O).

Importantly, oxidative stress from AS did not simply activate the

canonical UPR. Many SKN-1-regulated genes that were induced

by oxidative stress were not upregulated by ER stress, and vice-

versa (Figures S1C, S4M, and S7C). This shows that SKN-1

mobilizes distinct transcriptional responses to oxidative and ER

stress, even if these responses overlap to an extent. Moreover, AS

primarily increased accumulation of the unspliced xbp-1 mRNA

form (xbp-1u), in striking contrast to the increase in xbp-1s levels

that is characteristic of ER stress (Figures 3A and 7C). Treatment

with the oxidative stressor tert-butyl hydrogen peroxide (tBOOH)

induces a SKN-1-dependent response that overlaps with the AS

response, but includes SKN-1-independent activation of many

genes that are otherwise SKN-1-dependent [21]. Knockdown of

ire-1 or hsp-4 inhibited tBOOH from upregulating skn-1 and some

SKN-1 targets (Figure 7B), but did not eliminate activation of

other genes (gcs-1, sdz-8, and gst-10; not shown). The data suggest

that core UPR factors are needed for SKN-1 to function properly

under oxidative stress conditions, in addition to the setting of ER

stress.

The extensive regulatory integration that exists among UPR

transcription factors, as described by others and in this study

(Figures 7A, 7B, and S7A) [8,15,37], could explain why multiple

UPR-associated signaling and transcription factors are needed for

skn-1 expression to be increased in response to oxidative stress.

However, we considered that the UPR might also influence SKN-

1 regulation at a post-translational level. In the C. elegans intestine

SKN-1 is predominantly cytoplasmic under normal conditions,

but accumulates in nuclei in response to oxidative stress from AS

treatment [38]. This nuclear accumulation was dramatically

reduced in animals that had been exposed to ire-1 RNAi (Figure

S7D). The presence of SKN-1 in intestinal nuclei is dependent

upon its phosphorylation by the p38 kinase, which is activated by

oxidative stress [23,38,47]. The IRE-1 kinase activity transmits

signals through the JNK and p38 MAPK pathways [6,48–50], and

we determined that ire-1 knockdown largely prevented the increase

in p38 signaling that occurs in response to oxidative stress

(Figures 7D and S7D). Taken together, these data suggest that

IRE-1 is required for oxidative stress to activate SKN-1 post-

translationally.

If UPR signaling and transcription factors are required for

SKN-1 to mobilize appropriate oxidative stress responses, then

oxidative stress sensitivity should be increased when these

canonical UPR factors are lacking. Accordingly, RNAi or

mutation of these genes significantly increased sensitivity to

oxidative stress from exposure to AS, paraquat, or t-BOOH

(Figures 7E, S7E, and S7F; Table S4). We conclude that signaling

from the ER is required for SKN-1 to respond to oxidative stress,

and therefore that UPR-mediated regulation of SKN-1 plays a

Figure 6. Association of SKN-1 with the ER. (A, B) Interaction
between endogenous SKN-1 and HSP-3/4, detected by IP/Western.
Lysates were prepared from animals in which proteins had been
crosslinked under ChIP conditions. (A) Monoclonal aSKN-1 IP blotted
with aHsc3 (HSP-3/4). (B) aHsc3 (HSP-3/4) IP blotted with monoclonal
aSKN-1. (C–E) Analyses of ER fractions prepared from whole worms. The
fractionation scheme is described in Fig. S6B. (C) Detection of
endogenous HSP-3/4 and the cytoplasmic marker GAPDH in ER and
Mitochondrial fractions, and total worm lysate. Note the enrichment of

the ER marker HSP-3/4 compared to GAPDH in the ER fraction. TM
indicates lysates from animals that had been treated with TM. (D)
Presence of endogenous SKN-1 in the ER fraction, detected by western
and IP/western blotting. Note that TM treatment increased the levels of
SKN-1 protein. (E) Association between endogenous SKN-1 and HSP-3/4
within the ER fraction, detected with polyclonal aSKN-1 and aBiP (HSP-
3/4), by IP/Western that was performed without crosslinking. Fraction-
ations and analyses were performed independently twice, with similar
results. See also Figure S6.
doi:10.1371/journal.pgen.1003701.g006
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central role in the homeostatic integration of ER and oxidative

stress responses.

Discussion

SKN-1 Is a Critical UPR Factor
It is well-established that the canonical UPR transcription

factors XBP1, ATF4, and ATF6 control overlapping sets of

downstream genes and processes [5,6], but much less is known

about how their responses to ER stress might be integrated with

other mechanisms that maintain cellular stress defense and

homeostasis. We have determined that the oxidative/xenobiotic

stress response regulator SKN-1/Nrf functions as a fourth major

UPR transcription factor in C. elegans. Without SKN-1, ER stress

failed to increase the expression of core UPR signaling and

transcription factors, many of which are regulated directly by

SKN-1 (ire-1, xbp-1, atf-5, and hsp-4; Figures 1, 2, 3 and S3). It was

particularly striking that SKN-1 was disproportionally required for

production of spliced xbp-1 mRNA (xbp-1s), presumably because of

its importance for IRE-1 expression (Figures 3D–F). SKN-1 was

also needed for ER stress to upregulate numerous genes that are

known or predicted to be involved in various ER- or UPR-related

processes, including ER homeostasis (ero-1, pdi-2), chaperone-

mediated protein folding (hsp-3, hsp-4, dnj-28, T05E11.3 (HSP-90/

GRP94)), autophagy (lgg-1, lgg-3), calcium homeostasis (sca-1, crt-1),

ER membrane integrity (ckb-4), and a pathway that defends

Figure 7. Dependence of oxidative stress responses on UPR components. (A, B) Importance of core UPR genes for SKN-1-mediated
oxidative stress responses. Induction of skn-1 and skn-1 target gene transcription by AS (A) or t-BOOH (B) was impaired by RNAi against core UPR
genes or in core UPR factor mutants (indicated by M). qRT-PCR was performed after treatment with 5 mM AS for 1 hour, or 12 mM t-BOOH for 1 hour.
(C) Accumulation of xbp-1 mRNA in response to AS-induced oxidative stress. Note the predominant increase in the unspliced form. (D) Dependence
of AS-induced p38 phosphorylation on ire-1. Phosphorylated (active) p38 was assayed by phospho-specific antibody as in [38], and ire-1 expression
was knocked down by RNAi. *background signal. (E) UPR factors are required for oxidative stress defense. Survival of AS treatment (5 mM) was scored
in RNAi Control, hsp-4(RNAi)/ire-1(zc14), and ire-1(RNAi)/xbp-1(SJ17) animals (M indicates mutant). Error bars represent SEM, and * p#.05, ** p#.01, ***
p#.001, relative to pL4440 Control calculated using student’s t-test. (F) Functional integration of the ER and oxidative stress responses through SKN-1
and canonical UPR components (see text). SKN-1 is essential for the UPR because it directly controls transcription of most UPR signaling and
transcription factors. These UPR factors in turn regulate SKN-1 expression, and function in concert with SKN-1 at downstream targets. This is shown
arbitrarily as SKN-1 (S) binding to target promoters together with XBP-1 (X) and ATF- 6 (A). SKN-1 and mammalian Nrf proteins are present in the ER,
suggesting a possible signaling role. UPR factors are required not only for SKN-1 to function in the context of the UPR, but also for SKN-1 to mobilize
distinct oxidative stress responses. See also Figure S7 and Table S4.
doi:10.1371/journal.pgen.1003701.g007
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against ER stress when the canonical UPR is blocked (abu-8, abu-

11 [51]) (Figure 1, 3G and Table S1). Together, our data indicate

that SKN-1 regulates transcription of essentially the entire core

UPR apparatus and many downstream ER stress defense genes in

vivo.

We were surprised to find that SKN-1 was so broadly important

for UPR transcription events. A trivial explanation for our findings

would be that skn-1 mutants did not need to induce the UPR

robustly because they were resistant to ER stress. This explanation

was ruled out, however, by our finding that skn-1 mutants are

actually sensitized to ER stress from diverse sources (Figures 3H

and S4L). Importantly, our ChIP studies and MOD-ENCODE

data [34] indicate that SKN-1 controls many core and

downstream UPR genes directly by binding to their promoters

(Figures 2, 3, and S3E, Table S1). We also found that ER stress

induces SKN-1, XBP-1, and ATF-6 to bind promoters directly to

regulate many of the same genes, including skn-1 itself (Figures 5,

S3, and S5). In addition, under ER stress conditions, UPR

signaling increased levels of skn-1 mRNA and protein (Figures 4

and S4), indicating that SKN-1 is controlled by the UPR and is an

active participant in this response. Together, our data reveal that a

remarkable degree of regulatory and functional integration exists

between SKN-1 and the three canonical UPR transcription factors

(Figures 7F and S1A).

Although ER stress increases skn-1-dependent transcription and

SKN-1 occupancy at several downstream gene promoters, it did

not detectably alter the overall levels of SKN-1 in intestinal nuclei,

at least as indicated by levels of a transgenic GFP fusion protein

(Figure S4N). While this might seem paradoxical, we observed a

similar situation with reduced TORC1 signaling [19]. Under

conditions of low TORC1 activity SKN-1 target genes were

activated in a skn-1-dependent manner, and this was accompanied

by increased SKN-1 binding to their promoters, but not by an

obvious increase in the bulk levels of SKN-1 in nuclei. Our finding

that SKN-1 binds to downstream UPR genes together with other

UPR transcription factors suggests a paradigm that could explain

this phenomenon. If SKN-1 binds cooperatively with UPR factors

or other co-regulators to some of its targets, this could shift the

binding equilibrium to allow those targets to be activated by SKN-

1 that is already present in the nucleus, without it being necessary

to ‘‘flood’’ the nucleus with higher levels of SKN-1. This scheme

might be important for fine-tuning of SKN-1 downstream

functions, and for allowing SKN-1 to activate different targets in

different situations, as we have observed in this study.

In performing these analyses, we were mindful of the concern

that the involvement of SKN-1 in the UPR might derive from its

possible role in a secondary oxidative stress response. Several lines

of evidence argued against this interpretation. For example, the

direct involvement of SKN-1 in regulating multiple core UPR

signaling and transcription factors during the UPR (Figures 3 and

S3) is not consistent with its UPR functions deriving simply from a

secondary oxidative stress response. Moreover, under our ER

stress conditions SKN-1 was required for accumulation of the

spliced form of the xbp-1 mRNA, whereas oxidative stress

increased levels of the unspliced xbp-1 message (Figures 3A, 3B,

and 7C). It was particularly striking that SKN-1 defended against

reductive ER stresses (Figures 4C, 4D, S4J, S4K, and S4L), given

the extensively described role of SKN-1/Nrf proteins in oxidative

stress responses. These last observations indicated that SKN-1

defends against ER stress per se, and not only against oxidative

conditions. Importantly, ER stress and the UPR directed SKN-1

to activate some of its target genes that are induced by oxidative

stress, but not others (Figure S1C and S4M). On the other hand,

many genes that SKN-1 activated under ER stress conditions were

not induced by oxidative stress (Figure S7C). Taken together, the

data show that SKN-1 does not simply activate oxidative stress

defenses in the context of ER stress, but orchestrates a specific

transcriptional ER stress response that is integrated into the

broader UPR.

Our finding that SKN-1 mobilizes overlapping but distinct

responses to ER and oxidative stress defines a new function for this

surprisingly versatile transcription factor. It also supports our

model that SKN-1/Nrf proteins do not control the same genes

under all circumstances, but instead induce protective responses

that are customized to the challenge at hand [19,26]. The idea

that SKN-1 works together with canonical UPR transcription

factors at downstream genes may provide a model for under-

standing how particular SKN-1 functions can be mobilized under

different conditions, if these proteins and other SKN-1 ‘‘partners’’

guide its activities.

Consistent with reports that Nrf1 and Nrf3 are present at the

ER [27–30], we found that some SKN-1 also localizes to the ER.

We detected association between SKN-1 and the ER chaperone

HSP-3/4 (BiP) in crosslinking analyses of intact animals, the

presence of SKN-1 within an ER fraction, and association

between SKN-1 and HSP-3/4 within that fraction (Figure 6 and

S6). Each of these experiments involved analysis of endogenous

proteins. These strategies would have detected either direct or

indirect interactions, so they do not demonstrate that SKN-1 binds

directly to HSP-3/4 (BiP), but they do show that these proteins

reside very close to each other at the ER. Apparently, association

between SKN-1/Nrf proteins and the ER is evolutionarily

conserved. The example of ATF-6, which is activated through

cleavage in the Golgi (Figure S1A), predicts that ER-associated

SKN-1 might have a signaling function in which it is cleaved in

response to ER stress. However, the relative instability of SKN-1

and the presence of smaller isoforms have so far confounded the

resolution of this question (not shown). We recently determined

that some SKN-1 also localizes to mitochondria and that SKN-1

can promote a starvation-like state when overexpressed, a function

that also appears to be conserved in Nrf proteins [26]. Given the

extensive communication between the ER and mitochondria

[4,52], our results suggest that SKN-1/Nrf might respond directly

to the status of each of these organelles. Consistent with this

notion, SKN-1 is required for expression of the C. elegans ortholog

of mitofusin (fzo-1) (Figure 1A), which mediates mitochondrial

fusion and mitochondria-ER interactions [4].

Taken together, our findings show that processes controlled by

SKN-1/Nrf proteins are critical for ER stress defense and

homeostasis, and that SKN-1 is extensively intertwined with the

UPR in vivo. While differences could exist between C. elegans and

mammals with respect to regulatory networks, the extent of the

functional interactions we have observed predicts that mammalian

Nrf proteins are likely to play an important role in the UPR that is

distinct from their familiar function in oxidative stress responses.

Regulation of Oxidative Stress Responses by the UPR
Perhaps our most surprising finding was that core UPR

signaling and transcription factors were required for SKN-1 to

mount a transcriptional response to oxidative stress (Figures 7 and

S7). Cooperative interactions between SKN-1 and UPR tran-

scription factors could account for some of these findings, through

their effects on SKN-1 expression, but it was striking that ire-1 was

needed for AS to induce SKN-1 nuclear accumulation, a

phenomenon that does not occur under ER stress conditions

(Figures S4N and S7D). Moreover, ire-1 was required for the AS-

induced p38 signal that is needed for SKN-1 to be present in

nuclei (Figure 7D). These last findings indicate that IRE-1 affects
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the oxidative stress response at a step upstream of SKN-1. One

speculative possibility for further investigation is that the IRE-1

kinase activity might be needed to initiate the oxidative stress-

induced p38 signal. Together, our data show that signaling from

the ER is required to ‘‘license’’ the oxidative/xenobiotic stress

response, and suggest that the ER might function in effect as a

stress sensor. This importance of the UPR for SKN-1 activity may

have implications for our understanding of aging and longevity

assurance. SKN-1/Nrf not only defends against resistance to

various stresses, but is also important in pathways that affect

longevity, including insulin-like, TORC1, and TORC2 signaling,

and dietary restriction [16,17,19,20]. IRE-1 and XBP-1 have each

been implicated in longevity [53,54], making it important to

determine the extent to which these UPR-based mechanisms

might influence aging through regulation of SKN-1/Nrf and its

functions.

Why would such extensive integration have arisen, in which

SKN-1/Nrf is essential for the UPR, and signaling from the ER is

needed for SKN-1/Nrf activities that are distinct from the UPR

(Figure 7F)? SKN-1/Nrf controls cellular processes that profound-

ly influence the ER. Its target genes drive synthesis of glutathione,

the major redox buffer within the ER, and encode many

endobiotic and xenobiotic metabolism enzymes that reside on or

within the smooth ER (Table S1) [20,21,55]. Under some

circumstances SKN-1/Nrf also regulates proteasome expression

and activity, and numerous chaperone genes [20,21,23–25]. One

possibility is that the influence of SKN-1 could attune the UPR to

events taking place in the cytoplasm. It might be advantageous to

mount a robust transcriptional UPR if the cytoplasm is under

duress, for example, and to moderate the UPR when cytoplasmic

stress is low. Under these conditions, SKN-1 activity would be

relatively high and low, respectively. SKN-1 activity is also

comparatively low when translation rates are high [19,23]. If the

ER becomes stressed under growth conditions it might be useful to

limit the transcriptional UPR initially, because a reduction in

translation rates might largely suffice to restore homeostasis.

Again, under these conditions low SKN-1 activity could act as a

brake on the transcriptional UPR. With respect to the oxidative/

xenobiotic stress response, it could be important for the ER to

have a ‘‘vote’’ on its intensity, given the profound influence of

SKN-1/Nrf on cellular redox status and resources devoted to the

ER. It seems likely, therefore, that the ER not only manages its

own homeostasis, but through SKN-1/Nrf has a broader impact

on cellular stress defense networks that is likely to be critical in

their normal and pathological functions.

Materials and Methods

Gene Expression Analysis
For each condition studied, RNA was extracted from approx-

imately 100 ml of packed mixed-stage worms that were collected in

M9 at the indicated time point. To induce UPR-associated gene

expression, at day three of adulthood worms were treated with

5 mg/ml TM (Sigma) for 16 hours [15], or at day four with 5 mM

DTT (Sigma) [54] for two hours, 5 mM thapsigargin (Enzo) [56]

for two hours, or 5 mM Bortezomib (proteasome inhibitor, LC

Labs) for six hours (similar to published C. elegans MG132

proteasome inhibitor treatment [57]). In each case, these

treatments were non-lethal. For arsenite (AS) and tBOOH

exposure, up to 100 ml of packed worms were collected and

nutated in 5 mM AS or 12 mM tBOOH for 1 hour (a non-lethal

duration). Each of these treatments was performed in a volume of

1 ml, and was followed by pelleting. RNA was analyzed by qRT-

PCR as described, with values normalized to an internal standard

curve for each amplicon [19,44]. The same treatment conditions

were used for ChIP experiments.

Transgenic Reporter Scoring
Expression or nuclear accumulation of transgenic GFP proteins

was scored as ‘‘low,’’ ‘‘medium,’’ or ‘‘high’’ essentially as published

[19], or were quantified using ImageJ 1.45S.

ChIP Lysates and Analysis
ChIP was performed essentially as described [19,44]. 2 ml of

packed mixed-stage worms were crosslinked with formaldehyde at

room temperature for 20 minutes. After quenching, lysis, and

determination of protein concentration, 1 mg/ml samples were

frozen as aliquots at 280uC. The resolution of the assay was

approximately 250–500 bp [44]. The monoclonal antibody FC4

[58] was used for SKN-1 ChIP experiments, as in previous ChIP

analyses [19]. Other antibodies are described in the Supplemental

Experimental Procedures. Analyses of intergenic regions and

control genes (not shown) indicated that average signals of 14%,

11%, 26%, 4%, 11%, 7%, and 8% represent thresholds for

specific presence of SKN-1, Pol II, PSer2, and H3-AcK56, XBP-1,

ATF-6, and Histone H3 respectively.

ER Fractionation
Worms from five confluent 20 cm2 plates were collected in M9

with or without TM treatment (5 mg/ml) for 16 hours, in order to

generate 26 1 ml of packed mixed-stage animals. Worms were

sonicated 36for 20 seconds in homogenization buffer (supplied by

IMGENEX kit, supplemented with HDAC inhibitors, protease

inhibitors, phosphatase inhibitors, and MG132) with the Branson

midiprobe 4900 Sonifer before fractionation with the IMGENEX

Endoplasmic Reticulum Enrichment Kit (Cat No. 10088K) [59].

Mitochondrial and ER fractions were washed 36with 1 ml PBS

and resuspended in 400 ml PBS (supplemented with HDAC,

protease, and phosphatase inhibitors and MG132). Up to 100 ml of

the ER or cytoplasmic fractions were used for each IP.

Immunoprecipitation and Western Blotting
Controls for a polyclonal rabbit antiserum raised against SKN-

1c (JDC7, referred to as pSKN-1) are shown in Figures S4F–S4J.

HSP-3/4/BiP was detected with either C-terminal Drosophila

Hsc3 [60] (Figures 6A and 6B) or N-terminal human BiP antibody

(Sigma et21) [61,62] (Figures 6C and 6E). Note that both BiP

antibodies recognized the same 75 kD band. ATF-6 (Abcam

ab11909), Tubulin (Sigma #9026), and GAPDH (Santa Cruz

sc25778) antibodies were also used. Phosphorylated p38 was

detected using an antibody from Cell Signaling T180/Y182 as

described previously [23]. For Western blotting, antibodies were

used at the following dilution: 1:200 FC4 monoclonal aSKN-1,

1:200 polyclonal aSKN-1, 1:1000 aPol II, and 1:1000 for aHsc3.

All other antibodies were used at manufacturer’s recommended

concentrations.

For IPs, the indicated antibodies (50 ml FC4 monoclonal aSKN-

1 or polyclonal aSKN-1,10 ml Hsc3 (BiP) or 20 ml BiP (Sigma))

and pre-blocked Salmon Sperm DNA/Protein A beads (Zymed)

were added to lysates or samples from the fractionation described

above. The final volume was brought to 500 ml in 16 PIC, 16
PMSF, and 1:1000 MG132 diluted in 16 PBS. Samples were

nutated overnight at 4uC and washed three times for 5 minutes at

4uC the next day with NP-40 wash buffer. Beads were spun down

at 3000 rpm and resuspended in 46 SDS Laemmli Buffer.

Samples were boiled for 15 minutes with 20 ml b-mercaptoethanol

and 50 ml 46 SDS Laemmli. Samples were loaded (50 ml each)
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onto NuPAGE Novex Bis-Tris 10% Gels. Pierce ECL or Femto

Western Blotting Substrate was used for detection.

Other methods are available in Text S1 (Supplementary

Materials and Methods).

Supporting Information

Figure S1 Distinct SKN-1 functions in ER and oxidative stress

responses. (A) The unfolded protein response (reviewed by [5,6]).

Functions of the canonical UPR signaling and transcription

factors, which are labeled according to C. elegans nomenclature, are

discussed in the text. IRE-1 includes an endoribonuclease activity

that initiates splicing of the xbp-1 mRNA and degrades many ER-

associated mRNAs, and a kinase domain that initiates signaling

through stress-activated protein kinase (SAPK) pathways. The

membrane kinase PERK (PEK-1 in C. elegans) inhibits translation

by phosphorylating eIF2a. As a result, ATF4 (ATF-5) is translated

preferentially. Cleavage of ATF-6 in the Golgi releases it into the

cytoplasm, which allows it to accumulate in the nucleus. The ER

chaperone BiP (HSP-3/4 in C. elegans) participates in regulating

these canonical ER signaling proteins [10,63]. In this study we

show that during the UPR, SKN-1 is upregulated at the mRNA

and protein levels, and binds to many of the same downstream

target promoters as the other UPR transcription factors. Here we

depict this by showing these factors all binding to the same

promoter. These downstream targets include UPR signaling and

transcription factor genes. SKN-1 is present in the cytoplasm and

nucleus but also associates with the ER (see text). (B) Analysis of

UPR markers over a time-course of TM treatment. The levels of

hsp-4 and unspliced and spliced xbp-1 mRNAs (see Figures 3A and

S1B) were assayed by qRT-PCR after treatment with tunicamycin

(TM) at the non-lethal concentration of 5 mg/ml. As in a previous

publication [15], 16 hours of 5 mg/ml TM treatment was selected

for subsequent gene expression analyses that involved TM (both

mRNA and ChIP). Shorter time courses were chosen for other ER

stress treatments (see Materials and Methods). (C) TM-induced

ER stress failed to activate many genes that are: 1) constitutively

regulated by SKN-1 (K10B2.2, C35B1.5, F32A5.3, T06D8.8,

Y40D12A.2, gst-1), and 2) upregulated by SKN-1 in response to

oxidative stress (K10B2.2, C35B1.5, Y40D12A.2, and gst-1) [21].

W03A5.7 (dnj-24) is a control gene that is not induced by TM as

previously reported [8]. qRT-PCR analyses of animals that were

treated with Control pL4440 or skn-1 RNAi are shown. Error bars

represent SEM, * p-value#.05, ** #.01, *** #.001 as calculated

by student’s t-test.

(TIF)

Figure S2 Direct regulation of downstream genes by SKN-1.

(A–C) SKN-1 directly activates genes in response to arsenite (AS,

oxidative) stress. Recruitment of endogenous SKN-1 to the site of

transcription of atf-5 (A), pcp-2 (B), and gst-4 (C) was assayed by

ChIP. Error bars represent SEM; * p-value#.05, ** #.01, ***

#.001, calculated by student’s t-test.

(TIF)

Figure S3 SKN-1-dependent activation of core UPR genes. (A)

SKN-1 is required for ER stress (TM) to induce accumulation of

total xbp-1 mRNA. skn-1 refers to skn-1 RNAi, with analysis

performed by qRT-PCR. (B, C) SKN-1 is required for TM-

induced activation of hsp-4p::GFP. (B) Nomarski (top) and

fluorescence (bottom) images show representative hsp-4p::GFP

adults that had been exposed to either empty pL4440 vector (left)

or skn-1 RNAi (right), and treated with TM for 16 hrs. (C) SKN-1-

dependence of TM-induced hsp-4/BiP promoter activation in the

intestine. hsp-4p::GFP expression scoring is described in the

Experimental Procedures (n$100 worms), *** p-value,.0001 by

chi2, (D, E) XBP-1 (D) and SKN-1 (E) bind to the hsp-4/BiP gene

in response to ER stress, with binding detected by ChIP. Error

bars represent SEM, * p-value#.05, ** #.01, *** #.001 calculated

by student’s t-test for S3A, D-E.

(TIF)

Figure S4 Increased expression of SKN-1 and downstream

genes in response to ER stress. (A) Increased expression of skn-1

mRNAs in response to TM treatment. mRNAs that encode the

indicated SKN-1 isoforms were assayed by qRT-PCR using

appropriate specific primer sets. (B) Activation of SKN-1-regulated

ER stress-associated genes by thapsigargin treatment (Thap,

5 mM, 2 hours), measured by qRT-PCR. (C) Upregulation of

SKN-1 target genes in response to treatment with the proteasome

inhibitor bortezomib (5 mM, 6 hours). (D–E) Upregulation of skn-1

and selected skn-1-regulated genes in response to hsp-4 (BiP) (D) or

atf-6 (E) downregulation, analyzed by qRT-PCR. (F) Increased

expression of the SKN-1 protein in response to TM-induced ER

stress. IP (immunoprecipitation)-Western analysis was performed

with the FC4 a–SKN-1 monoclonal (mSKN-1), which was raised

against bacterially-expressed SKN-1c and should detect all SKN-1

isoforms [19,58]. The indicated SKN-1 band (arrow) corresponds

to approximately the size predicted for the SKN-1a isoform (see

text). Bands that correspond to IgG heavy chain (HC) and light

chain (LC) are also indicated. (G) Reduction in SKN-1 levels in

response to skn-1 RNAi, assayed by IP-Western in which the IP

was performed with a polyclonal SKN-1 antibody (pSKN-1, also

raised against SKN-1c), and mSKN-1 was used for detection. Note

that IP with an antibody against RNA Pol II did not non-

specifically isolate this SKN-1 species (arrow). (H) Detection of

bacterially-expressed GST-SKN-1c (arrow) by Western blotting

with mSKN-1 (left) and pSKN-1 (right). (I) Detection of SKN-1 by

Western blotting without IP. Lysates from TM-treated worms

were analyzed. Note that both the mSKN-1 and pSKN-1

antibodies recognize the same 85 kD SKN-1 species (arrow),

and that skn-1 RNAi reduced its intensity. Tubulin is shown as a

loading control. (J) Increased SKN-1 expression after DTT-

induced ER stress. SKN-1 was immunoprecipitated using pSKN-1

(lanes 1, 2, and 4) or pre-immune serum (lane 3), then SKN-1 was

detected by Western blotting with pSKN-1 (arrow). In lane 4,

recombinant GST::SKN-1c that had been conjugated to sephar-

ose beads was used to deplete the pSKN-1 antibody prior to IP

(pre-clearing). Note that SKN-1 was not detected in the pre-

immune IP or under pre-clear conditions. (K) DTT-induced

activation of ER stress genes hsp-4 and atf-5 is skn-1-dependent.

Control and DTT values are also shown in Figure 4C, but are

compared here to expression in a skn-1 RNAi sample that was

generated in parallel. RNA was analyzed by qRT-PCR. (L) skn-1

and hsp-4 RNAi comparably decreased survival under conditions

of reductive ER stress (treatment with 5 mM DTT). Because of

sequence similarity, hsp-4 RNAi may also affect hsp-3. See also

Table S3. (M) Failure of TM to activate representative SKN-1

target genes that are upregulated by AS-induced oxidative stress,

assayed by qRT-PCR as in (A–E). TM values are also shown in

Figure S1C. (N) Failure of SKN-1 to accumulate in nuclei in

response to ER stress. A representative experiment is shown in

which SKN-1b/c::GFP levels were scored in intestinal nuclei after

treatment with AS (n$30), TM (n$20), or DTT (n$15) *** p-

value,.0001 as determined by chi2 test. (O) Increased accumu-

lation of oxidized proteins in ire-1(RNAi) animals. Oxidized

proteins, an indirect indicator of ROS levels, were detected by

Western blotting using the Oxyblot system (Millipore). A C. elegans

lysate was treated with 2,4-dinitrophenylhydrazine (DNPH) to

derivatize oxidized protein carbonyl sidechains to 2,4-dinitrophe-
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nylhydrazone (DNP-hydrazone), then analyzed by Western

blotting with an antibody to DNP. Higher levels of oxidized

proteins were associated with ire-1 RNAi, but not with the non-

lethal treatments with AS (5 mM) and TM (5 mg/ml) that were

used for gene expression analyses. For Figures S4A–S4E, and

S4K–S4M error bars represent SEM, * p-value#.05, ** #.01, ***

#.001 calculated by student’s t-test.

(TIF)

Figure S5 Core UPR factors are required for SKN-1-mediated

ER stress response. (A) Importance of XBP-1 for TM-induced

SKN-1 target gene expression. RNAi was detected by qRT-PCR.

(B–F) Canonical UPR factors are required for SKN-1-dependent

gene activation that is induced by ER stress. (B, C) TM-induced

SKN-1 binding and P-Ser2 Pol II accumulation at atf-5 is

abolished by ire-1 RNAi. Recruitment of SKN-1 (D, F) and total

Pol II (E, G) to pcp-2 and gst-4 was similarly impaired by hsp-4 or

pek-1 RNAi. (H, I) Direct binding of endogenous XBP-1 at the pcp-

2 and gst-4 loci, detected by ChIP. Note that TM treatment

increased binding near the transcription start site. Possible

elements that are characteristic of XBP-1 or ATF6/XBP1 binding

[37] are present at the skn-1, pcp-2, and gst-4 loci (not shown). (J, K)

TM-induced recruitment of ATF-6 to pcp-2 and gst-4, detected by

ChIP. For A–K, error bars represent SEM, * p-value#.05, **

#.01, *** #.001 calculated by student’s t-test.

(TIF)

Figure S6 Evidence for association of SKN-1 with the ER. (A) A

predicted transmembrane domain (a.a. 39–59) is present near the

N-terminus of SKN-1a (Phobius algorithm). This transmembrane

domain was also predicted by six additional transmembrane

algorithms: 1) DAS, 2) MEMstat, 3) HMMTOP, 4) Mobyl, 5)

TMAP, and 6) TMHMM (from SDSC Workbench). (B) Isolation

of an ER-enriched fraction from C. elegans. Total cytoplasmic

lysate, ER, and crude Mitochondrial fractions were Western

blotted for HSP-3/4 and GAPDH (cytoplasm marker). Note the

absence of GAPDH and the enrichment of HSP-3/4 relative to

GAPDH in the ER fraction, and the exclusion of HSP-3/4 from

the mitochondrial fraction in Figure 6C.

(TIF)

Figure S7 Importance of UPR signaling for SKN-1-mediated

responses to oxidative stress. (A) xbp-1 is required for AS to induce

expression of skn-1 and downstream SKN-1 targets. Expression

was assayed by qRT-PCR under Control or xbp-1 RNAi

conditions. (B) AS-induced upregulation of gcs-1p::GFP was

impaired in ire-1(RNAi) animals. For each set, n$57. (C) Many

genes that were induced by SKN-1 in response to TM (Figures 1A

and 1B, Table S1) were not upregulated by AS. (D) AS-induced

accumulation of SKN-1::GFP in nuclei requires ire-1. IRE-1

expression was inhibited by RNAi. For each set, n$39. (E, F)

Survival of the indicated stress treatments was impaired by

knockdown of core UPR factor genes. See also Table S4. For (A),

(C), (E), and (F), error bars represent SEM and * p-value#.05, **

#.01, *** #.001 calculated by student’s t-test, # not significant.

For S7B and S7D, *** p-value,.0001 by chi2.

(TIF)

Table S1 SKN-1 appears to regulate many genes that are

involved in ER- or UPR-related functions (ER stress, ER

maintenance, oxidative stress, and redox homeostasis). Genes

were determined or predicted to be regulated by SKN-1 by

microarray expression profiling [21], or genome-scale ChIP of

transgenically-expressed SKN-1 [34]. The indicated genes have all

been implicated in ER- or UPR-related functions [8,52,55,64–88]

and/or were found to be upregulated during the UPR

[8,15,51,66,70,89,90].

(PDF)

Table S2 Individual Tunicamycin (TM) stress survival trials,

shown as a composite in Figure 3H. Assay numbers represent

parallel experiments. The skn-1(zu67) allele was used in each

experiment, and in each case control was the wild type. All

treatments were performed with adult worms, treated with either

DMSO vehicle (-) or 35 mg/ml TM for seven days and then scored

for survival by prodding with a pick. Survival is depicted as the

percentage of animals that were alive at a given time point.

Percent survival change refers to the difference between the

control and skn-1 survival percentages. Statistics are described in

Figure 3H.

(PDF)

Table S3 Individual DTT stress survival trials, shown as a

composite in Figure S4F. In each experiment, the indicated genes

were knocked down by RNAi that was initiated at Day 1 of

adulthood, with pL4440 empty vector used as the control. Day 4

adult worms were treated with 5 mM DTT for 24 hours, then

scored for survival. Number of treatment animals in parentheses

refer to initial worm count before experiment. Survival percent-

ages and differences are indicated as in Table S2. Statistics are

described in Figure S4F.

(PDF)

Table S4 Individual Oxidative Stress survival trials, depicted as

composites in Figures 7E, S7E, and S7F. Assay numbers represent

parallel experiments. For assays 7 and 8, RNAi was initiated at the

L1 stage, then Arsenite treatment was administered on Day 4 of

adulthood. Survival was scored 36 hours later. Statistics are

described in Figure 7. For assays 9 and 10, RNAi treatment was

performed at Day 1 of adulthood, then Paraquat or tBOOH

treatment was initiated at Day 4 of adulthood. Statistics are

described in supplemental Figures S7E and S7F.

(PDF)

Text S1 Supplementary Materials and Methods.

(PDF)
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