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Fifty years of cycling

ABSTRACT  Fifty years ago, the first isolation of conditional budding yeast mutants that were 
defective in cell division was reported. Looking back, we now know that the analysis of these 
mutants revealed the molecular mechanisms and logic of the cell cycle, identified key regula-
tory enzymes that drive the cell cycle, elucidated structural components that underly essen-
tial cell cycle processes, and influenced our thinking about cancer and other diseases. Here, 
we briefly summarize what was concluded about the coordination of the cell cycle 50 years 
ago and how that relates to our current understanding of the molecular events that have 
since been elucidated.

The cell cycle is a process that orders a number of cellular processes 
to ensure the accurate duplication of the cell. It was hoped that a 
genetic analysis would reveal how the events were integrated. The 
inspiration for this was the work of Bob Edgar and Bill Wood on 
bacteriophage morphogenesis, which revealed the ordered steps 
by which phage parts were assembled and then put together (Wood 
and Edgar, 1967). The major questions were how DNA replication 
and spindle morphogenesis were integrated to achieve accurate 
chromosome segregation; how cell division was integrated with mi-
tosis to ensure that both daughter cells received a full chromosome 
complement; and how growth and division were integrated to main-
tain a constant cell size.

Mutants that block cell cycle progression were identified by 
screening collections of randomly generated temperature sensitive 
mutants (Hartwell et al., 1970a). Each mutant was screened individu-
ally by time-lapse photomicroscopy to identify cell division control 
(CDC) mutants that caused all cells in the population to arrest at the 
same point in the cell cycle at the restrictive temperature. The use of 
budding yeast was critical because the presence and size of the 
daughter bud provided a simple readout of where cells were in the 
cell cycle. The first collection of CDC mutants was derived from 

screening 1500 temperature-sensitive mutants and identified a total 
of 147 mutants, which fell into 32 complementation groups (Hartwell 
et al., 1973). An example of one of the first mutants identified is 
shown in Figure 1. Wild-type cells are found at all stages of the cell 
cycle at the restrictive temperature (panel A), whereas the CDC mu-
tant cells arrest in late in the cell cycle with large daughter buds 
(panel B).

The phenotypes of the mutants revealed some preliminary an-
swers to the major questions (Hartwell et al., 1970a,b). Assuming 
that the primary biochemical defect in a mutant was the process that 
stopped first, the following conclusions could be drawn. The elon-
gation of the spindle was dependent on prior duplication of the 
spindle poles and the completion of DNA replication. Cell division 
and mitosis were coordinated because the formation of the daugh-
ter bud was dependent on spindle pole duplication in the previous 
cycle and cytokinesis was dependent on prior elongation of the 
spindle. Growth and division were coordinated because the CDC28 
(CDK1) function at Start required sufficient growth to initiate all the 
events of the cell cycle. Cell fusion during mating of haploid cells 
was coordinated with cell division because mating hormones ar-
rested the cell cycle at the CDC28 step and fusion was restricted to 
that step in the cell cycle.

These observations raised the question of how the dependence 
of events on one another was controlled. Two models were consid-
ered. One, named substrate–product, proposed that a late step was 
dependent on an early step because the latter was the substrate for 
the former (e.g., replicated DNA was a substrate for the spindle). 
The other was regulation, meaning either that signals from comple-
tion of an early event induced a late event or that an incomplete 
early event inhibited a late event. In one example, regulation was 
evident when a genetic analysis of how damaged DNA arrested 
nuclear division revealed a signaling pathway (the DNA damage 
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checkpoint) that also accounted for why incomplete DNA replica-
tion prevented mitosis (Weinert and Hartwell, 1988).

The mechanisms underlying the dependence of cell cycle events 
upon one another have now been defined in considerable mole-
cular detail. By way of illustration, we will briefly summarize what is 
known about the dependence of mitosis on replicated chromo-
somes and the dependence of cell division on mitosis. In some 
cases, the cdc mutants contributed to this work as a means to iden-
tify the relevant genes. However, in many cases, important compo-
nents were not isolated as cdc mutants. Some of these have since 
been identified through biochemistry and subsequently shown to 
have Cdc phenotypes after mutants were created by in vitro muta-
genesis. Additional cell cycle components were identified in other 
genetic screens or isolated using the original cdc mutants as starting 
points to search for genetic interactors. For example, the cyclins 
from yeast (which are redundant and nonessential), and even hu-
mans, were isolated, in part, as high-copy suppressors of the yeast 
cdc28 mutant (Hadwiger et al., 1989).

One prominent class of cdc mutants affected DNA replication. 
Mutants targeting two of the three essential replicative polymerases 
were isolated, as were DNA ligase, a gene required for replication 
near telomeres, and genes required for the production of deoxyri-
bonucleotides. We now know that these mutations resulted in ro-
bust arrest phenotypes because they led to the accumulation of 
significant amounts of ssDNA, the signal recognized by the replica-
tion checkpoint pathway (Zou and Elledge, 2003). This checkpoint 
signaling pathway both blocks mitosis and feeds back to replication. 
This feedback to replication helps stalled forks progress and also 
blocks origins that have not yet fired from doing so. The critical 
checkpoint phosphorylation events that effect these goals are well 
understood. Mitotic arrest is largely achieved by phosphorylation 
and stabilization of Pds1 (Cohen-Fix and Koshland, 1997), an event 
that blocks sister chromatid separation. Blocking origin firing is me-
diated by the phosphorylation of two proteins required for origin 
firing (Lopez-Mosqueda et al., 2010; Zegerman and Diffley, 2010). 
Finally, the restart of replication forks stalled by either mutational 
disruption or exogenous agents is promoted by the phosphoryla-
tion of several critical targets that increase nucleotide levels and 
modify the activity of proteins that act at the fork (Ciccia and Elledge, 

2010). If measured by viability after fork arrest, this last function is by 
far the most significant role of this checkpoint pathway, although 
mitotic arrest and blocking origin firing are also important for pre-
serving genome integrity.

While the cdc screen was effective in identifying genes involved 
in the mechanics of DNA replication, it was less effective in identify-
ing genes that function exclusively to establish origins of replication. 
An exception to this, CDC6, sheds some light on why this may be. 
cdc6 mutants brought to a fully nonpermissive temperature do not 
form replication forks, and thus do not activate the replication 
checkpoint, although they eventually arrest in mitosis due to the 
formation of an aberrant spindle that triggers the spindle assembly 
checkpoint (Piatti et al., 1995; Stern and Murray, 2001). Tempera-
ture-sensitive alleles of polymerase or ligases are likely to generate 
a few nonfunctional replication forks even when the alleles are weak, 
thus activating the checkpoint and providing a clear Cdc pheno-
type. Of course, it could not have been foreseen at the time of this 
screen that mutations in some cell cycle processes might eliminate 
the very signals for arrest that the screen was designed to identify.

Major progress has also been made in understanding the coor-
dination of events needed to ensure successful chromosome seg-
regation to daughter cells during mitosis. The spindle poles dupli-
cate and separate to form a microtubule-based spindle. During 
DNA replication, the cohesin complex is loaded onto sister chro-
matids to keep them paired until the metaphase to anaphase tran-
sition. At the same time, the kinetochores that mediate attach-
ment of chromosomes to the spindle microtubules assemble on 
centromeres. These are examples of substrate–product relation-
ships where cohesin and kinetochores will assemble once the 
chromatin templates are available. Similarly, kinetochores make 
attachments to the spindle microtubules as soon as they are as-
sembled. The spindle assembly checkpoint, a regulatory pathway, 
monitors kinetochore–microtubule interactions and halts the 
metaphase-to-anaphase transition until all chromosomes are 
properly attached (Hoyt et al., 1991; Li and Murray, 1991). Once 
the checkpoint is satisfied, cells activate the anaphase-promoting 
complex to release the linkage between sister chromatids and al-
low the spindle to elongate and pull chromosomes to opposite 
poles. As the spindle elongates into the daughter cell, the cell 

FIGURE 1:  An example of one of the first CDC mutants isolated in budding yeast. Wild-type cells and temperature-
sensitive mutant cells were grown at the permissive temperature and then shifted to the restrictive temperature, and 
CDCs were followed by photomicroscopy. (A) Wild-type cells, which are found at all stages of the cell cycle at the 
restrictive temperature, as indicated by the presence of cells at all stages of the daughter cell budding cycle. (B) A CDC 
mutant in which all cells have arrested at a cell cycle stage with large daughter buds.
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reverses Cdc28 substrate phosphorylations to promote mitotic 
exit and cytokinesis.

How are all of these events coordinated? Surprisingly, although 
corresponding temperature-sensitive mutants exist for most mitotic 
genes, the cdc screen did not isolate the structural components of 
the yeast spindle, spindle pole, or kinetochore, with the exception 
of one pole mutant, cdc31. In contrast, the screen identified many 
signaling molecules that regulate the metaphase-to-anaphase tran-
sition. The cdc screen identified five subunits of the anaphase-pro-
moting complex, which coordinates this transition by ensuring the 
degradation of proteins that lead to the removal of cohesion from 
chromosomes and the down-regulation of Cdc28 activity (King 
et al., 1995; Sudakin et al., 1995). One of the substrates that must be 
degraded is Pds1, the same protein that is the target of the DNA 
checkpoint (Cohen-Fix et al., 1996). Pds1 inhibits the enzyme sepa-
rase that releases cohesin to ensure the timely separation of sister 
chromatids (Ciosk et al., 1998; Uhlmann et al., 2000). The targeted 
degradation of Pds1 and cyclins by a single complex couples spin-
dle elongation and chromosome segregation to Cdc28 inactivation. 
The spindle assembly checkpoint inhibits the anaphase-promoting 
complex, reinforcing the coordination between proper spindle at-
tachment to chromosomes and anaphase progression (Hwang 
et al., 1998; Kim et al., 1998). After chromosome segregation, many 
Cdc28 substrates must also be dephosphorylated to exit from mito-
sis. Each of the essential kinases and phosphatases in this control 
system, called the mitotic exit network, were found in the cdc screen 
(Shou et al., 1999; Visintin et al., 1999). The mitotic exit network co-
ordinates cytokinesis with the spindle delivering chromosomes to 
the daughter cell (Bardin et al., 2000; Pereira et al., 2000). Finally, 
several members of the septin ring that ensures cytokinesis, the last 
event in the cell cycle, were identified as cdc mutants. The septin 
mutants continue to bud, replicate DNA, and undergo mitosis in the 
next cell cycle, showing that completion of all events in the prior cell 
cycle is not necessarily required for progression. However, looking 
back, most of the key mitotic events are coordinated by regulatory 
events that reinforce the dependence of one event on the next, as 
opposed to the substrate–product relationship. Even in cases where 
there are clear substrate–product dependencies, such as spindle at-
tachment to kinetochores, the cell has multiple regulatory mecha-
nisms in place to halt the cell cycle until errors are detected and 
corrected, thus ensuring the proper execution of mitosis.

What do the next 50 years hold? The short examples above il-
lustrate the tremendous progress that has been made in under-
standing the molecular mechanisms that ensure the coordination of 
cell cycle events. However, there are still major questions about its 
specificity, accuracy, and complexity, as well as how it is altered in 
disease. Specialized cell divisions such as meiosis and asymmetric 
cell division or modified cell cycle states such as quiescence require 
modifications to the cell cycle. The reconstitution of molecular 
events has helped to identify the minimal components and regula-
tion required, but this has not accounted for the exquisite precision 
of these processes in the cell. The complexity of how individual cell 
cycle events integrate with other cellular processes such as metabo-
lism is still in the early stages. Uncontrolled cell division is the root of 
cancer, so identifying therapeutic targets that specifically cause can-
cer vulnerabilities and avoid toxicity to normal cell divisions is still 
very much needed. In sum, many of the principles gained from cell 
cycle research have guided our thinking about biological processes; 
further elucidating the underlying mechanisms of the cell cycle will 
continue to influence fundamental biology and disease research for 
decades to come.
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