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ABSTRACT: Methyltrimethoxysilane [MTM, CH3Si(OMe)3] has been demon-
strated to be an effective, inexpensive, and safe reagent for the direct amidation of
carboxylic acids with amines. Two simple workup procedures that provide the pure
amide product without the need for further purification have been developed. The
first employs an aqueous base-mediated annihilation of MTM. The second
involves simple product crystallization from the reaction mixture providing a low process mass intensity direct amidation protocol.

The direct amidation of carboxylic acids with amines is a
topic of much ongoing interest,1 due to the importance of

the amide bond in medicinal chemistry2 and in the
pharmaceutical industry.3 State-of-the-art protocols include
thermal amidations,4 boron-based catalysts5 and reagents,6

oxophilic transitionmetal catalysts,7 silicon-based reagents,8 and
others.9 However, the search for a sustainable direct amidation
reagent that is nontoxic, inexpensive, and widely available
affording amide products in high yields with all acid−amine
combinations and proceeds with an overall low process mass
intensity (PMI) that avoids chromatography continues.10

Toward that end, we have recently reported the use of
tetramethylorthosilicate [TMOS, Si(OMe)4] (1) as a reagent
for direct amidation.11 TMOS is inexpensive and widely
available, successfully mediates direct amidation of aromatic
and aliphatic carboxylic acids with primary amines, secondary
amines, and anilines in an ideal 1:1 stoichiometry, and is

annihilated to silica in a simple aqueous workup procedure that
delivers the amide product in pure form without the need for
chromatographic purification. However, because hydrolysis of
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Figure 1. Previous work developed by Braddock et al. utilizing
Si(OMe)4 (1) as a reagent for direct amidation. This work utilizes
MeSi(OMe)3 (2).

Figure 2. MeSi(OMe)3 (2)-mediated direct amidation of representa-
tive carboxylic acids and amines with 1 M acid and 1 M amine. aWith 2
equiv of acid. bWith 2 M amine. The isolated yield from a background
reaction (i.e., without MTM) is given in brackets. cWith fractional
distillation of MeOH.
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Figure 3. (A) Expanded scope of MeSi(OMe)3 (2)-mediated amidation of carboxylic acids and amines with 1 M acid and 1 M amine. (B) Amides
formed in lower yields. aThe er was determined by HPLC analysis on a chiral stationary phase by reference to an authentic racemic sample. bOne
equivalent of NEt3 was added to liberate amine from HCl salt.

Figure 4. Low-PMI MeSi(OMe)3 (2)-mediated direct amidation of
carboxylic acids and amines with 1 M acid and 1 M amine. aOn a 45
mmol scale with fractional distillation of MeOH.

Figure 5. Postulated mechanism for MTM direct amidations.
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TMOS to silica in the lung induces silicosis, TMOS is
considered fatal if inhaled (GHS H330), thereby reducing its
attractiveness. Accordingly, we envisioned employing an
alternative silicon-based reagent that retains the inherent
reactivity of TMOS but cannot undergo hydrolysis to silica
and is still amenable to removal in a workup procedure. Herein,
we present methyltrimethoxysilane [MTM, MeSi(OMe)3] (2)
as a safer (and, in fact, cheaper) alternative to TMOS for the
sustainable direct amidation of carboxylic acids with amines
(Figure 1).
Phenylacetic acid and benzoic acid were chosen as

representative acids to be amidated using MTM (2) with a
representative primary amine, a secondary cyclic amine, a
secondary acyclic amine, and an aniline to enable a direct
comparison with the use of TMOS (1).11While we were hopeful
that this single “methoxy-to-methyl” switch would not be too
deleterious to reactivity, we anticipated that the workup
procedure would require significant modification to deal with
the complex mixture of linear and cyclic polysiloxanes known to
result in hydrolysis of MTM (2).12 In the event, the use of 250
mol % MTM (for optimization of MTM loading, see the
Supporting Information) in refluxing toluene provided pure
amide products 3−10 directly after a suitably modified workup
(for development of the workup procedure, see the Supporting
Information). Specifically, evaporation of the reaction mixture
postreaction removes the solvent as well as siloxane
(MeO)2MeSi-O-SiMe(OMe)2 and methanol as the expected
stoichiometric byproducts of the amidation process.13 Non-
volatile oligomeric polysiloxanes were found to be completely
removed after subsequent stirring of the residue in a
homogeneous THF/aqueous NaOH solution for 1 h, where
any unwanted methyl ester side product also undergoes
hydrolysis. Any unreacted carboxylic acid is also removed in
this step, and any unreacted amine is removed in a subsequent
aqueous acid wash. This workup procedure thereby provides the
amide products in pure form without the need for any further
purification regardless of the extent of amidation reaction
conversion.
Inspection of the isolated yields for amides 3−10 shows that

MTM is as effective as TMOS (1) as a reagent for amidation of
the representative aliphatic carboxylic acid with all of the main
amine classes (Figure 2). The use of benzoic acid as a
representative, less reactive, aromatic carboxylic acid was a
high yield with a primary amine but less successful with
secondary amines, and in contrast to the case of TMOS,11 the
attempted use of 4 Åmolecular sieves for these amidations in the
reaction mixture or suspended in the headspace proved to be
detrimental. Pleasingly, the use of both aliphatic and aromatic
carboxylic acids with aniline provided the amide products in
good yields.14

Further exemplification of theMTMdirect amidationmethod
gave amides 11−26 (Figure 3A). These include examples of
amide formation using branched carboxylic acids and amines,
heteroaromatic and ferrocenyl-containing entities, halogenated
substrates, and unsaturated carboxylic acids. Notably, both N-
Cbz- and N-Boc-protected amino acids underwent successful
amidation15 to give amides 22 and 23, respectively, without
racemization. It is important to emphasize that all of these
amidations were conducted on a gram scale, where the devised
workup procedure gave the pure amide product without the
requirement for chromatography. However, attempts to
(doubly) amidate malonic acid, or an α-hydroxy acid,16 to
form a Weinreb amide17 or to use a low-boiling point amine18

under these conditions gave amides 27−30 (Figure 3B) in only
low yield, albeit pure directly after workup, and these
experiments show the current limits of the method.
As part of these investigations, we discovered that several

secondary amide products crystallized from their reaction
mixtures on cooling where residual MTM and its byproducts
remained in solution. This allowed isolation of the pure amide
product directly by filtration (and a hexane wash) without the
need for any further workup, thereby resulting in low PMI values
as exemplified for amides 31 and 32 (Figure 4).19 To the best of
our knowledge, this is the first demonstration of insolubility of
secondary amides in toluene being utilized for product isolation
in an amidation protocol, and we anticipate that it would be
widely applicable to other secondary amide products.
Mechanistically, it has been proposed that amidations

promoted by stoichiometric silicon reagents form silyl esters
as activated intermediates.8 We therefore propose that these
amidations take place by reversible reaction of the carboxylic
acid with MTM to produce a silyl ester of type A with loss of
methanol, followed by subsequent irreversible attack by amine
to form the amide product (Figure 5). The liberated silanol B
evidently must undergo favorable condensation with a second
equivalent of MTM to form siloxane C and a second equivalent
of methanol. The observation of small quantities of methyl esters
(which may themselves undergo amidation) in crude reaction
mixtures implicates some competitive direct attack of silyl ester
A by methanol. In support of this mechanistic proposal, reaction
of phenylacetic acid with MTM (2) showed the formation of an
intermediate with a 1H NMR shift at 0.42 ppm, which is
consistent with assignment to the Si-CH3 of a silyl ester. The silyl
ester was found to be completely consumed upon addition of
amine with concomitant amide formation.20

In conclusion, we have reported the use of MTM (2) as an
effective, inexpensive reagent for the direct amidation of
carboxylic acids with amines, providing a safe alternative to
the previously published protocol using TMOS (1). The amide
products can be isolated in pure form either via a workup
procedure that removes residual MTM and any linear and cyclic
polysiloxane reaction byproducts or (in the case of secondary
amides) by simple crystallization from the reaction mixture. We
expect that the latter finding will be generally applicable to
provide secondary amides by this method with low process mass
intensities.21
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