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Abstract
Background 
Evolution within spine surgery is driven by a surgeon’s desire for expertise and significant
improvement in their patients’ quality of life. As surgeons move away from using subjective
patient-reported outcome (PRO) surveys, there must be an alternative objective metric in its
place. Modern iPhone (Apple Inc., Cupertino, CA) technology can be used to capture daily
activity in a simple, non-user biased manner. These health data can be used to analyze
objective functional status in conjunction with PRO surveys to measure surgical outcomes.

Methods 
Patients who underwent an awake transforaminal lumbar interbody fusion (TLIF) between 2014
and 2018 at our institution were identified. Patients were consented and instructed to
download the application “QS Access” (Quantified Self Labs, San Francisco, CA). Following data
collection, we analyzed the demographic information of patients who were reached to gauge
participation and feasibility of data exportation.

Results
A total of 177 patients who underwent an awake TLIF at our institution were contacted. Of
those who answered, 41 (44.6%) agreed to participate and 51 (55.4%) declined to participate.
When comparing those who either participated or declined, there were no significant
differences in age (p=0.145), sex (p=0.589), or ethnicity (p=0.686).

Conclusion 
Our pilot study examined the patient participation in the novel usage of Apple "Health" data,
queried from "QS Access" (Quantified Self Labs), to objectively measure relative patient
functional status surrounding spinal fusion. We demonstrated that a smartphone-based
application was mostly well received by our patient cohort and has the potential to be used as
an objective operative metric moving forward. 
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Advancing surgical techniques and innovative devices have revolutionized spine surgery within
the past decade [1]. Many novel technologies, such as robotic spine surgery, microendoscopy-
assisted procedures, and machine learning/artificial intelligence for procedural analysis, have
allowed surgeons to evolve towards more minimally invasive approaches [2,3]. These
advancements permit smaller incisions, less blood loss, and, ultimately, a quicker return to
daily activities [4,5]. Evolution within spine surgery is not only driven by growing technical
capacity, but also patients’ increasing expectations of the surgical experience [6]. Ultimately,
objective surgical metrics lack value unless they reflect real and significant improvement in a
patients’ quality of life. 

In order for surgeons to improve their practice in a patient-centric approach, patient
experience must be measured in a reliable and reproducible fashion. Historically, this has been
accomplished by patient-reported outcome (PRO) surveys, including the Oswestry Disability
Index (ODI), Visual Analog Scale (VAS) back and leg pain, and the Short Form (SF) 36 Health
Survey amongst others [7].

While these surveys have served as effective and easy-to-administer tools, they carry many
shortcomings. Most importantly, they are highly subjective in nature and rely on patient
perceptions that may not always match the clinical picture [8]. Patients may perceive an
increase in functional status although objectively they are no different, and vice versa [9].
Additionally, spine surgeons as a community have yet to agree upon a single “gold-standard”
PRO metric, resulting in a handful of scores used across our literature [10]. Finally, the
collection and the administration of PRO surveys rely on consistent patient follow-up at pre-
determined intervals to track score change over time. Without consistent follow-up for clinical
care, these surveys are hardly effective in predicting surgical outcomes [11].

The use of modern technology outside of the operating room can be utilized to accurately
capture daily activity in a non-user biased manner. While there is a significant body of research
focused on the use of stand-alone accelerometers for this purpose, we believe that using
smartphone-based accelerometer data offers a number of distinct advantages [12-14]. In this
regard, we leveraged the use of a simple, free iOS iPhone application (Apple Inc., Cupertino,
CA), “QS Access” (Quantified Self Labs, San Francisco, CA) for this purpose. This application is
able to query Apple “Health” data, thereby yielding critical patient activity information, which
include total steps, total distance traveled, and total flights climbed. These health data, in
theory, can be used to analyze objective functional status supplementing subjective PRO
surveys to gauge surgical outcomes. Furthermore, the phone-based application allows patients
to be evaluated virtually, an aspect of particular utility in the COVID-19 era of increased
telehealth utilization [15-17].

We present our single-institution, demographic analysis of patient participation in our pilot
experience of the retrospective acquisition of Apple “Health” data. This initial analysis served
as a way to test the feasibility of and patient comfort with a smartphone-based application,
which can be used to objectively analyze pre- and postoperative functional status of patients
who underwent spine surgeries.

Materials And Methods
Our initial implementation to test the feasibility of retrospective acquisition of Apple “Health”
data to analyze pre- and post-operative functional status was performed solely at our
institution. Inclusion criteria was all adult patients (18 years or older) who underwent elective,
awake endoscopic transforaminal lumbar interbody fusion (TLIF) surgery from 2014 to 2018 by a
single surgeon [18]. Patients were excluded if they did not have an iPhone, did not carry their
iPhone for >75% of the day (by self-report), underwent spine surgery secondary to malignancy
or trauma, are prisoners, are pregnant, or are adults unable to consent.
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Patients were contacted and consented via telephone (both verbally and with an email
containing written instructions) on how to download the application “QS Access” (Quantified
Self Labs). “QS Access” (Quantified Self Labs) is a free iOS application for the iPhone (Apple
Inc.), which extracts Apple “Health” data for the amount of time the patient has owned an
iPhone (Apple Inc.). The application generates a data table of four health parameters to gauge
daily energy expenditure: total steps, total distance traveled, total flights of stairs climbed, and
many other surrogates of physical activities. Once the patient downloaded the application, they
received written instructions on how to export their data to a secure dedicated email address.
Once the data were received on the secure server, it was associated with a unique de-identified
study identifier.

Demographic data were collected from the electronic medical record (EMR) and included age,
sex, ethnicity, and date of surgery.

Following data collection, we primarily analyzed the demographic information of patients who
were reached by telephone to gauge patient participation and feasibility of data exportation in
this pilot experience. Additionally, we separated the patients who were reached into two
groups: group 1 consisted of those who participated and group 2 consisted of those who did not
participate. Statistical analysis with Microsoft Excel was performed using Student’s t-test or
chi-squared test when appropriate, with p<0.05 denoting significance.

Results
A total of 177 patients who underwent an awake TLIF between 2014 and 2018 at our institution
were identified and contacted via the telephone by a member of the research team.

Of the 177 patients, the team was able to reach 92 (52.0%) patients and was unable to reach 85
(48.0%) patients. Of the 85 patients who did not answer, 15 (17.6%) were Spanish-only speaking
patients for which consent could not be effectively delivered. Of those who answered, 41
(44.6%) agreed to participate in data acquisition and 51 (55.4%) declined to participate (Figure
1, Table 1).

FIGURE 1: Schematic illustrating patient participation from
total patient pool
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Did Not Participate (n=51)

No iPhone 43.1%

Not comfortable sharing data 19.6%

Upset with surgical outcome 15.7%

Other 15.7%

Unable to work phone 5.9%

TABLE 1: Reasons contacted patients did not participate in the present study

The average age for group 1 was 64.5 ± 9.5 years, while the average age for group 2 was 67.6 ± 9.7
years. There was no significant difference in age between groups (p=0.145). Group 1 consisted
of 20 (48.8%) males and 21 (51.2%) females, while group 2 consisted of 22 (43.1%) males and 29
(56.9%) females. There was no significant difference in sex between groups (p=0.589). Group 1
consisted of 12 (29.2%) patients with a self-reported Hispanic ethnicity, and 29 (70.7%) with a
self-reported white ethnicity. Group 2 consisted of 13 (25.5%) patients with a self-reported
Hispanic ethnicity, and 38 (74.5%) with a self-reported white ethnicity. There was no
significant difference in ethnicity between groups (p=0.686) (Table 2).

Characteristic Value ± SD P-value

 Group 1 (n=41) Group 2 (n=51)  

Age (years)  

Mean 64.5 ± 9.48 67.48 ± 9.7 p=0.145  

Range 46-80 47-88  

Sex (no. of patients) p=0.589  

Male 20 22  

Female 21 29  

Ethnicity (no. of patients)  p=0.686  

Hispanic 12 13  

White 29 38  

TABLE 2: Demographic characteristics of 92 patients contacted in the present study
SD, standard deviation
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Discussion
Our pilot study examined the patient participation in the novel usage of Apple “Health" data,
queried from “QS Access” (Quantified Self Labs) to objectively measure relative patient
functional status surrounding lumbar spine surgery. We demonstrated that this application was
generally well received by our patient population and has the potential to be used as an
objective operative metric moving forward.

Patient-centered outcomes
Providers, researchers, and patient advocacy groups are shifting towards placing a higher value
on patient satisfaction measures. A growing body of literature suggests that patient satisfaction
can lend insight into the “true” definition of success after spine surgery [19-21]. If so, surgeons
must tease out patient satisfaction in an unbiased, universal manner in order to better evolve
their practices. Unfortunately, measuring patient experience is not so cut-and-dry. Patient
satisfaction will necessarily be subject to a patient’s psychosocial characteristics, attitudes and
beliefs, or other factors not inherently related to their surgical care [8].

Despite the inherent subjective nature of PROs, their practice has not been without surgical
benefit and evolution [22]. Patient demand for cutting edge surgical techniques has pushed
spine surgeons towards more appealing approaches, including minimally invasive surgery,
robotic surgery, etc. This draw for technical excellence has resulted in lower postoperative
morbidity, without sacrificing efficacy [23-25]. PROs have historically served as markers of
surgical effect on a patient’s quality of life [26,27]. However, similar to the recent rapid shifts in
surgical technique, advanced patient-centric measurement of surgical outcomes should
develop toward objective metrics.

A caveat to the usage of PROs is that there is not a universally accepted pre- and postoperative
metric to gauge improvement in a patient’s quality of life. A multitude of PRO surveys are
currently in use, and contain questions that can vary notably between surveys [28]. Thus, it is
hard to look systematically at patient outcomes across a myriad of institutions, which may
prefer different means of PRO measurement. More importantly, these surveys have been
traditionally administered in an outpatient setting on a face-to-face basis [29]. This requires
consistent, timely follow-up in clinic, as these surveys cannot be distributed retroactively.
Additionally, the challenges of the current COVID-19 pandemic greatly hinder in-person visits
and have pushed many institutions to move feasible neurosurgical care towards a virtual
telehealth platform [17].

Experience with mobile application 
We postulate a potential solution to the subjective PRO surveys that supports the current move
towards a more virtual health experience. Our pilot experience with the application “QS
Access”(Quantified Self Labs) allowed us to query health data from surgical patients as a way to
measure functional status objectively surrounding surgery. The application provides a user-
friendly extrapolation of health parameters that can be used to gauge energy expenditure: daily
steps taken, distance walked, and flights of stairs climbed. With a carefully selected patient
cohort, similar technologies can be used to create an objective measurement of meaningful
surgical outcomes. Smartphone-based objective functioning has already been shown to be
reliable [30], and with proper usage, can be a valid at-home outcome monitor. Additionally, the
data extraction can be done in a completely virtual manner, and the application can
retroactively report data, allowing surgeons to evaluate patients independent of time and place.

Due to the novelty of a smartphone-based application as a way to measure energy expenditure,
the present study focused on the feasibility of patient participation and its applicability in
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future investigation. Thus, we chose a specific spine surgery population, performed by a single
surgeon at a single institution. Our preliminary results are promising: we demonstrated that
nearly 50% of patients who were reached via telephone by a member of our research team were
willing to participate and share their personal Apple “Health” data. Our success with data
acquisition is noteworthy, as many people may be wary of sharing personal information
without face-to-face interaction. Additionally, there were no significant age, sex, or ethnic
differences between those who chose to participate and those who did not, suggesting that this
application can be applied universally to diverse patient populations.

Our preliminary analysis sheds light on the evolution towards a more objective and virtual
measurement of meaningful outcomes from surgical intervention. Smartphone-based
applications can serve as a quick and effective way to query important health information,
without the tedious administration of subjective PRO surveys. With these patient-centered
objective metrics, surgeons have the potential to utilize this information to craft a better
overall surgical experience.

Study limitations
Our study is not without limitations. First, we were unable to successfully consent 15 Spanish-
speaking patients, something that will require a secure, telehealth-driven translation modality
moving forward. Additionally, data acquisition does not always ensure usability. Non-usable
data could result from a blank exported file, or energy expenditure data that did not span a time
frame both pre- and postoperatively. To overcome these limitations, we are planning a multi-
institution study implementing this application in a broader patient sample. Additionally, this
series of patients underwent surgery at a single academic center by an expert spine surgeon
with the associated biases. Finally, it should be noted that while the present study examines
successful enrollment/recruitment with our new platform, the full results of the study itself will
be published separately in a dedicated work.

Conclusions
Our study details the novel use of a mobile phone application to query health data to
approximate daily energy expenditure from metrics, such as daily steps taken, active calories
burned, distance walked, and flights of stairs climbed. We demonstrated that a smartphone-
based application was generally well received by our patient population and that the process of
data acquisition is feasible. We eventually plan to employ this application as a tool to measure
perioperative functional status and transform the data into a predictive model of expected
benefit from spinal surgical intervention based on demographic and clinical factors. 

Additional Information
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