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The Protein Data Bank (PDB) contains more than 135 000 entries at pre-

sent. From these, relatively few amyloid structures can be identified, since

amyloids are insoluble in water. Therefore, most amyloid structures depos-

ited in the PDB are in the form of solid state NMR data. Based on the

geometric analysis of these deposited structures, we have prepared an auto-

matically updated web server, which generates a list of the deposited amy-

loid structures, and also entries of globular proteins that have amyloid-like

substructures of given size and characteristics. We have found that by

applying only appropriately selected geometric conditions, it is possible to

identify deposited amyloid structures and a number of globular proteins

with amyloid-like substructures. We have analyzed these globular proteins

and have found proof in the literature that many of them form amyloids

more easily than many other globular proteins. Our results relate to the

method of Stankovi�c et al. [Stankovi�c I et al. (2017) IPSI BgD Tran Int

Res 13, 47–51], who applied a hybrid textual-search and geometric

approach for finding amyloids in the PDB. If one intends to identify a sub-

set of the PDB for certain applications, the identification algorithm needs

to be re-run periodically, since in 2017 on average 30 new entries per day

were deposited in the data bank. Our web server is updated regularly and

automatically, and the identified amyloid and partial amyloid structures

can be viewed or their list can be downloaded from the following website

https://pitgroup.org/amyloid.

The Protein Data Bank (PDB) is a continually devel-

oping public resource of spatial structures of proteins

and nucleic acids [1]. Today the database contains

more than 135 000 structures. The geometric proper-

ties of these molecules can be analyzed by bioinfor-

matical tools, and one may infer significant new

relations in these very complex macromolecular struc-

tures through such analyses [2–9]. Here, we are inter-

ested in amyloid structures in the Protein Data Bank.

Amyloids are misfolded protein aggregates that are

present in numerous biological structures including the

cellular surface of a number of microorganisms

[10,11], where they have a role in host–pathogen inter-

action; the silkmoth chorion and some fish choria,

forming protective films [12]; the immune system of

certain insects, helping in the encapsulation of patho-

gens and parasites [13]; healthy human pituitary secre-

tory granules, for storing peptide hormones [14]; and

human amyloidoses and several neurodegenerative dis-

eases [15]. Amyloid structures sometimes show prion-

like infective properties [15–17]. Cerebral b-amyloid

plaques have long been considered to be biomarkers of

Alzheimer’s disease [18–21], although more recently

their validity has been challenged by several authors
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[22–24].Mechanisms of amyloid formation are

reviewed in [25,26]. Amyloid fibers are formed from

parallel b-sheets, with hydrogen bonds between the

parallel strands. It is widely accepted that amyloid for-

mation requires the presence of a nucleus or a seed of

amyloid-forming segments with exposed edges of b-
sheet structures [25–28].

Since amyloid fibers are insoluble in water, until

very recently there were no high-resolution structures

deposited in the RCSB PDB [1]. Today, one can find

several dozen atomic-resolution amyloid structures in

the PDB, and this dataset has opened up the possibil-

ity of the analysis and the data mining of the

properties of these misfolded proteins, using their

high-resolution spatial structure.

The first step in this direction is the identification of

the amyloid structures in the PDB.

Amyloid and amyloid-precursor molecules have

been collected and predicted using protein-sequencing

data in numerous articles (e.g. in the AMYPdb

resource [29], or in [30]). We are interested in the anal-

ysis of the spatial protein structures for finding amy-

loid and amyloid-precursor molecules, rather than in

the analysis of residue-sequence properties of proteins

of unknown three-dimensional structure.

In a remarkable piece of work, Stankovi�c et al. [31]

screened the PDB for amyloid structures by applying

the following procedure: (a) by a textual search, those

PDB entries were selected that contain the word ‘amy-

loid’ or any of another 38 words describing amyloid

precursors; (b) helical structures, identified by torsion

angles, were discarded; and (c) parallel, near-linear

fragments of length at least four residues were

identified; structures without these fragments were also

discarded.

In the present work, we prepared an automatically

updated list of amyloid and potentially amyloidogenic

structures from the PDB, applying only the geometric

properties of b-sheets; consequently, we did not use any

textual search, referring to the annotations of the PDB

entries. By this choice, we intended to identify not only

the aggregated amyloid entries and known precursors,

but also those globular proteins that contain small,

locally amyloid-like substructures. We assumed that

these globular proteins may also be amyloidogenic, i.e.

they can more easily turn into amyloid fibers than

globular proteins without these structural elements.

Since the PDB grows very quickly – in 2017, every

day on average 30 new structures were deposited – we

needed to construct an automatically updated web ser-

ver, which periodically examines the new PDB entries

and includes the newly deposited amyloid and

potentially amyloidogenic structures. Consequently,

our list does not give a snapshot of the amyloid struc-

tures in the PDB at a given time as with other efforts,

but rather presents a live list of these structures. Our

online resource is available at https://pitgroup.org/amy

loid/.

Materials and methods

Here we describe the selection method that generates the

Extended Amyloid List at https://pitgroup.org/amyloid/.

In contrast with Stankovi�c et al. [31], we did not make

any selection through a textual search in the annotation

fields of the PDB files. Instead, we attempted to collect the

minimal set of geometric rules, which already return the

amyloids found in [31], plus novel, globular proteins with

possible amyloidogenic substructures.

We constructed three rules, (a)–(c), in which, informally,

rule (a) assures the parallelism of the b-sheets; rule (b)

excludes the structures with large curvature, e.g. locally

parallel helices; and rule (c) ensures that the approximately

straight and parallel fragments are sufficiently long, com-

pared with the total length of the chain. More formally, the

following rules were applied:

(a) For finding parallel b-sheets. Stankovi�c et al. [31] selected

parallel chain segments by requiring the distance differ-

ence between the closest Ca atoms of the fragment to be

less than 1.5 �A. Instead of this condition, we have applied

a limit to the standard deviation r between the closest Ca

atoms of the fragment such that its value is less than 1.5
�A. We think that this approach is more tolerant of singu-

lar, random errors in the structure, while it is strict

enough to characterize the parallel polypeptide chains in

the amyloid structures. More technically, our condition

can be re-phrased as follows. Let us consider two sepa-

rate chains of the structures, A and B, both identified as

b-sheets. Next, we compute the array C(A)dist, which con-

tains the minimum distance for every Ca atom of chain A

from the closest Ca that is located in chain B. Next, we

identify the maximal subchains F of A, satisfying r(C
(F)dist) ≤ 1.5, while every distance in vector C(F)dist is

required to be between 2 and 15 �A.

(b) Excluding structures with large curvature. Stankovi�c et al.

[31] excluded helical structures from consideration. We

apply a locally verifiable angular condition for the frag-

ments F as follows. Fragment F, which satisfies the condi-

tions in (a), needs also to satisfy the condition that the

angles of each of three consecutive Ca atoms, averaged

for the fragment F, need to be between 110° and 180°. In
other words, these angles, on average, should be obtuse

angles between 110° and 180°.
(c) Condition for the minimum length of parallel fragments.

len(F) ≥ len(A)/7, where F denotes the same as in rule

(a), and len(X) denotes the length of chain X, measured

in residues.
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The specific parameters for the conditions above were

selected for including all multi-chain amyloid structures

that were also found in Stankovi�c et al. [31]. We did not

aim to find amyloid-like structures containing only one

single polypeptide chain since the amyloid structures con-

tain a large number of approximately parallel fibers, each

consisting of different chains. While the PDB contains

partial amyloid structures with one single chain (e.g.

1HZ3), these structures will not be listed within our

results, since they lack the characteristic property of

nearly parallel, distinct polypeptide chains. The search for

distinct parallel chains is useful for disallowing single

chains with long parallel subsections, for example, b-bar-
rel structures, such as the bacterial porin structure 4RLC.

Since amyloid aggregates always consist of a large num-

ber of distinct, approximately parallel polypeptide chains,

our condition is not restrictive.

Results and discussion

Amyloid structures

We have found that our list at https://pitgroup.org/

amyloid/ contains all amyloid structures with at least

two polypeptide chains that are listed by Stankovi�c

et al. [31]. For example, the classical amyloid struc-

tures of 2KIB, 2N0A, 5KO0, 2LBU and 2LMN are

all present in the list.

Possible amyloidogenic structures

Here, we review four non-amyloid proteins that were

found by our screening algorithm and that are listed

at https://pitgroup.org/amyloid/. We also give litera-

ture evidence showing links to the amyloid formation

of these molecules. These findings are witness to the

power of our algorithm, but clearly we cannot review

here the more than 500 structures presented on the

webpage https://pitgroup.org/amyloid/.

� 1HCN: Human chorionic gonadotropin (hCG)

(Fig. 1A). It is a placenta-produced human hor-

mone and applied in numerous pregnancy tests

and in legal and illegal drug products, including

physical performance-enhancing and weight-loss

preparations. It is reported to increase b-amyloid

levels in rats [32] and to increase b-cleavage of

an amyloid-precursor protein [33]. Protein hCG

also has a role in amyloid b precursor protein

expression and modulation in human cells [34],

and in protein folding regulation in endoplasmic

reticulum [35]. We believe that these roles of

hCG are closely related to particular geometric

properties of its parallel b-sheets.
� 1BSF: Thymidylate synthase A (TS) from Bacillus

subtilis (Fig. 1B). Thymidylate synthase has an

important role in DNA synthesis, and its aggrega-

tional properties have been studied for a long

Fig. 1. Protein structures 1HCN, 1BSF, 3FJ5 and 2OCT, with partial amyloid-like substructures. All of these entries are documented as

amyloidogenic in the literature.
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time [36]. The human TS is a primary target of

cancer chemotherapy, most importantly by 5-

fluorouracil, a strong-binding TS inhibitor,

applied widely in colon, esophageal, stomach,

pancreatic, breast and cervical cancers. In

Fig. 1B, it can be clearly seen that the parallel b-
sheets are hidden in the dimeric structure. TS also

has a monomeric form with distinct function, and

the dimeric and the monomeric forms are in

equilibrium in humans [37]. Therefore, the hidden

b-sheets in the monomeric form may become

accessible and may play a role in aggregation

processes.

� 3FJ5: Tyrosine kinase c-Src (Fig. 1C). It has a

role in the mitogen-activated protein kinase path-

way, and in the development of breast cancers in

animals and humans [38,39]. It has been shown

that the SH3 domain of this protein aggregates

to form amyloid fibrils at mild acidic pH values

[40]. It is suggested that amyloid-associated

microgliosis is strengthened by tyrosine kinase

c-Src activity [41,42]. It has also been noted

that mitogen-activated protein kinase signaling

cascade dysfunction in fibroblasts is specific to

Alzheimer’s disease [43].

� 2OCT: Stefin B (cystatin B) tetramer (Fig. 1D),

an intracellular thiol protease inhibitor. It is

known to form amyloid fibrils in vitro [44]; its

role in amyloidogenesis is detailed in [45] and

[46].

Conclusions

We have demonstrated the validity of three geometric

structural selection rules, which identify amyloid fibrils

and plaques in the PDB. Additionally, these rules find

non-amyloid soluble proteins, among which we have

identified several amyloidogenic ones by scanning the

literature. We believe that the great majority of the

soluble proteins in the list show also – mostly still

undocumented – amyloidogenic properties.
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the RCSB PDB site https://www.rcsb.org/pdb.
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