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Abstract

Background: Previous studies have demonstrated that structural deficits and functional connectivity imbalances
might underlie the pathophysiology of obsessive-compulsive disorder (OCD). The purpose of the present study was
to investigate gray matter deficits and abnormal resting-state networks in patients with OCD and further investigate
the association between the anatomic and functional alterations and clinical symptoms.

Methods: Participants were 33 treatment-naive OCD patients and 33 matched healthy controls. Voxel-based
morphometry was used to investigate the regions with gray matter abnormalities and resting-state functional
connectivity analysis was further conducted between each gray matter abnormal region and the remaining voxels in
the brain.

Results: Compared with healthy controls, patients with OCD showed significantly increased gray matter volume in
the left caudate, left thalamus, and posterior cingulate cortex, as well as decreased gray matter volume in the
bilateral medial orbitofrontal cortex, left anterior cingulate cortex, and left inferior frontal gyrus. By using the above
morphologic deficits areas as seed regions, functional connectivity analysis found abnormal functional integration in
the cortical-striatum-thalamic-cortical (CSTC) circuits and default mode network. Subsequent correlation analyses
revealed that morphologic deficits in the left thalamus and increased functional connectivity within the CSTC circuits
positively correlated with the total Y-BOCS score.

Conclusion: This study provides evidence that morphologic and functional alterations are seen in CSTC circuits and
default mode network in treatment-naive OCD patients. The association between symptom severity and the CSTC
circuits suggests that anatomic and functional alterations in CSTC circuits are especially important in the
pathophysiology of OCD.
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Introduction

Obsessive-compulsive disorder (OCD), a common and
disabling neuropsychiatric disorder, affects 2%—3% of the
general population [1]. OCD is characterized by persistent
intrusive thoughts or images (obsessions) and/or a strong
desire to perform certain actions or activities (compulsions).
Despite its high morbidity, the underlying pathophysiology of
OCD is unclear.

Previous neuropsychological and animal studies have shown
that abnormalities of cortical-striatal-thalamic-cortical (CSTC)
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circuits may play a key role in the pathogenesis of OCD [2-5].
Although the findings of structural and functional neuroimaging
studies have been relatively consistent with this view, findings
from these studies have been inconsistent [6-9]. For example,
the striatum, as a crucial region in CSTC circuits, was reported
to have structural and functional alterations [10-13], or no
alterations [14-17]. Confounders associated with psychotropic
medication exposure, duration of illness, relatively small
sample sizes, and methodological differences between studies
may contribute to the inconsistency across studies. Several
studies have shown that brain structure and function can be

December 2013 | Volume 8 | Issue 12 | e83931


http://creativecommons.org/licenses/by/4.0/

significantly influenced by psychotropic medication [18,19].
Previous some neuroimaging studies may have detected
effects of psychotropic medication or illness chronicity rather
than direct iliness effects on brain structure and function. In this
context, we considered it especially useful to conduct a
morphologic and functional study to explore the core
pathophysiology of OCD in treatment-naive OCD patients.

There are increasing functional studies which have provided
strong evidence that the pathophysiology of OCD is unlikely to
be the result of a single abnormal brain region or
neurotransmitter system. Instead, it could be conceptualized as
a distributed neuronal brain network [20,21]. Therefore, brain
abnormalities in OCD are much more likely to be present in
functional connectivity between brain regions, rather than
within discrete brain regions [22-25]. Several fMRI studies have
reported functional connectivity aberrancies within CSTC
circuits during resting-state [11,24-27]. The CSTC circuits have
extensive connectivity to many cortical and subcortical regions
and are considered to play a role in the executive function,
cognitive and behavioral regulation, and conflict monitoring
[28-30]. The dysregulation of these connectivities within CSTC
circuits may be related to OCD patients’ impaired executive
performance [31], inability to inhibit cognitions and behaviors
[32], and enhanced error monitoring processes [33,34]. In
addition to functional disturbances in CSTC circuits, recent
studies also have shown that the function of the default mode
network (DMN) was disrupted in OCD patients compared with
healthy controls [22,23]. The DMN is a prominent large-scale
brain network that preferentially activates when individuals
engage in internal tasks such as episodic memory retrieval,
mental imagery, inner speech, and planning of future events. In
humans, the function of DMN has been hypothesized to
generate spontaneous thoughts during mind-wandering [35],
and dysfunction of DMN has been considered to be associated
with some OCD clinical symptoms such as the inability to get
rid of persistent intrusive thoughts and images [22]. In
summary, all of these resting-state functional studies in OCD
provided evidence for abnormal functional organization during
resting-state and enhanced our understanding of the
psychopathology of OCD.

In the current study, we combined voxel-based morphometry
(VBM) and resting-state functional connectivity analysis in
order to perform a comprehensive evaluation of the neural
circuitry of OCD. Along these lines, the main objective of this
study was to (1) identify brain regions with gray matter
abnormalities in first-episode treatment-naive patients with
OCD, (2) investigate the brain functional connectivity using the
observed gray matter abnormalities areas as seed regions, and
(3) explore the clinical significance of structural deficits and
functional connectivity by focusing on their association with
symptom severity and disease duration in OCD patients.

Methods and Materials
Participants
The medical ethics committee of Third Military Medical

University (Chonggqing, China) approved the current study and
all participants gave written informed consent to the
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participation according to the Declaration of Helsinki. Thirty-
four patients who were seeing a doctor for the first time and
met the DSM-IV criteria for OCD were recruited for this study
from the Department of Clinical Psychology of the Southwest
Hospital between September 2010 and December 2012.
Diagnosis of OCD and duration of illness were determined by
two qualified psychiatrists (Dr W. Qu and Dr J. Guo) using the
Structured Clinical Interview according to the DSM-IV criteria
(SCID). The severity of OCD symptoms was assessed using
the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS)
[36,37]. In addition, the 17-item Hamilton Depression Rating
Scale (HDRS) and 14-item Hamilton Anxiety Rating Scale
(HARS) were administered to evaluate the severity of
depression and anxiety symptoms, respectively [38,39]. No
patient in this cohort met the criteria for major depressive
disorder or Tourette syndrome.

Thirty-four healthy controls were recruited among hospital
staff and by advertisements on the internet. All controls were
screened by using the SCID-Nonpatient Edition to ascertain
that there was no personal history of psychiatric and neurologic
illnesses. The controls were also interviewed to confirm the
lifetime absence of psychiatric diseases in their first-degree
relatives.

Exclusion criteria for OCD patients and healthy controls were
as follows: a history of other psychiatric or neurological iliness;
a history of drug or alcohol abuse; pregnancy; serious physical
illness; and contraindications to MR scanning. Conventional
MR images (T2-weighted images) were inspected by two
experienced neuroradiologists (Dr J. Wang and Dr H. Li) to
exclude gross abnormalities. Co-morbid depressive and
anxious symptoms were not considered as an exclusion
criterion, if OCD was the primary clinical diagnosis. Of the
original participants, one female patient and one male healthy
control were excluded from the final analysis; the patient was
excluded because of excessive head motion during MR
scanning (>2 mm in translation) and the control was excluded
owing to an incidental finding on conventional MR images
(intracranial arachnoid cyst). The final study consisted of 33
OCD patients and 33 healthy controls. The two groups were
well-matched for age, gender, and years of education. All
participants were right-handed. Clinical and demographic data
from all 66 participants are shown in Table 1.

MRI data acquisition

All structural and functional images were obtained using a
3.0 T MRI system (TIM Trio, Siemens, Erlangen, Germany)
with an eight-channel phased array head coil. During the MRI
scans, all participants were instructed to remain relaxed with
their eyes closed and lie still without moving. The resting-state
functional images were acquired using an echo-planar-imaging
(EPI) sequence: 36 axial slices with a slice thickness of 4 mm
and no slice gap; repetition time, 2000 ms; echo time, 30 ms;
flip angle, 90°; field of view, 256 x 256 mm?; matrix, 64 x 64;
and isotropic voxel, 4 x 4 x 4 mm3. For each participant, the
fMRI scanning lasted for 480 s and 240 volumes were
obtained. In addition, a high resolution structural T1-weighted
anatomic sequence was acquired in a sagittal orientation using
a 3-dimensional magnetization-prepared rapid gradient-echo
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Table 1. Demographic and clinical characteristics of OCD
patients and healthy controls.

Characteristics OCD patients(n=33) controls(n=33) P value

Gender (male: female) 18:15 18:15 1
Mean age (years) 25.349.6 25.049.1 0.88
Educational level (years) 12.0£3.6 12.84£3.8 0.65
lliness duration (years) 6.319.9 _ _
HARS Total score 6.3+3.2 _ _
HDRS Total score 9.1+3.5 _ _
Y-BOCS Total score 21.146.3 _ _
Obsessive subscale score 11.3+3.6 _ _
Compulsive subscale score 9.843.9 _ _

Data are expressed as the mean + SD, SD: standard deviation; OCD: obsessive-
compulsive disorder; HARS: Hamilton Anxiety Rating Scale; HDRS: Hamilton
Depression Rating Scale; Y-BOCS, Yale-brown obsessive-compulsive scale.

doi: 10.1371/journal.pone.0083931.t001

(3D MP-RAGE) sequence, as follows: repetition time, 1900 ms;
echo time, 2.52 ms; flip angle, 15°; slice thickness, 1 mm;
matrix, 256 x 256; and isotropic voxel, 1 x 1 x 1 mm?.

Voxel-Based Morphometric Analysis

The voxel-based morphometric analysis was performed
using SPM8 software (Statistical Parametric Mapping; http:/
www.fil.ion.ucl.ac.uk/spm/) implemented in MATLAB 2010b
(Math Works, Natick, MA, USA). First, all structural MR images
were manually reoriented to place the anterior commissure at
the origin of the 3D MNI space. Then, the structural images
were segmented into gray matter, white matter and
cerebrospinal fluid using the unified standard segmentation
option in SPM8. After segmentation, the gray matter template
for a group of individuals was generated from the entire image
dataset using the Diffeomorphic Anatomical Registration
Through Exponentiated Lie algebra (DARTEL) toolbox
following John Ashburner’'s chapter in the standard version
[40]. Next, the resulting images were spatially normalized into
the MNI space using affine spatial normalization. The total
amount of gray matter volume of each voxel was obtained
through modulation by multiplying the gray matter
concentration map by the non-linear determinants derived from
the spatial normalization step. Finally, the resulting gray matter
images were then smoothed with an isotropic Gaussian kernel
(full-width half-maximum=8 mm).

Voxel-wise comparisons of gray matter volume between the
OCD and control groups were performed using two-sample {-
tests. Age, gender, and total intracranial volume were modeled
as covariates of no interest. The statistical significance of group
differences in each region was set at a p<0.05 with family-wise
error correction. To identify the association between gray
matter abnormalities and clinical characteristics including Y-
BOCS score and disease duration, the average values of gray
matter volume for all the voxels in abnormal areas revealed by
VBM analysis, were extracted and correlated with the Y-BOCS
score and disease duration using Pearson correlation analysis.
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Functional Connectivity Analysis

Functional connectivity preprocessing and statistical analysis
were also done with SPM8 software. To avoid manipulation
error confounds and standardize the process, we used the
batch-processing tool data processing assistant for resting-
state fMRI (DPARSF; http://www.restfmri.net) [41]. For the
resting state f/MRI data of each subject, the first 10 volumes of
functional images were discarded to allow for steady-state
magnetization and stabilization of participant status. EPI
images were slice-timing corrected to the middle slice acquired
in time, and realigned and resliced to correct for head motion
with a mean volume created. Structural images were co-
registered with the mean volume of functional images and
subsequently segmented by an inbuilt unified segmentation
routine in SPM8. The parameter created by segmentation was
then applied to functional images, non-linear normalization to
the MNI template brain, and each voxel was resampled to
isotropic 3 mm x 3 mm x 3 mm. As a final step, the resting
state fMRI images were smoothed using a 8-8-8 mm FWHM
Gaussian kernel. The head motion of all participants during
resting-state fMRI acquisition was observed, and data were
discarded if the translation exceeded 2 mm or if rotation
exceeded 2°.

Functional connectivity was analyzed using the REST
software package (http://www.restfmri.net) using a seed voxel
correlation approach [42]. Because structural MRI exhibited
gray matter alteration in OCD patients, we tested whether or
not the intrinsic connectivity of these areas had been affected.
The gray matter deficits areas that resulted from voxel-based
morphometric analysis were utilized as regions of interest
(ROIs). Several possible spurious sources of variances,
including the estimated head motion parameters, global brain
average signals, and average signals from the cerebrospinal
fluid and white matter, were removed from the data through
linear regression. After bandpass filtering (0.01-0.08 Hz) and
linear trend removal, a reference time series for each seed was
extracted by averaging the time series of voxels within each
ROI. A correlation analysis was conducted between the seed
ROI and the remaining voxels in the whole brain. The resulting
r values were converted using Fisher’s r-to-z transformation to
improve the Gaussianity of their distribution.

To compare the difference in functional connectivity between
the OCD and healthy control group, two-sample t-tests were
used. Age, gender, years of education and total gray matter
volume were entered as co-variates of no interest. The
significance level of group differences was set at a p<0.05 with
multiple comparison corrected by AlphaSim methods
(combined height threshold of a p<0.001 and a minimum
cluster size of 22 voxels). Subsequently, the group differences
were correlated with the total Y-BOCS score and disease
duration using Pearson correlation analysis.

Validations: Reproducibility

To further evaluate the reproducibility of our findings, we
conducted the following procedures.
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Figure 1. Gray matter difference between OCD patients and healthy controls. The warm color denotes the brain regions
having increased gray matter volume, and the cold color denotes the brain regions having reduced gray matter volume in OCD
patients. Maps threshold were set at p<0.05 with family-wise error correction.

doi: 10.1371/journal.pone.0083931.g001

The effects of without global signal regression

In the preprocessing of resting state fMRI data, there is much
debate in the community about the use of global signal
regression [42-45]. Although the global signal regression could
reduce the effect of the physiological noise and improve the
specificity of positive correlations, it also may generate artificial
negative correlations and thus alters intrinsic correlation
structure of the brain networks [46]. Notably, a recent fMRI
study suggested that global signal regression can induce major
bias into the analysis of group differences [45]. To explore the
reproducibility of our results, in this study, we reanalyzed our
data without regressing out global signal.

The effects of structural gray matter alteration

Previous studies have shown that that resting-state brain
function may be affected by structural gray matter alteration
[47]. In this study, we found gray matter alteration in multiple
regions in OCD patients. To reduce the effect of brain structural
alteration on resting-state functional connectivity
measurements, we reanalyzed our data with gray matter
volume as an extra covariate in the statistical models.

Results
Morphometric Analysis
There were no significant differences (p = 0.61) in the total

gray matter volume between first-episode OCD patients
(609.98464.32 ml) and healthy controls (615.63+60.95 ml).
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Compared with healthy controls, OCD patients showed
significantly increased regional gray matter volume mainly in
the left caudate (MNI,,= -12, 19, and 9, respectively; Cluster
size = 29 voxels), left thalamus (MNI, = -6, -12, and 9; Cluster
size = 24 voxels) and posterior cingulate cortex (MNI,,,= -3,
-48, and 30; Cluster size = 51 voxels), as well as decreased
gray matter volume in the bilateral medial OFC (MNI,,,= 3, 33,
and -15; Cluster size = 69 voxels), left ACC (MNI,,= -4, 43,
and 3; Cluster size = 27 voxels) and left inferior frontal gyrus
(MNI,,= -53, 20, and 3; Cluster size = 36 voxels; Figure 1).

Functional Connectivity Analysis

To characterize the alteration of functional networks involving
brain areas associated with abnormal gray matter volume,
functional connectivity analysis was performed using a seed
voxel correlation approach. According to the morphometric
analysis results, six brain regions which showed abnormal gray
matter volume in OCD patients were selected as seed regions
for functional connectivity analysis on resting-state fMRI data;
specifically, 3 increased gray matter volume areas (left
caudate, left thalamus and posterior cingulate cortex) and 3
decreased gray matter volume areas (medial OFC, left ACC
and left inferior frontal gyrus) were selected. There were no
significant differences between the two groups in head motion
(translation: OCD = 9.86E-2 + 3.19E-2 mm, controls = 9.63E-2
+ 3.23E-2 mm, p = 0.76; rotation: OCD = 1.38E-3 + 0.53E-3
degree, controls = 1.27E-3 + 0.49E-3 degree, p = 0.53).
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Figure 2. Functional connectivity difference between OCD patients and healthy controls. The red line denotes the brain
regions having increased functional connectivity, and the blue line denotes the brain regions having reduced functional connectivity
in OCD patients. Maps threshold were set at p<0.05 with AlphaSim correction. L, left; R, right; OFC, orbitofrontal cortex; ACC,
anterior cingulate cortex; PCC, posterior cingulate cortex. IFG, inferior frontal gyrus; ITG, inferior temporal gyrus; STG, superior
temporal gyrus; MTG, middle temporal gyrus. Results are displayed by using the BrainNet Viewer [84] (http://www.nitrc.org/projects/

bnv/).
doi: 10.1371/journal.pone.0083931.g002

When the seed was located in the left caudate, patients with
OCD showed increased functional connectivity mainly in the
bilateral lateral OFC, putamen, right caudate, left thalamus,
and left inferior frontal gyrus. When the seed was located in the
left thalamus, patients with OCD showed increased functional
connectivity in the posterior cingulate cortex (PCC),
cerebellum, and left caudate, as well as decreased functional
connectivity in the right inferior parietal lobe. When the seed
was located in the PCC, patients with OCD showed increased
functional connectivity in the cerebellum, right medial frontal
gyrus, left thalamus, and bilateral middle temporal gyrus. When
the seed was located in the medial OFC, patients with OCD
showed increased functional connectivity in the bilateral
caudate and left ACC, as well as decreased functional
connectivity in the bilateral lateral OFC, inferior temporal gyrus,
left middle frontal gyrus and left angular. When the seed was
located in the left ACC, patients with OCD showed increased
functional connectivity in the left caudate, right ACC and
medical OFC, as well as decreased functional connectivity in
the right inferior temporal gyrus, cerebellum, and left angular.
When the seed was located in the left inferior frontal gyrus,
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patients with OCD showed increased functional connectivity in
the left putamen, caudate, and cerebellum, as well as
decreased functional connectivity in the left superior temporal
gyrus (Figure 2, Table 2).

Brain-Behavioral Associations

The average gray matter volume values and the strength of
functional connectivity in structural abnormal areas were
extracted and correlated with disease duration and overall
OCD symptom severity. No significant correlations were found
for the gray matter volumes or functional connectivity strength
with the disease duration in patients with OCD. Significant
positive correlations were observed between the gray matter
volumes in the left thalamus and total Y-BOCS scores (r =
0.68, p<0.001). In addition, significant positive correlations
were also found between the total Y-BOCS scores and the
strength of the functional connectivity of multiple areas within
the cortical-striatum-thalamic circuits. When the seed was
located in the left caudate, significant positive correlations were
observed between the total Y-BOCS scores and the strength of
functional connectivity in the bilateral lateral OFC (left, r = 0.67,
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Table 2. Brain regions with significantly altered functional
connectivity in patients with OCD.

MNI coordinate VoxelPeak

Seed ROI Connected region X y z size tvalue Direction *
OCD patients > Healthy controls
Left caudate  Left lateral OFC -40 40 -6 33 3.86 Positive
Right lateral OFC 30 30 -10 40 3.86 Positive
Right caudate 15 12 9 74 574 Positive
Left putamen 22 5 5 59 531 Positive
Right putamen 21 6 5 20 4.08 Positive
Left IFG 46 21 3 16 4.39  Positive
Left thalamus 24 12 12 19 438 Positive
Left thalamus Cerebellum 6 -54 -45 24 4.06 Negative
PCC 6 -39 0 20 4.04 Positive
Left caudate -18 -21 -15 21 3.83 Positive
PCC Cerebellum -3 51 -40 42 469 Negative
Right medial frontal »
6 54 M 15  4.79 Positive
gyrus
Left middle temporal
62 -20 -3 30 394 Positive
gyrus
Right middle
57 -33 2 31  3.57 Positive
temporal gyrus
Left thalamus 25 13 10 20 433 Positive
Medial OFC  Left caudate -13 21 0 16 3.96 Positive
Right caudate -13 21 A1 15 4.83  Positive
Left ACC 4 31 -5 10 486 Positive
Left ACC Left caudate 6 36 3 27 529 Positive
Right ACC 5 41 3 46 5.33  Positive
Medial OFC 2 51 -7 15 523 Positive
Left IFG Left putamen 24 12 12 45 486 Positive
Left caudate 24 12 12 30 4.82 Positive
Cerebellum 33 -54 -51 30 3.86 Negative
OCD patients < Healthy controls
Medial OFC  Left lateral OFC 23 65 -3 15 -4.84 Positive
Right lateral OFC 40 60 -3 40 -4.71 Positive
Left inferior temporal
45 5 -34 66 -5.51 Positive
gyrus
Right inferior
49 -12 -36 55 -5.36 Positive
temporal gyrus
Left angular -42 -81 30 67 -476 Positive
Right inferior »
Left ACC 45 -15 -36 33 -4.36 Positive
temporal gyrus
Left angular 54 -66 30 15 -3.52 Positive
Cerebellum 5 -39 -18 13 -5.11 Negative
Left superior
Left IFG -42 9 -18 40 -4.72 Both

temporal gyrus

ROI, region of interest; OCD, obsessive-compulsive disorder; OFC, orbitofrontal
cortex; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; IFG,
inferior frontal gyrus. (p<0.05, corrected with Alphasim). * Direction of effects in
each region: Group differences were driven by differences in positive connectivity
in OCD and controls (Positive), negative connectivity in OCD and controls
(Negative), or negative connectivity in OCD and positive connectivity in controls
(Both).

doi: 10.1371/journal.pone.0083931.t002
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p<0.001; right, r = 0.64, p<0.001) and right putamen (r = 0.52,
p = 0.002). When the seed was located in the medial OFC,
significant positive correlations were observed between the
total Y-BOCS scores and the strength of functional connectivity
in the bilateral caudate (left, r = 0.54, p = 0.001; right, r = 0.65,
p<0.001; Figure 3).

Reproducibility of Our Findings

We found that our main results were reproducible after
considering the effects of without global signal removal (Figure
S1 and S2) and gray matter alteration (Figure S3). Without
regressing the global signal out, we observed that the OCD
groups showed functional connectivity alterations in the CSTC
circuits and default mode network (Figure S2), which was
consistent with those with global signal removal. However, it
was noted that without global signal removal, we found more
widespread functional connectivity alterations in the CSTC
circuits, DMN and some other regions, including the cerebellum
and temporal cortex. It indicates that the global signal might be
physiologically meaningful. In addition, after taking gray matter
volume as extra covariates, the functional connectivity group
difference exhibited highly similar spatial patterns with those
without gray matter volume correcting (Figure S3). This
indicates that functional connectivity alterations observed in the
OCD patients can be only partly explained by structural deficits.

Discussion

The present study demonstrated brain gray matter
abnormalities and network alterations in treatment-naive OCD
patients by combining structural MRI and resting-state fMRI
techniques. Patients with OCD showed brain gray matter
abnormalities primarily in the CSTC circuits and DMN (i.e.,
medial OFC, left ACC, left caudate, left thalamus, PCC, and left
inferior frontal gyrus). Moreover, by using the above
morphologic deficits areas as seed regions, functional
connectivity analysis revealed abnormal functional integration
in the CSTC circuits and default mode network in OCD
patients. Subsequent correlation analyses revealed that
morphologic deficits in the left thalamus and increased
functional connectivity within the cortical-striatum-thalamic
circuits positively correlated with the total Y-BOCS score in
patients with OCD, providing a link between CSTC circuits
connectivity and OCD clinical symptom severity.

The voxel-based morphometric analysis

In recent years, many neuroimaging studies have explored
the pathophysiology of OCD. These studies have contributed
greatly to the development of neurocircuitry models of OCD,
which emphasize the dysfunction of CSTC circuits in OCD
patients [11,24,26,27]. The CSTC circuits have extensive
connectivity to numerous cortical and subcortical regions, and
the dysregulation of these connectivities within CSTC circuits
are considered to be associated with OCD patients’ impaired
executive performance [31], inability to inhibit cognitions and
behaviors [32], and enhanced error monitoring processes
[33,34]. Although the findings of structural neuroimaging
studies have been relatively consistent with this view, findings
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Figure 3. Positive correlation between total Y-BOCS score and brain gray matter volume and functional connectivity
strength in abnormal areas. L, left; R, right; LOFC, lateral orbitofrontal cortex; MOFC, medial orbitofrontal cortex.

doi: 10.1371/journal.pone.0083931.g003

from these studies have been inconsistent [48-50].
Confounding associated with  psychotropic medication
exposure may have contributed to the inconsistency across
studies [18]. Using treatment-naive OCD patients, our studies
showed gray matter deficits in multiple regions of CSTC
circuits, including increased regional gray matter volumes in
the left thalamus and left caudate, as well as decreased
regional gray matter volumes in the medial OFC and left ACC.
Two recent meta-analyses of structural neuroimaging data
revealed that OCD patients did show a reduced volume in the
left ACC and OFC, as well as an increased volume in the
thalamus and left caudate, which is highly consistent with our
findings [9,51]. Among the CSTC circuits, some areas have
been determined as “key brain regions”, including OFC, ACC,
thalamus, and caudate nucleus. The OFC is believed to be
involved in the process of decision making [52,53] and in
inhibitory control of behavior [54,55]. In addition, the medial
OFC has also been consistently identified as a component of
DMN associated with the processing of risk and the inhibition of
emotional responses [56]. Previous functional neuroimaging
investigations found that the activity of OFC was increased in
OCD patients during resting states [57,58], and was decreased
after successful treatment [59], which suggests that this region
may be involved in mediating the expression of OCD clinical
symptoms. Several studies have proposed that OFC
dysfunction in OCD might contribute to an overestimation of the
risk that negative consequences may occur following a given
action [16,60], and the impaired inhibitory processes that may
be responsible for the repetitive behaviors observed in OCD
[5]. Recent functional MRI studies have shown that the
dysfunction of OFC may be also related to the disruption of
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reward learning in OCD patients [61]. The ACC is thought to be
important in action-monitoring functions, including executive
function, response selection, and conflict monitoring [34,62].
The aberrant structure in ACC found in this study may reflect
dysfunction of action monitoring system and result in the
abnormal symptoms of OCD such as the feelings of erroneous,
constant need for correction and incomplete performance. The
thalamus and caudate nucleus represent an important relay
structure that transmits and processes neuronal information
from the basal ganglia to cortical areas, and the dysfunction of
thalamus and caudate nucleus are assumed to lead to implicit
sequence learning and other important functions [63,64]. In
addition, we also found that increased gray matter volume in
the left thalamus was positively correlated with the total Y-
BOCS scores of OCD patients, which is consistent with the
findings of previous structural studies. Rotge et al. [65] reported
that the severity of obsessive or compulsive symptoms
correlated significantly with the effect sizes for the bilateral
thalamus. These results suggest that thalamic volume is
directly related to OCD severity. Taken together, our findings of
structural abnormalities in CSTC circuits in OCD patients are
consistent with those of a number of earlier structural,
neuropsychological and functional studies, and further confirm
that dysfunction of CSTC circuits may be at the root of the
pathogenesis of OCD.

In neuroimaging study on OCD, increasing attentions have
now been paid to the DMN. The DMN is a prominent large-
scale brain network characterized by a deactivation during
goal-directed cognitive performance and increased activity in
self-referential processing [66,67]. The function of the DMN has
been implicated in attending to external and internal stimuli
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[68], as well as self-referential and reflective activity that
specifically includes episodic memory retrieval, mental
imagery, inner speech, and planning of future events [69,70].
The DMN consists of the medial prefrontal cortex, PCC,
precuneus, inferior parietal lobules, parahippocampus, and
some other brain regions [71]. The current findings reveal that
OCD patients had aberrant gray matter volume in the medial
OFC and PCC. The medial OFC is a part of the medial
prefrontal cortex and is implicated in the processing of risk and
fear. It also plays a role in the inhibition of emotional
responses, and in the process of decision making [56]. Our
structural data also show that structural abnormalities in the
PCC play a role in the pathophysiology of OCD. Previous
neuroimaging studies indicated that regional glucose metabolic
rates and cerebral blood flow in the PCC could predict a
subsequent response to treatment with psychotropic
medication or cingulotomy [72,73]. There were several
functional MRI studies using PCC as a seed region which
showed DMN dysfunction among OCD patients [22,23].
However, until now there have been few reports of anatomic
deficits in the DMN regions of OCD patients. Utilizing a whole-
brain VBM analysis technique, the present study demonstrated
that the PCC exhibited increased gray matter volume in
treatment-naive OCD patients. Dysfunction of DMN during the
resting state is considered to be related to some OCD clinical
symptoms such as the inability to get rid of persistent intrusive
thoughts and images [22]. In that regard, our findings are
consistent with functional MRI results, suggesting that
anatomic deficits in the DMN regions (medial OFC and PCC)
share an important function in the genesis or mediation of OCD
symptoms.

The resting state functional connectivity analysis

There is increasing evidence that disrupted functional
connectivity in OCD is considered to be a potential systems-
level substrate of this disease. Functional MRI studies have
reported alterations of functional connectivity in OCD patients
and offered a series of meaningful information about the
pathogenesis of OCD. Harrison et al. [24] used dorsal and
ventral striatum (caudate and putamen) as the seed regions
and found increased functional connectivity in the ventral
striatum and OFC in OCD patients. Fitzgerald [27] assessed
the functional connectivity of striatal and thalamic seed regions
and showed altered functional connectivity within the CSTC
circuits. Stern et al. [22] used anterior insular and several
regions of DMN (PCC, medial frontal cortex, inferior parietal
lobe, and parahippocampus) as seed regions and reported
altered functional connectivity between the fronto-parietal
network and the DMN. However, the seed regions used in the
above functional studies were anatomic-integrated regions
predefined subjectively by toolbox, such as WFU Pickatlas. In
general, the pathogenesis of OCD is related to structural or
functional abnormalities in some regions of the brain. The seed
regions predefined subjectively in the above studies may not
be the core hubs in the pathogenesis of OCD. In this study we
used gray matter deficit regions based on our voxel-based
morphometric results as the seed regions. This approach of
functional connectivity analysis may have advantages over the
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above OCD functional connectivity studies based on a priori
defined seed regions and provided more reasonable and
persuasive findings of the pathogenesis of OCD.

In the present study, using gray matter deficit areas as seed
regions in a cohort of treatment-naive OCD patients, we found
altered connectivity mainly in the CSTC circuits, DMN, and
some other regions, including the cerebellum and temporal
cortex. Relative to healthy controls, patients with OCD showed
significantly increased connectivity within the CSTC circuits
that included the bilateral lateral OFC, medial OFC, ACC,
caudate, putamen thalamus, and left inferior frontal gyrus. We
speculate that the OCD patients perhaps need to enhance the
functional connectivity of these regions to compensate for their
difficulty processing the alternating stimulus context, consistent
with their phenomenological difficulty processing changing
environmental contingencies and their overall cognitive
inflexibility [74]. Most previous functional neuroimaging studies
consistently showed increased brain activity in the OFC,
caudate, and ACC in OCD patients compared to healthy
controls [75-77]. Attenuation of abnormal regional functional
activity within the CSTC circuits has been reported to be
related to successful treatment with psychotropic medication or
behavioral therapy in OCD patients [78-80]. Our findings,
revealing functional deficits in CSTC circuits and default mode
network, support and extend previous studies that have
demonstrated the involvement of CSTC circuits and default
mode network in the pathophysiology of OCD.

In the current study, we also revealed that the strength of
functional connectivity within CSTC circuits was positively
correlated with the total Y-BOCS scores of OCD patients,
including the bilateral caudate, bilateral lateral OFC, medial
OFC and right putamen. Previous neuroimaging studies
reported that the metabolism in OFC of patients with OCD
could predict the total Y-BOCS scores of patients with OCD
[69,79]. Harrison et al. [24] showed the functional connectivity
between ventral striatum and anterior OFC could be identified
as a potential biomarker of symptom severity in OCD patients.
Our earlier work also showed that the extent of spontaneous
neuronal activity of the bilateral lateral OFC was positively
correlated with the total Y-BOCS scores[15]. The current
studies further provide strong evidence that dysfunction of
CSTC circuits plays a very important role in the
pathophysiology of OCD. Our findings added an expanding
literature to the abnormality hypothesis of CSTC circuits by
combining voxel-based morphometric and resting-state
functional connectivity approach.

Several limitations should be considered when interpreting
the results of the present study. First, the data are cross-
sectional, therefore, the dynamic changes of brain structure
and function during the progression of OCD could not be
revealed by the current study. Future longitudinal studies can
reveal deeper insight into the pathophysiology of OCD.
Second, the OCD patients in the current study were
heterogeneous in major symptom dimensions, and several
structural and functional studies [17,26] showed that there are
distinct neural substrates under different major symptom
dimensions of OCD; however, we could not further divide the
patients into different subgroups due to a limited sample size.
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Third, our use of global regression is a limitation in that there is
continued controversy about the use of global signal regression
in the preprocessing of resting state fMRI data. In this study,
we regressed out the global signal to reduce the effects of the
respiration [43,81]. While reanalyzing the fMRI data without
whole-brain signal regression, our main findings of functional
connectivity alterations in CSTC circuits and DMN were still
observed. However, we also noticed that there were some
differences in the results between the two different
preprocessing choices. It indicates that the global signal might
be physiologically meaningful, which needs to be careful to
deal with in the future fMRI studies [82,83].

In conclusion, our findings provides evidence that
morphologic and functional deficits are seen in CSTC circuits
and default mode network in treatment-naive OCD patients. At
the same time, findings from the present study, along with
future studies clarifying the causes of the morphologic and
functional changes reported, may provide new insight into the
underlying pathophysiology of OCD.

Supporting Information

Figure S1. Within-group functional connectivity maps of
the healthy controls and OCD patients with and without
global signal regression. Maps threshold were set at p<0.05
with AlphaSim correction.
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