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Abstract

The folded paper-size illusion is as easy to demonstrate as it is powerful in generating insights into
perceptual processing: First take two A4 sheets of paper, one original sized, another halved by
folding, then compare them in terms of area size by centering the halved sheet on the center of the
original one! We perceive the larger sheet as far less than double (i.e., 100%) the size of the small
one, typically only being about two thirds larger—this illusion is preserved by rotating the inner
sheet and even by aligning it to one or two sides, but is dissolved by aligning both sheets to three
sides, here documented by 88 participants’ data. A potential explanation might be the general
incapability of accurately comparing more than one geometrical dimension at once—in everyday
life, we solve this perceptual-cognitive bottleneck by reducing the complexity of such a task via
aligning parts with same lengths.
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Visual illusions are fun, but they are also insightful (Carbon, 2014)—the great pedagogic
value behind such illusions is that most readers, while being amused, also experience
perceptual insights which assist the understanding of rather complex perceptual processing
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(see Gregory, 2009). Here, I present a very simple illusion which was inspired by a discussion
which I involuntarily witnessed in a German photographic shop back in the year 1989, when
photoprints in Germany were typically made in sizes of 9 x 13 cm (small purchase option) or
13 x 18cm (large option). The customer who was currently being served was complaining
about the incomprehensible billing policy of the shop—from his perspective, the large
purchase option was only marginally larger than the small option, but incomparably more
expensive. Indeed, when we looked at the specific setting, with the smaller sized print being
centered on the larger one, the larger photo print looked only marginally larger. Ignoring all
mathematically based means, the vendor followed this perceptual path, puzzling about the
pricing policy himself. After a while, I chimed into the conversation with a simple
mathematical argument: to compare the size of a 9 x 13cm and a 13 x 18cm print, just
“cancel the common 13 and you will get a doubled remaining side as 18 =2 x 9, so the
larger option is 100% larger than the smaller one, the size is doubled! Both attendees looked
through me, fully confused, a bit shocked and very doubtful . . . doubled? No way! They did
not find basic mathematical rules convincing at all. So I decided to change my persuasion
strategy (purely for practical reasons; I was late and wanted to be served quickly!) by visually
demonstrating the fractional arithmetic via a very subtle, but extremely insightful change of
the configuration: simply by rotating the smaller print by 90° and positioning it in such a way
that the large edge was aligned with the small edge of the large print, both attendees
exclaimed “wow!” in unison. Instantly, they had understood the size relationship of the
two prints—the larger print was really double the small one; exactly double!

Twenty-five years later, we can easily replicate the whole setting, simulating this aha!-
insight effect (inspect therefore particularly Figure 1(a) and (g)): Just take two sheets of paper
(e.g., A4d); one original-sized, one halved by folding, and compare them in terms of area size
by centering the halved sheet on the center of the original one! We perceive the larger sheet as
far less than double the size of the smaller one. For instance, by asking people to assess how
much bigger the larger sheet is compared with the smaller one (in percentage; thus, “100%"
would be the correct answer'); most people strongly underestimate the size of the larger sheet.
When I asked 102 participants (undergraduates of psychology, 76 female, mean age 20.8
years), two main results were retrieved: (a) although the entrance requirements for starting
the study of psychology are extremely high in Germany, 14 persons were not able to operate
with percentages in a meaningful way, an inability which is not at all uncommon (Siegler &
Lortie-Forgues, 2015) besides severe forms of problems with numbers and problems applying
mathematical routines such as dyscalculia (with a prevalence rate of about 6%, see Shalev,
Manor, Auerbach, & Gross-Tsur, 1998)—consequently these persons were excluded from
further analyses; and (b) remaining participants (88 undergraduates of psychology, 68 female,
mean age 20.9 years) showed the same aha-effect as was described in the photographic shop
after having had rotated the sheets. Before doing this, I confronted them with a series of
geometrical settings (see the top row of Figure 1 for the A4 settings), first consisting of an A4
and a halved A4 (i.e., AS) sheet, always starting with the setting shown on the very left side,
progressing to the version on the very right side, one after another. After this A4 series, the
same general settings were shown for the U.S.-letter size plus the halved U.S. letter (“‘half
letter”), see the bottom row of Figure 1. Participants assessed the configurations of the first
“A4” series very similarly to the second ““letter” series—exact values plus effect sizes for one-
sample z-tests against the true value of 100% can be retrieved from Figure 1.

The main result was that for all conditions but the last one of both series (Figure 1(f) and
(1)), we obtained medium-to-large effects (Cohen’s d’s>0.68; for A4-settings always
d’s > 0.93 indicating large effects through-out) in terms of deviations from the true value
of 100%, meaning that the area size of the large rectangle was strongly underestimated. This
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64.0% *** 66.6% ***  69.7% *** 70.5% ***  69.7% *** 99.8% n.s.
d=1.16 d=1.04 d=0.97 d=0.92 d=0.93 (d=0.01)

Series #2: US letter
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69.0% *** 70.5% ***  73.3% *** 74.8% ***  78.9% *** 96.2% n.s.
d=0.95 d=0.93 d=0.85 d=0.79 d=0.68 (d=0.13)

Figure 1. Overview of the employed experimental conditions, already in the experimental order which was
realized, starting with a centered version (a/g) and always ending with a fully aligned version (f/h)—the
participants were first exposed to the A4 paper size setting (Series #1), then to the U.S. letter size setting
(Series #2). Percentage values show the mean estimations of how much bigger the larger sheet is compared
with the smaller one (100% would be the correct answer, e.g., 64.0% in the case of Figure |(a) means that the
area of the bigger sheet is strongly underestimated, d = |.16); *** indicate p-values <.001. Effect sizes are
expressed as (Cohen’s) d’s for one-sample t-tests against 100%.

effect was strongest when the small rectangle was centered to the large one (Cohen’s
d’s>0.95)—and even rotating and aligning it to one single side did not dismiss this very
large perceptual effect. The only way of escaping this strong visual illusion was to align two
sides of both sheets at once in such a way that the small rectangle halved the large one
(Figure 1(f) and (1)). This provides some indication of how the effect emerges: We seem to
face a general incapability of accurately comparing more than one geometrical dimension at
once. Such effects are already known from other illusions and perceptual phenomena. For
instance, Piaget, Inhelder, and Szeminska (1960) already showed that (primary school)
children predominantly used just one single dimension (height) to estimate volume, the so-
called centration hypothesis—but see counter-evidence in later work where the integration
of all three dimensions have been documented (Ebersbach, 2009). That adults are also
susceptible to such volume illusions has been extensively documented, even for everyday-
life objects such as typical food and drink packages (Raghubir & Krishna, 1999)—again, it
seems that simple measures or single dimensions are predominantly used to estimate more
complex measures or to predict the outcomes of actions by analyzing two concurrent
movements (Hergovich, Grobl, & Carbon, 2011). Perceptual research, however, also offers
some alternative explanations for the revealed effect. First of all, the general tendency to
underestimate areas documented by psychophysical power functions with exponents below
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one (e.g., Ekman & Junge, 1961) cannot account for the effect seen here as the relationships
between the two physical areas remained constant at 2:1 across all conditions. Assimilation
theory (Pressey, 1967, 1971) appears to offer a more promising account. According to this
theory, in a group of objects the ones with the extreme values, for example, lengths, will be
misperceived toward the average values (the theory has many names in science, for example,
“regression to the mean™ in statistics or ‘“‘central tendency error’ in applied fields). In the
given case, people would adapt their length or area assessments toward the mean of the given
context lines or areas, respectively, so would underestimate the size of the bigger rectangular
area. However, assimilation theory will be quite ambiguous in predicting the specific outcome
for the cases of 45° rotated configurations depicted in Figure 1(¢) and (k), as it is not clear
how the edges will assimilate—with the smaller or longer ones? Another alternative
explanation arises by comparing the area of the smaller object and the non-covered,
residual of the larger rectangle. As is seen particularly clearly in the centered cases in
Figure 1(a) and (g), the residual area is quite narrow, in fact much narrower than the
smaller object. Indeed, we observe particularly large effects in Figure 1(a) and (b) as well
as in Figure 1(g) and (h). Further qualification of such an explanation, however, reveals that
the resulting underestimation of the summed up narrow areas is again an indication of
problems in integrating different dimensions; we could also reconcile it with assimilation
theory operating with areas instead of lengths.

In everyday life, we solve such perceptual-cognitive bottlenecks by reducing the
complexity of such a task via aligning parts with same lengths; actually, what Figure 1(f)
and (1) provides is a kind of geometrical fractional arithmetic as one side of the first object
fully cancels out one side of the second—to be compared—object. This reduces the degrees of
freedom to just one—now only one remaining side has to be compared with the other side,
and this works out brilliantly as shown by data provided in Figure 1 (for versions 1(f) and
(1)). If we follow such a strategy to reduce the complexity of this perceptual task, we are able
to validly estimate ‘‘area sizes”—in fact we are then only estimating unidimensional
information—if we do not follow such a strategy, we evidently and substantially fail. The
most important insight from the entire story seems to be: sometimes, insights from perceptual
illusions are much more striking than even mathematical proof, particularly if such illusions
show a high degree of Prdgnanz! Finally, the enjoyment of perceiving such an emerging
Gestalt and the insight it creates gives us the pleasure needed to continue in our path of
perceptual learning (Muth & Carbon, 2013).
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Note

1. In fact and wisely remarked by a reviewer, the metric might be suboptimal, mainly because we
usually think of percentages as parts of something bigger but the reverse less often. Nevertheless,
the effect seems to be extremely robust across viewing conditions, instructions, and types of
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measurement as the typical beholder of this illusion, plus a wide range of people attending public
talks when I demonstrated it and utilized different metrics, could authentically report.
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