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17.1 Introduction

The Earth is home to an estimated 10 million species, of which a large chunk belongs to marine environment. Marine
environment occupies a large section on the surface of earth which provides umpteen kinds of habitats that support marine
life, which primarily depend on the salt present in marine water. Marine environment is a home to a very wide diversity of
flora and fauna, which includes an array of genetically diverse coastline and under seawater plant species, animal species
and microbial species, their habitats, ecosystems, and supporting ecological processes. Marine habitats spread as coastline
or coastal habitats and as open sea habitats. Coastal habitats occupy merely 7% of the total ocean area, yet most marine life
exists in this zone. Open sea habitats extend into the deep ocean, beyond the continental shelf. Marine sea columns have
been classified into pelagic and demersal zones, away from ocean bottom while close to the open surface and those near the
bottom or on the bottom of the ocean, respectively. Demersal habitats are stationary, compared with pelagic habitats as
they depend on the ocean currents and tend to be transient and ephemeral. Marine habitats are shaped by the species that
inhabit them such as kelp, mangroves, and sea grasses, which are the base of ecosystems formed for other life.

Lot of natural medicinal therapy research today is directed toward marine products, derived from marine species, which
have proved to be a potent source of structurally widely diverse and yet highly bioactive antimicrobial secondary
metabolites. Particularly important are flavones and flavonols, terpenoids, alkaloids, peptides, carbohydrates, fatty acids,
polyketides, polysaccharides, phenolic compounds, and steroids. These are housed in the varied species of phylum
Porifera, algae including diatoms, Chlorophyta, Euglenophyta, Dinoflagellata, Chrysophyta, cyanobacteria, Rhodophyta,
and Phaeophyta, bacteria, fungi, and weeds, which have been exploited by mankind for their inherent indigenous
biological antimicrobial compounds, produced under the extreme stressful underwater conditions of temperature,
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atmospheric pressure, light, and nutrition. The present study aims at presenting a brief review of these bioactive marine
compounds possessing antimicrobial potency [1].

Some of these marine species live in a stressful habitat, under cold, lightless, and high-pressure conditions.
These factors have resulted in the development of unique metabolisms, which provide the opportunity to produce
metabolites that differ from the terrestrial ones, offering a wonderful resource for discovery of new compounds with
interesting biological activities, including antimicrobial and antiviral properties [2].

Significant oceanic resources, such as marine flora constituting halophytes, cyanobacteria, actinobacteria, bacteria,
microalgae, fungi, seaweeds, and mangroves, make up more than 90% of oceanic biomass. Taxonomically diverse, largely
productive, biologically active, and chemically unique, they are a storehouse of antimicrobial and prohuman health
promoting drugs. Marine flora is rich in medicinally potent chemicals such as sulfated polysaccharides and polyphenols,
which possess antioxidant, immunostimulatory, and antitumour pharmacological activities. They probably control
carcinogenesis by inducing apoptosis, activating macrophages and preventing oxidative damage of DNA. They may prove
as cheaper, safer, and potent medicinal remedies to challenge the dreadful human disease [3].

17.1.1 Bioactive compounds in marine plants with various molecular targets in bacteria

17.1.1.1 Flavonoids (Bioflavonoids)

Flavones and flavonols (flavusdLatin for yellow) are present in plant and fungi as secondary metabolites and are naturally
yellow in color. Chemical structure has a 15-carbon skeleton, with two phenyl rings (A and B) and one heterocyclic ring
(C); abbreviated as C6eC3eC6. They are anthoxanthins (flavones and flavonols), ketone-containing polyhydroxy
polyphenol compounds. More than 5000 natural flavonoids are studied from flora and fauna, classified according to their
chemical structure. Flavonoids have been shown to have a wide range of biological and pharmacological activities such as
antibacterial [4], antiviral, antifungal [5], antimicrobial, antidiarrheal activities [6], antiinflammatory [7], and antioxidant
[8]. Flavonoids show antibacterial potency, synergism with antibiotics along with suppression of virulence factors in
bacteria [9].

17.1.1.2 Terpenoids/Isoprenoids/modified terpenes

Terpenoids are organic chemicals derived from terpenes, which can also be termed as modified terpenes, in which either
methyl groups are removed or transferred or oxygen atoms are added. Simple terpenoids and unusual terpenoids are found
in ample amount in flora growing in marine environment. Isopentenyl pyrophosphate and dimethylallyl pyrophosphate
condense to produce geranyl pyrophosphate, which is a precursor to all terpenes and terpenoids.

Cytochrome P450s modify the structure of terpenes and this property is found to be due to enzymes terpenoid synthase
encoded by genes of 17 plant species genomes [10]. Sesterterpenoids, sesquiterpenoids, and meroterpenoids found to be
antimicrobial and antiviral are more commonly found in marine environments. Marine sesterterpenoids exhibiting
prominent antimicrobial and antiviral bioactivities occur in marine sponges [11]. Seven different types of sesterterpenes
sulfates were isolated from tropical sponge belonging to Dysidea sp., of which most were found strong isocitrate lyase
inhibitors showing potent antibacterial effect against Bacillus subtilis and Proteus vulgaris [12]. Hyrtiosal is a bioactive
sesterterpenoid isolated from Hyrtios erectus, which is a marine sponge inhibiting HIV integrase (IN), which binds to viral
DNA at a new binding site for inhibitor, observed to bind to HIV N-terminal domain at Ser17, Trp19, and Lys34, having
potential application in anti-HIV research [13]. Terpenes possess 1,4-benzoquinone supposed to be responsible for
antimicrobial and antiviral properties. Puupehanol, a novel sesquiterpene-dihydroquinone derivative, and chlor-
opuupehenone and puupehenone are responsible for antifungal activity in marine sponge Hyrtios sp. extract [14].
Puupehenone proved most inhibitory against Candida krusei and Cryptococcus neoformans. Nakijiquinones G-I from
Okinawan marine sponges, belonging to family Spongilidae, were found to be a sesquiterpenoid quinone with antimi-
crobial potency [15]. Novel sesquiterpenoid hydroquinones from Dysidea arenaria, a marine sponge, were found
moderately inhibitory for enzyme HIV reverse transcriptase (RT) [16]. Peyssonoic acids A and B, novel sesquiterpene
hydroquinones, with a novel carbon skeleton, isolated from crustose marine red alga Peyssonnelia sp [17] were found
inhibitory for bacterial pathogen Pseudoalteromonas bacteriolytica in marine algae and Lindra thalassiae, a fungal
pathogen of marine algae.

Sesquiterpenoid hydroquinones such as tiomanene and acetylmajapolene A and B isolated from Malaysian Laurencia sp.
showed antimicrobial activity probably because of incorporation of halogens occasionally [18]. 10-Hydroxykahukuene B,
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a brominated metabolite, isolated from the red marine alga Laurencia mariannensis [19] was found antimicrobial.
Meroterpenoids isolated from marine sponges were found to have antimicrobial activities. They include the following:

a) Fascioquinols series AeF are bioactive antimicrobial meroterpenes isolated from Southern Australian marine sponge
Fasciospongia sp. found in deepwater [20]. Fascioquinol A produces acid-mediated hydrolysis/cyclization products
fascioquinols B, C, and D. Fascioquinol A and B exhibited antibacterial potency against Gram-positive organisms,
especially Staphylococcus aureus and Bacillus subtilis.

b) Meroterpenes, alisiaquinones A-C, and alisiaquinol isolated from deepwater sponge New Caledonian [21] showed
activity against two enzymesdplasmodium kinase Pfnek-1 and protein farnesyltransferase, significant in control of
malaria. They were active against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains.
Marine algae Brazilian brown algae Dictyota pfaffi and Dictyota menstrualis showed the presence of diterpenes
8,10,18-trihydroxy-2,6-dolabelladiene and (6R)-6-hydroxydichotoma-4,14-diene-1,17-dial , which are found to have
antiviral potency. Diterpenes 8,10,18-trihydroxy-2,6-dolabelladiene and (6R)-6-hydroxydichotoma-4,14-diene-1,17-
dial inhibited replication of Herpes Simplex type-1 (HSV-1) in Vero cells. Marine Brazilian brown algae Dictyota pfaffi
and Dictyota menstrualis possessed dolabellane diterpene dolabelladienetriol, which is a noncompetitive inhibitor of
enzyme HIV RT [22]. Marine brown alga Sargassum macrocarpum methanol extract showed the presence of diterpene
sargafuran, which proved bactericidal against Propionibacterium acnes. Marine antibacterial diterpenes, dehydroxy-
chlorofusarielin B, a polyoxygenated decalin derivative from Aspergillus sp., exhibited antieS. aureus and methicillin-
and multidrug-resistant S. aureus activities [23].

17.1.1.3 Alkaloids

Alkaloids are a vast group of heterogenous natural nitrogenous metabolites, thickly interwoven with human affairs.
Morphine takes the credit of being the first alkaloid, isolated from opium poppy Papaver somniferum, in 1804, by Friedrich
Sertürner, a German chemist [24]. Alkaloids are bitter, natural, organic compounds with basic structure containing nitrogen
atoms along with carbon, hydrogen, oxygen, sulfur, sometimes chlorine, bromine, and phosphorus. Alkaloids may include
weakly acidic [25] or neutral [26] or few synthetic compounds, similar in structures [27]. Alkaloids are produced by pro-
and eukaryotes and are known to have antimalarial-like quinine and antibacterial-like chelerythrine [28] activities.

Marine macroalgae are rich sources of alkaloids, though few marine alkaloids of algal origin like those using
phenylethylamine as precursors have been extracted from plants of terrestrial origin. Halogenated alkaloids from green
algae (marine specific) and indole derivatives from red algae are specific. Algae of marine origin possess 44 types of
alkaloids, 41 indole, 1 naphthyridine, and 1 phenylethylamine derivatives. Halogenated ones possess 25 bromine, 7
chlorine, and 5 sulfur components [29].

Marine fauna is a rich source of alkaloids, rather unique chemicals that inhibits enzyme enoyl-ACP reductase, a
clinically relevant enzyme target from the type II fatty acid pathway of several pathogenic microorganisms. Several
compounds related to bromopyrrole alkaloids have also been isolated from marine bacteria. A strain of marine Strepto-
myces is known to have A and B marinopyrroles, which are axially chiral and densely halogenated metabolites possessing
an uncommon bispyrrole structure [30], significant because of their potent antibiotic properties against MRSA or
methicillin-resistant S. aureus. A, B, C.

Marine sponges are very potent reservoirs of antimicrobially active natural sources of nitrogen-containing heterocyclic
alkaloids like 1H-benzo [de] [1,6]-naphthyridine. Bromotyrosine alkaloids ceratinadins from Okinawan marine sponge
belonging to Pseudoceratina sp., show N-imidazolyl-quinolinone moiety and antifungal potency [31]. A and B pseudo-
ceratins, two bicyclic bromotyrosine-derived metabolites from Pseudoceratina purpurea [32], showed significant anti
Candida albicans fungal activity. Two pyrroloiminoquinone alkaloids of class discorhabdin from sponge Sceptrella sp.
from Gageodo, Korea [33] showed antibacterial potency, especially against enzyme sortase A, with a key role in anchoring
of cell wall protein responsible for S. aureus virulence. 19-oxofasciospongine A and fasciospongine C (sulfated
sesterterpene alkaloids) and 25-hydroxyhalisulfate 9 (sesterterpene sulfate), found recently and known sesterterpenes
sulfates halisulphates 7 and 9, have been extracted from marine sponge Fasciospongia sp. organic extract [34], showed
strong inhibitory hyphae - formation efficiency against Streptomyces 85E. Chinese marine sponge Iotrochota baculifera
showed the presence of sulfated alkaloids baculiferins A-O and O-sulfated pyrrole alkaloids [35]. Of these, Baculiferins C,
E e H, KeN efficiently inhibited HIV IIIB, by binding to targets viral infectivity factor (Vif), cellular deoxycytidine
deaminase APOBEC3G and recombinant gp41, a trans-membrane protein. Caribbean sponge Monanchora unguifera
shows the presence of guanidine alkaloids which are polycyclic with significant antimicrobial and antiviral properties [36]
and batzelladine alkaloids like batzelladines K, L, M, N; 16 b-hydroxycrambescidin 359, ptilomycalin A, batzelladine C,
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crambescidine 800, and dehydrobatzelladine C with significant inhibitory activities against HIV and opportunistic
pathogens of Acquired Immuno Deficiency Syndrome (AIDS). Merobatzelladines A, B isolated from this marine sponge is
antibacterial [37]. Marine sponge Aaptos aaptos possesses alkaloid 4-methylaaptamine which shows inhibition against
HSV-1 replication and antiherpetic activity [38]. Four aaptamines from A. aaptos show inhibitory activity against enzyme
sortase A which is involved in S. aureus virulence and anchoring of cell wall protein [39]. Topsentin and hamacanthin are
antimicrobial bisindole alkaloids isolated from marine sponge Spongosorites sp [40]. Dysideanins A and B from marine
sponge Dysidea sp. are found to have antimicrobial potency [41]. 5-hydroxyindole-type alkaloids from Hyrtios sp.
Sponges from tropical regions exhibited inhibitory potency against isocitrate lyase in C. albicans [42]. A family of
alkaloids isonitrile-containing indole alkaloids, such as hapalindoles, have fused pentacyclic and hexacyclic carbon
skeletons from cyanobacteria, are contemplated for use in pharmaceuticals. Fischambiguines A and B, ambiguine P,
ambiguine Q nitrite, ambiguine G nitrite were isolated and identified from Fischerella ambigua [43]. Fischambiguine B
showed antieMycobacterium tuberculosis activity. Diketopiperazine alkaloids are marine antimicrobial alkaloids. A
marine halotolerant fungal strain - Alternaria raphani from sea salt fields showed the presence of cerebrosides,
alternarosides A, B, C, and diketopiperazine alkaloid, alternarosin A [44], which show weak antibacterial activity against
Escherichia coli, Bacillus subtilis and C. albicans. Caboxamycin produced by deep-sea Streptomyces sp. NTK937 showed
inhibitory activity against Gram-positive bacteria [45].

17.1.1.4 Peptides

Marine antimicrobial peptides are present in all living species and build up their defense mechanisms. They probably act as
humoral natural humoral defense in invertebrates, also termed as “natural antibiotics” [46]. Cyclodepsipeptides are marine
peptides found in sponges exhibiting antiviral and antimicrobial potencies [47]. Cyclic peptides family includes unique
N-terminal polyketide-derived molecules and diverse types of unusual amino acid residues.

Cyclic depsipeptides Papuamides from marine sponges have shown in vitro cytoprotective activity for HIV, preventing
entry of the virus. Antiviral cyclic depsipeptides - mirabamides A, B, C, D are isolated from sponge Siliquariaspongia
mirabilis [48], probably preventing HIV fusion. Mirabamides are composed of 4-chloromoproline in 1, 2, 3 positions,
b-methoxytyrosine 40-O-a-L-rhamnopyranoside (unusual glycosylated amino acid) in 1, 2, 4 positions and rare N-terminal
aliphatic hydroxy acid. Mirabamide A, C, D is found to inhibit HIV acting at entry stage of HIV. Mirabamides A, B, C
inhibit Bacillus subtilis and C. albicans. Alternaramide, a cyclic depsipeptide from the marine fungus Alternaria sp.
SF-5016 [49] exhibited weak anti S. aureus and anti Bacillus subtilis activity. Homophymine A, a cyclodepsipeptide from
marine sponge Homophymia sp [50]. showed anti - HIV cytoprotective potency. Homophymime A is composed of 11
amino acids, an amide-linked-3-hydroxy-2, 4, 6-trimethyloctanoic acid molecules; four Dextro, two Levo, one N-methyl
amino acids and four unusual amino acid residues. Callyaerins A, B, C, D, E, F and H are antiviral and antimicrobial
peptides from marine sponge Callyspongia aerizusa [51]. Theonellamides are bicyclic peptides from marine sponges
which show antifungal activities [52]. Aminolipopeptides, Trichoderins A, A1 and B, are marine antimicrobial peptides
from sponge - derived fungus of Trichoderma sp. They show antimycobacterial activity versus dormant and active marine
bacilli [53], especially against Mycobacterium tuberculosis, M. Smegmatis and M. bovis. Anthranilic acid and
dehydroamino acid units, sclerotides A and B, components of cyclic hexapeptides obtained from marine halotolerant
Aspergillus sclerotiorum PT06-1 [54] exhibited antibacterial and antifungal activities. Aspergillus sclerotiorum PT06-1
was found to contain cyclic tripeptides scleraotiotides A-K of aspochracin nature [55]. Sclerotiotides A, B, F, I showed
antifungal activity for C. albicans. Maribasins A and B cyclic lipopeptides, from marine Bacillus marinus B-9987 showed
broad-spectrum activity against phytopathogens [56]. Two antifungal lipopeptides on eof which is the rare 6-Abu fengycin
lipopeptides from marine Bacillus amyloliquefaciens SH-B10 [57] showed remarkable inhibitory potency against five
phyto-fungal pathogens, suggesting bio-control and sustainable agricultural practicese. Tauramamide, lipopeptide from
marine bacteria Brevibacillus laterosporus PNG276 [58] along with ethyl ester 3, showed selective inhibitory activity
against pathogenic species of Enterococcus. Thiopeptides and depsipeptides are marine bacterial antimicrobial peptides
found in Nocardiopsis sp. TP-1161 [59], possessing a unique aminoacetone group. Unnarmicine A and C, marine
depsipeptides from Photobacterium MBIC06485 [60] selectively killed two Pseudovibrio species, commonly existing in
marine environment. Hybrid forms of marine peptide polyketide-nonribosomal antimicrobial agents from Myxobacteria
have been isolated. One example is halophilic myxobacterium Paraliomyxa miuraensis, producing miuraenamides A and
B which are hybrid cyclic polyketide-peptide antimicrobial agents [61]. Two rare hybrid polyketide-nonribosomal linear
peptide antibiotics, Ariakemicins A and B found in marine gliding bacterium Rapidithrix species [62], are found to be
composed of two U-amino-(U-3)-methyl carboxylic acids with diene or triene units, threonine and d-isovanilloylbutyric
acidand inhibited particularly Gram-positive bacterial growth. Nonribosomal peptides from marine Brazilian
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cyanobacterial isolates are antimicrobial [63], while from Brevibacillus laterosporus Lh-1 exhibit antimicrobial activity for
fungi and Gram-positive and Gram-negative bacteria [64].

17.1.1.5 Carbohydrates

Carbohydrates are biomolecules present in abundance, in the form of cellulose and chitin, glycogen and starch acting as
great energy sources and cellular recognition molecules, at cell surface [65]. They are structurally complex with dynamic
properties, structural fluctuations, large diversity of units due to umpteen enantiomers, various glycosidic bonds and
modifications after polymerization. The diverse classes of carbohydrate classes consist of negatively charged neutral and
neutral saccharides of different lengths [66]. Marine carbohydrate compounds are chemically diverse with glycosidic
domains and exhibit various biological properties and functions which may help in their implementation in bioactive
products. Many are the known applications of substances obtained from marine species. Their activities include antiox-
idant, antiinflammatory, anticoagulant, antitumor, and antimicrobial potencies. This may utilize them for their nutritional
and therapeutic potential, though they are the most poorly explored but promising molecules. Many of them are being
clinically tried out for possible potential for antiviral therapies [67]. Their biological roles include significant pharmaco-
logical potencies like antiinflammatory [68], antiviral [69], cellular interactions [70], and pathogen recognition [71].

17.1.1.5.1 Neutral and acidic polysaccharides

a) Laminaran: Laminarans are marine glycans, brown algal polysaccharides existing in chains made up of 3-linked b-D-
glucose (Glc) residues with less than 10% of single b-D-Glc residues branches attached to C-6 of backbone Glc residues
[72], Type G with chains terminated by D-Glc residues, and Type M - with chains ending with D-mannitol (Man)
residues [73].

They show antiinflammatory activity [74]. Laminaran enhances release of few inflammation mediators, thus being
immunostimulatory and antiinflammatory [75]. Laminaran, a marine glycan inhibits both Gram-positive and
Gram-negative marine bacteria such as Vibrio parahaemolyticus, Listeria monocytogenes, and Salmonella typhimurium.
It prevents HIV virulence by decreasing its adsorption in human lymphocytes, reducing the efficiency of HIV enzyme
reverse transcriptase, thus preventing HIV replication and multiplication [76].

b) Alginic acid: It is a marine polysaccharide extracted from brown algae, with a broad spectrum of medicinal, food,
biotechnological, and industrial applications [77].

Brown algae Sargassum wightii species show alginic acid with antioxidant and antiinflammatory activities, reducing
many cyclooxygenase, lipoxygenase, and myeloperoxidase enzyme activities, C-reactive protein levels, rheumatoid factor
and ceruloplasmin along with lipid peroxidation reduction and enhanced enzyme activity [78]. The antioxidant activity of
alginic acid is because of its metal chelating capacity, scavenging of free radicals, reducing tissue ferric ions and enhancing
antimicrobial potency [79]. It controls Listeria monocytogenes growth, responsible for serious food infections [80].

17.1.1.5.2 Sulfated polysaccarides

a) Fucoidan: Fucoidan is found in Brown algae. It has a complex structure, with a backbone of alternating a-L-Fuc
residues with 3 - and 4 - glycosidic linkages or 3-linked a-L-fucose (Fuc), which case can be replaced by acetyl groups
or sulfate groups or Fuc or glycosyl unit side chains [81], with monosaccharides like Glc, Galactose (Gal), Xylose,
Mannose [82].

Biological activities of Fucoidan are because of its polysaccharide nature, consisting of 3-linked a-L-Fuc units [83].
Fuc units in Fucoidan backbone can occur in a-1, 2 linkage, in addition to a-1, 3, a-1, 4 bonds [84]. Fucoidan has a wide
spectrum of applications with reference to its biomedical features [85]. Fucoidan shows antiinflammatory effects, selection
inhibition, complement inhibition and enzyme inhibitory activities because of its pleiotropic properties [86]. Three brown
algae Sargassum polycystum, Sargassum mcclurei, Turbinara ornate Fucoidan has shown anti-HIV potency, probably due
to blocking of first HIV entry steps in target cells [87]. Alga Padina tetrastromatica synthesizes silver nanoparticles
(AgNPs) with the help of fucoidan as a coating material [88], which probably increases activity against antibiotic resistant
bacterial strains. Antibiotics along with fucoidan in nanoparticles show synergistic effect.

b) Carrageenan/Agaran: Carrageenans are extracted from red seaweeds. They are sulfated galactans, made up of linear
chains of alternating A units and B units (4-linked a-D-Gal or a-D-3, 6-anhydrogalactose (AnGal) and 3-linked b-D-
Gal), forming repeating disaccharide building units [89].
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Commercially used carrageenans are kappa (k), iota (i) and lambda (l), alias carrageenan 4-sulfate (DA-G4S),
carrageenan 2,4-disulfate (DA2S-G4S) and carrageenan 2,6,2-trisulfate (D2S,6S-G2S), respectively (IUPAC) and
carrageenans ѵ and m which ar biological precursors of i- and k-carrageenans [90] (Campo et al.), which show emulsifying,
gelling, thickening, stabilizing characteristics which offer protective effects for food [91], pharmaceutical and cosmetic
products [92]. Oligosaccharides derived from Carrageenan show scavenging activity for hydroxyl radicals, DPPH radicals
and reducing power [93]. l and i carrageenans show strong inhibitory action against Dengue virus type 2 and 3 (DENV-2
and DENV-3) [94]. l-Carrageenan reduces the infectivity of Bovine Herpes virus type 1 and Suid Herpes virus type 1
((BoHV-1 and SuHV-1) viruses. i-carrageenan inhibits Influenza A (H1N1) virus infection [95]. l-carrageenan
oligosaccharide (P32) particularly inhibits early post-adsorption replication of RABV strains, viral internalization and
fusion mediated by glycoproteins. P32 from l-carrageenan is a possible agent for developing anti-RABV drugs [96].

c) Sulfated Polymannuronate: SPM or Sulfated polymannuronate or sulfated polymannuroguluronate from brown algae
is a sulfated polysaccharide composed of 4-linked b-D-ManA, molecular weight 10,000 D with sulfation at C-2 or C-3,
another form propylene glycol mannuronate sulfate being used for medical purpose. SPM takes credit of being first
marine sulfated polysaccharide exhibiting anti-HIV property. Oligosaccharides derived from SPM interact with
gp120, targeting HIV [97]. SPM is known to bind specifically at CD4 on lymphocytes.

d) Glycosaminoglycans: GAGs or Glycosaminoglycans are heterogeneous linear sulfated glycans with repeating building
units of disaccharides UroA - uronic acid (glucuronic acid (GlcA) or iduronic acid (IdoA)) or Gal and hexosamine
(glucosamine or N-acetylgalactosamine or its substituted sulfated derivatives [98].

GAGs in animals include Heparin, heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), keratan
sulfate (KS) and hyaluronan (HA), with varying sulfation patterns and alternating monosaccharides. Even same class of
GAG of marine or terrestrial origin, has structural difference [99] because of sequence domains or occurrence in
extracellular matrix or on surface of cells, giving them diverse medicinal and biological and functions.

e) Fucosylated Chondroitin Sulfate: FCS or Fucosylated Chondroitin Sulfate, a marine GAG, in sea cucumber
(Echinodermata, Holothuroidea), is made up of CS backbone with branches made of a-L-Fuc units attached to C-3
of GlcA residues, lateral units showing different sulfation patterns [99].

It is found to be antiinflammatory [100] and that from Thelenota ananas, sea cucumber inhibits replication of many
strains of HIV, strongly binding recombinant HIV-1 gp120 protein, while not inhibiting reverse transcriptase [101].
FCS displays antiviral action against HIV [102].

17.1.1.5.3 N-acetylated sugars

Chitin and Chitosan: Chitin is present in organism’s exoskeletons like crustaceans and insects. It is biopolymer and found
abundance in marine environment, structurally made up of GlcNAc, GlcN units linked by b-1, 4 glycosidic bonds. GlcNAc
is strongly N-acetylated due to the presence of more than 70% of total monosaccharides, decreasing its water solubility.
Chitin has 4-linked N-acetyl Glucosamine (GlcNAc 2-acetamido-2-deoxy-D-b-glucose) units and partly glucosamine,
GlcN (2-amino-2-deoxy-b-D-glucose) units. In case of less than 50% GlcNAc content or DA - degree of N-acetylation, the
polymer is called Chitosan. Chitosan, a cationic polysaccharide, is made up of repeating units with chitin glycosidic
linkages, but less than 50% levels of GlcNAc. Their interactions and hydrophobicity depends on number and positions of
acetyl groups [103]. Due to non-toxicity, it can be biomedically applied for special functions like antipathogenic activity
[104], decided by its molecular weight, extent of deacetylation and substitution, pH, length of substituents and their
positions in GlcN units [103].

ChNP or Chitosan nanoparticles exhibit antifungal activity [105]. ChNP inhibits Pseudomonas aeruginosa, S. aureus,
E. coli, Klebsiella pneumonia, clinically important pathogens and antibiofilm potency [106].

17.1.1.5.4 Triterpene Glycosides

Triterpene Glycosides are amphiphilic with a sugar molecule (mono- or oligosaccharide) linked to a functional group
(terpene or flavonoid or other natural molecules) with a glycosidic bond [68]. They are highly diverse in nature.

Marine Glycosides have been observed in starfish [107], sea cucumber [108], algae [109], sponge [110] and corals
[111].

Melophlus sponge shows the presence of a tetramic acid glycoside - Aurantoside K with wide spectrum antifungal
action against C. albicans strains, yeast Cryptococcus neoformans, Aspergillus niger, Penicillium sp., Rhizopus sporangia
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and Sordaria sp [112]. Variegatusides - Triterpene glycosides from Holothuriida, Stichopus variegatus sea cucumber
shows antifungal activity [113].

17.1.1.5.5 Glycoproteins

Glycoproteins are a big class of biomolecules, present in cell membranes. Glycoprotein glycoconjugates have a protein
backbone to which different monosaccharides are covalently attached. Glycoproteins contain N- linked sugar chains
(GlcNAc group at reducing end attached to amide group of asparagine residue of polypeptide backbone) and O-linked
sugar chains (GalNAc at reducing nd, attached to hydroxyl group of Serine (Ser) or Threonine (Thr) groups of polypeptide
backbone) [114].

Glycoproteins act as receptors capturing ligands into cells like transport proteins responsible for ingestion of nutrients,
structures mediating molecular recognition, molecular signaling and cellular interactions [99].

Mannose-specific Lectin from Green alga Halimeda renschii showed strong activity against influenza virus due to high
affinity binding to hemagglutinins on envelopes of viruses [115].

17.1.1.5.6 Glycolipids

Glycolipids, amphipathic in nature, are a diverse and large lipid group, containing a hydrophilic portion with carbohydrate
units, from which its prefix “glyco” is derived. The lipid portion is the hydrophobic tail, with aliphatic chains of fatty acids
[116]. Glycosphingolipids are a class of glycolipids, which constitute cell membranes in marine or terrestrial organisms
[117]. Their action is because of variations in sugar chains, based on which they are classified as cerebrosides, ceramide
oligohexosides, globosides and gangliosides.

Marine algae show three types of glycolipids; MGDG e Mono Galactosyl Di Glyceride, DGDG e Di Galactosyl Di
Glyceride and SQDG e Sulfono Quinovosyl Dipalmitoyl Glyceride, found in chloroplasts of algae. MGDG, DGDG are
abundant in thylakoid membrane playing a significant role in photosynthesis [118]. SGDGs from Sargassum vulgare
brown alga showed antiviral activity against HSV1 and V2 (Herpes Simplex Virus 1 and 2) viruses [119].

17.1.1.5.7 Iminosugar

These are natural aza or imino monosaccharides in which nitrogen replaces oxygen in ring structure. Nojirimycin,
a 5-amino-5-deoxyglucose antibiotic, was first to be isolated and characterized in 1960. Later, more than 25 analogues of
nojirimycin were studied in plant and microbes [120].

Iminosugars show nematicidal [121], antiviral [122], and insecticidal [123] activities because of their glycosidase
potency, interfering with processing of glycoprotein. 1-Deoxynojirimycin iminosugar with Glc inhibits synthesis of
infective viruses such as dengue (DENV), hepatitis B, hepatitis C, HIV, and influenza A viruses because of virus release
inhibition due to inhibition of endoplasmic reticulum a-glycosidases [124]. Batzellasides A, B, and C are extracted from
Batzella sp. sea sponge, consisting of an iminosugar nucleus with a long chain of alkyl substituent. Batzellasides differ in
the lengths of alkyl chains. Batzellasides A, B, and C show inhibition of Staphylococcus epidermidis [120].

17.1.1.6 Fatty acids

Marine fatty acids in marine organisms possess biological properties such as antiviral and antimicrobial potencies.
Paragrantia cf. waguensis, a calcareous sponge, possesses acetylenic fatty acid [125], exhibiting antimicrobial activity

against E. coli and S. aureus. Brominated unsaturated fatty acids from marine sponge showed antimicrobial fatty acids
[126]. Motualevic acids A, B, C, D, E, and F from marine sponge Siliquariaspongia sp. have shown inhibitory potency
toward S. aureus and MRSA [127]. Marine algae diatom Phaeodactylum tricornutum has shown antibacterial activity,
which was due to unique (6Z, 9Z, 12Z)-hexadecatrienoic acid, a polyunsaturated fatty acid, and (9Z)-hexadecenoic acid,
a monounsaturated fatty acid [128], both of which are inhibitory toward Gram-positive bacteria and marine pathogen
Gram-negative Listonella anguillarum (9Z)-hexadecenoic acid kills bacteria at great speed, showing potent activity against
multidrug-resistant strains of S. aureus. P. tricornutum produces eicosapentaenoic acid, an antibacterial fatty acid
inhibitory toward a range of Gram-positive and Gram-negative bacteria, as well as multidrug-resistant S. aureus [129].
Asperamides A and B, a sphingolipid and their corresponding glycosphingolipid possessing a 9-methyl-C20-sphingosine
moiety, from A. niger EN-13, an endophytic fungus from marine brown alga Colpomenia sinuosa [130], showed inhibitory
action against C. albicans. Marine fungi are of great importance as potential sources of agricultural pesticide leads such as
unsaturated fatty acid glycerol esters, asperxanthone and asperbiphenyl, extracted from marine fungus Aspergillus sp.
MF-93 [131], active against tobacco mosaic virus.
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17.1.1.7 Polyketides

Polyketides can be defined as natural secondary metabolites used in human therapy as antibiotics and antifungal agents.
Classical examples are nystatin, amphotericin, and rapamycin antibiotics. Polyketides such as polycyclic ether macrolides
and open-chain polyketides are produced and stored by marine sponges and show strong antiviral and antimicrobial
activities.

Marine sponges of the Xestospongia species show the presence of various polyketides of halenaquinone type, such as
orholquinone 8 and xestosaprol C methylacetal 7 [132]. Orholquinone 8 exhibited inhibition of enzymes farnesyl
transferase from yeast, human and P. falciparum. Marine macrolide, neopeltolide, from a deepwater sponge species of
Neopeltidae [133] showed antifungal activity for C. albicans. Marine 7-O-methylkoninginin D and trichodermaketones A,
B, C, D are antifungal polyketides from fungus Trichoderma koningii, exhibiting synergistic antifungal potency against C.
albicans [134]. Curvularin and a,b-dehydrocurvularin are marine polyketides from fungus Eupenicillium sp. in association
with sponge Axinella sp. [135]. Marine macrolides, (þ) brefeldin A, (þ) brefeldin C, and 7-oxobrefeldin A from
Penicillium sp. PSU-F44 [136] exhibited antimicrobial potency for Microsporum gypseum and MRSA.

Marine fungal Nigrospora sp. PSV-F18 and PSU-F5 showed the presence of nigrosporapyrones A, B, C, and D and
nigrospoxydons A, B, and C, which are antimicrobial macrolides [137].

17.1.1.8 Polysaccharides

Polysaccharides are structurally very diverse biological macromolecules because of presence of various sugars and their
derivatives such as uronic acid. In nature, each sugar is linked covalently to another sugar at different sites in the sugar ring.
Marine plants, animals, organisms, bacteria, and fungi are a source of a large diverse variety of polysaccharides [138],
some of which exhibit antiviral and antimicrobial actions.

Edible Nostoc flagelliforme, a species of blue-green alga, shows nostoflan, an acidic polysaccharide which shows
antiviral activity (anti-HSV-1) [139], inhibiting virus binding. Lectin is a marine polysaccharide from Oscillatoria agardhii
NIES-204, a filamentous cyanobacterium inhibiting HIV replication in MT-4 cells [140]. Chitinase is a marine antifungal
polysaccharide from marine South China sea sponge inhibiting Streptomyces sp. DA11. Craniella australiensis exhibited
antifungal defense activity for C. albicans and A. niger [141], which may be because of its microbial symbiont exhibiting
chitinase activity bringing about chitin degradation.

17.1.1.9 Phenolic compounds

The vastest group of secondary metabolites in plants is the group of phenols. It is naturally spread wide and present in
natural compounds with aromatic moieties. They have a wide range of structures from simple one aromatic ring structure to
extremely complex polymeric compounds. Commonly, in marine regions, phenolic compounds with halogens as moieties
occur in high frequency. Marine sponges exhibit phenolic compounds, which are studied commonly for antimicrobial
activity.

Sponge Dysidea granulosa showed presence of 2-(20,40-dibromophenoxy)-4,6-dibromophenol exhibiting wide
spectrum and strong antibacterial activity potency especially toward MRSA and sensitive S. aureus, vancomycin-resistant
and -sensitive Bacillus and Enterococci species [142].

Presence of bromines and phenolic hydroxyl groups at C-2 and C-5 is essential for antimicrobial activity. Bromophenol
compounds are present in marine red algae and bacteria show antimicrobial activity. Crude extracts from marine algae
Odonthalia corymbifera exhibited antimicrobial activity [143]. Natural bromophenol compound 2, 20, 3, 3’-tetrabromo-4,
40, 5, 50-tetrahydroxydiphenylmethane was most active against Trichophyton mentagrophytes, Trichophyton rubrum,
Aspergillus fumigates, and C. albicans. Marine Pseudoalteromonas extract of CMMED 290 species, 4, 40, 6-tribromo-2, 2’-
biphenol exhibited significant antimicrobial action against MRSA [144]. Marine bacterium Pseudoalteromonas phenolica
O-BC30T produces 2, 20, 3-tribromobiphenyl-4, 40-dicarboxylic acid [145], exhibits antieMRSA, Bacillus subtilis,
Enterococcus serolicida, but not for Gram-positive bacteria or fungi. Other antimicrobial bromophenyl compounds have
also been isolated from the marine bacterium Pseudoalteromonas haloplanktis INH strain [146].

Anthraquinones, coumarins, and flavonoids from marine extracts show antimicrobial action. Aspergillus versicolor
derived from Petrosia species marine sponge shows five bioactive anthraquinones which exhibited antimicrobial activity
for Gram-positive bacteria [147]. Marine-derived 05F16 Aspergillus sp. possesses hexahydroanthrones, tetrahydrobos-
trycin, and 1-deoxytetrahydrobostrycin [148] showing antibacterial potency for E. coli and S. aureus. Anthraquinone
monodictyoquinone A (1,8-dihydroxy-2-methoxy-6-methylanthraquinone) is antimicrobial found in sea urchin fungus
Monodictys sp. [149]. Anthraquinone monodictyoquinone A was found in marine ALAA 2000 Nocardia sp., from marine
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red alga Laurencia spectabilis and exhibited antimicrobial action toward Gram-positive, Gram-negative bacteria, and
fungi. 7-Methylcoumarin and flavonoids, rhamnazin, and cirsimaritin are antimicrobial phenolic compounds from marine
Streptomyces [150]. Derivatives of chroman-ammonificins A and B, from marine bacterium Thermovibrio ammonificans
present in hydrothermal vent are found to be antimicrobial [151].

Edible seaweed Ecklonia cava shows antimicrobial phlorotannins [152]. Marine fungus Zygosporium sp. KNC52
showed the presence of sulfoalkyl resorcinol with multidrug-resistant bacteria antimicrobial potency [153].

17.1.1.10 Steroids

Steroids are natural products which are glycosides in nature and marine or terrestrial in origin. Many glycosides exhibit
various biological activities including antimicrobial.

Marine steroidal glycosides show their presence in microalgae and invertebrates such as echinoderms, soft corals, and
sponges [154]. Euryspongia, a marine sponge from Palau, showed two new steroidal sulfates Eurysterols A and B [155]
with antifungal potency activity against wild-type and amphotericin B-resistant C. albicans strains. Geodisterol-3-O-sulfite
and 29-demethylgeodisterol-3-O-sulfite, two novel sulfated sterols, exhibited reversal of fluconazole resistance [156].
Marine endophytic fungus Colletotrichum sp. containing ring B aromatic steroids exhibited showed antimicrobial activity
against the fungus Microbotryum violaceum, E. coli, and Bacillus megaterium [157].

17.1.2 Antimicrobial drugs of marine origin under clinical trials

There are various marine originating chemical antimicrobial lead compounds which can be further explored for human
health issues. There are currently over 3000 new substances identified from marine organisms in the past three decades,
giving researchers a large pool of novel molecules from which to find new compounds to develop [158].

They have to be clinically tried out before being implemented for general prescriptions. This requires ample amounts of
compounds under trial to be isolated and extracted in pure forms from the source. Obtaining them from invertebrates in
sufficient amounts can prove difficult. There are various such compounds that are presently under clinical trials. Aqua
culture is an alternative but may not be viable in all cases. Microorganisms may be used as sustainable sources for
production of required compounds for production of intermediates in the first step of semisynthesis which can later produce
final compound of interest.

17.1.2.1 Antibacterial compounds under clinical trials

In the era of rapid emergence of antibiotic-resistant bacteria, marine sponge extracts have shown the best antimicrobial
potency against terrestrial bacteria [159]. When 101 arctic sponges were antimicrobially screened against opportunistic
infections causing bacteria, approximately 10% of them showed significant results, values of IC50 ranging from 0.2 mg/mL
to 5 mg/mL [160]. About 800 compounds with antibiotic properties have been isolated and identified from marine sponges
[161]. Of 31 sponges checked, 18 showed strong antimicrobial potency against Gram-positive and Gram-negative bacteria
and are being screened for a range of therapeutically significant substances [162]. Presently, various such antibacterial
compounds are under trials, at various stages.

Examples of antibacterial compounds under clinical trials include the following:

l Cribrostatin 6 is an alkaloid from Cribrochalina sp. being tried out against antibiotic-resistant strain of Streptococcus
pneumonia [163].

l Isojaspic acid, cacospongin D, and jaspaquinol are meroditerpenes from Cacospongia sp. tried out against
S. epidermidis showing an MIC of 20 mg/mL [164].

l Isoaaptamine is an alkaloid from A. aaptos inhibitory for S. aureus exhibiting an MIC of 3.7 mg/mL [39].
l Microcionin-1 is a terpenoid from Fasciospongia sp. inhibitory toward Micrococcus luteus showing an MIC of 6 mg/

mL [165].
l Pseudopterosins from soft corals are diterpene glycoside with eicosanoid metabolism under Phase II trial for wound

healing.

17.1.2.2 Antiviral compounds under clinical trials

No cure has yet been available for adenovirus serotype 5 (AdV-5) associated with respiratory infections [166] or
rotaviruses associated with severe gastroenteritis of animals and humans or diarrhea in immunocompromised patients,
which may prove fatal [167]. About 40 antiviral substances from marine species have been reported, half of which have
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shown prospects in treatment of HIV infection. On this background, marine sponges, sources of novel antivirals,
may prove to be good therapeutic agents [168]. Avarol inhibits HIV infection progression and increases humoral immune
response. Avarol in 0.3, 0.9 mM concentration inhibited 50%, 80% of viruses, respectively, released by infected cells [169].
Avarol derivatives, 60-hydroxyavarol and 30-hydroxyavarone, strongly inhibit HIV reverse transcriptase in HIV.
Avarol converts viral genomic RNA to proviral DNA and integrates it in host chromosomal DNA [170]. Various antiviral
marine metabolites are currently under clinical trial.

Examples of antiviral compounds under clinical trials are the following:

l 4-Methylaaptamine is an alkaloid from A. aaptos inhibitory toward HSV-1 [38].
l Papuamides AeD are cyclic depsipeptides from Theonella sp. acting against HIV-1 [171].
l Ara-A is a nucleoside from Cryptotethya crypta inhibitory toward HSV-1, HSV-2, and VZV [172].
l Avarol is a sesquiterpene hydroquinone from Dysidea avara acting against HIV-1, UAG suppressor glutamine tRNA

inhibitor [169].
l Haplosamates A and B are sulfated steroids from Xestospongia sp. alias Haplosclerida, antiviral (inhibitor of enzyme

HIV-1 integrase) in action [173].
l Dragmacidin F is an alkaloid from Halicortex sp. acting against HIV-1 [174].
l Hamigeran B, a phenolic macrolide from Hamigera tarangaensis has antiviraleantiherpes and antipolio virus potency

[175].
l Mycalamides AeB are nucleosides from Mycale sp. with anti-A59 coronavirus (HSV-1) action [176].
l Mirabamides A, C, and D are peptides from S. mirabilis with antiviral (HIV-1) potency [48].
l FDA-approved vidarabine (Ara-A), Vira-A�, is a nucleoside Ara-A from marine sponge C. crypta and is an arabinosyl

nucleoside, inhibiting synthesis of viral DNA [177].
l Azidothymidine (zidovudine), Ara-A, acyclovir, Ara-Cemodified semisynthetic arabinosyl nucleosides in use against

viruses [178].

17.1.2.3 Antifungal compounds under clinical trials

Invasive mycoses, an increasing resistant fungal infection in patients of AIDS, on immunodepressants, with blood cancers,
undergoing transplants [179], have proved fatal. Candida, Aspergillus, Cryptococcus, and other opportunistic fungi are
common culprits. Sponges belonging to Jaspis sp. have given Jaspamide cyclodepsipeptide, a 19-unit macrocyclic
depsipeptide, exhibiting in vitro antifungal potency against C. albicans [180].

Examples of antifungal compounds under clinical trials are the following:

l Jaspamide, a macrocyclic depsipeptide from Jaspis sp., has shown an MIC against C. albicans of 25 mg/mL [180].
l Eurysterols AeB are sterols from Euryspongia sp. inhibiting Amphotericin B-resistant C. albicans, with an MIC of

62.5 mg/mL and 15.6 mg/mL [155].
l Naamine D, an imidazole alkaloid, from Leucetta cf. chagosensis, bioactive against C. neoformans, with an MIC of

6.25 mg/mL [181].
l Mirabilin B is a tricyclic guanidine alkaloid, from M. unguifera, acting against C. neoformans, with an MIC of 7.0 mg/

mL [36].
l Hamacanthin A is an indole alkaloid, from Spongosorities sp., active against C. albicans, with an MIC of 6.25 mg/mL

[182].
l Macanthins AeB are indole alkaloids, from Spongosorities sp., active against C. albicans and C. neoformans, with

MIC of 1.6 mg/mL and 6.2 mg/mL, respectively [182].
l Agelasines and agelasimines are purine derivatives, from Agelas sp., bioactive against C. krusei, and MIC of 15.6 mg/

mL [183].

17.1.2.4 Antimalarial compounds under clinical trials

Plasmodium vivax, the predominant malarial parasite, has caused havoc by spreading malaria in vast areas of Asia and
America, while showing accelerating antibiotic resistance. A need for new antimalarial compounds led to antimicrobial
agents from marine sponges. Cymbastela hooperi has exhibited antimalarial potency against P. falciparum through
isonitriles, terpenoid isocyanates, and isothiocyanates [184]. Diacarnus megaspinorhabdosa, a marine sponge exhibited
antimalarial potency toward chloroquine-resistant and -sensitive P. falciparum through epidioxy-substituted
norsesterterpenes and norditerpene endoperoxides [185].
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Examples of antimalarial compounds under clinical trials are the following:

l Monamphilectine A, an antimalarial b-lactam obtained from Hymeniacidon sp., acting against chloroquine-resistant P.
falciparum W2, with an MIC of 0.6 mM [186].

l Manzamine A is an alkaloid obtained from Haliclona sp./Haplosclerida and C. hooperi/Halichondrida, Diacarnus
levii/Poecilosclerida, Toxoplasma gondii, Plasmodium berghei, P. falciparum, acting against chloroquine-resistant
P. falciparum W2 with an MIC of 4.5 ng/mL [185]).

l Kalihinol A, an isonitrile-containing kalihinane diterpenoid, from Acanthella sp./Halichondrida, with an MIC of
0.0005 mg/mL, against P. falciparum D6 clone [187].

l Diisocyanoadociane, a tetracyclic diterpene, from C. hooperi, acting against P. falciparum, with an MIC of 0.005 mg/
mL for D6 clone [188].

l Halichondramide is a macrolide, from P. falciparum, with an MIC of 0.002 mg/mL, against P. falciparum D6 clone
[184].

l Sigmosceptrellin B is a norsesterterpene acid, from Diacarnus erythraeanus, T. gondii, active against P. falciparum
D10, with an MIC of 1200 ng/mL [184].

l (E)-Oroidin is an alkaloid, from Agelas oroides, bioactive against P. falciparum, with an MIC of 0.30 mg/mL for D6
clone [189].

l Plakortin and dihydroplakortin are cycloperoxidases, from Plakortis simplex, acting against P. falciparum, D10 at
1263-1117 nM [190].

Manzamines are efficient antimalarials from a variety of sponges [191] and have exhibited inhibitory activity against
P. falciparum (D6 clone), MIC 0.0045 mg/mL [191], by increasing host immunity [187].

17.1.3 Future outlook and conclusion

Natural products have always played a significant role in drug discovery for treating human diseases. Drugs developed
from marine sources have ignited a hope to offer novel mechanisms to fight some of the most debilitating diseases such as
HIV, osteoporosis, Alzheimer’s, and cancer. Although costs required for developing drugs from marine sources have been
exorbitant, development of new technology and better understanding of marine species and associated ecosystem has
helped us in developing research in the area of drug development. Bright future awaits pharmaceutical industry for
developing new drugs from antimicrobial lead compounds obtained from marine sources. The progress is slow, but surely
drug manufacturing units have started showing interest in implementing natural marine sources for drug developing. A
future trend is developing in research today, positively toward use of marine natural resources. There are ample of marine
lead compounds, more than imagined [192].

Metabolites derived from marine species such as sponges span wide with respect to their chemical components such as
alkaloids, peptides, terpenoids, polyketides, and others, with a variety of antimicrobial and other properties [187].
When these compounds are prepared for the market, they need to have a known chemistry, enhanced bioavailability,
and minimized side effects. Manzamines are metabolites from marine sponges that can be potentially used as drugs against
tuberculosis [193], HIV [169], malaria [184], and others. Ara-A, ara-C, and acyclovir are a few products originating from
marine sponges in clinical use [169].

It has been observed that medicines derived from various metabolites and derivatives from marine species such as
sponges possess their efficiencies as medicines, based on their doses, qualitative, and quantitative effects of inhibition and
their other effects. Besides, they are present in the marine species in very low quantities, which presents difficulties in their
being reproduced in ample amounts in the market. Avarol, obtained from sponge D. avara sponge, is an efficient drug for
treatment of HIV [169], which could not be available for studies further than preclinical ones because of its low availability
for assessment [194]. Another advantage of marine species metabolites is that their carbon skeletons can be used as carriers
or vehicles for generating efficient derivatives. Mankind now faces a challenge of preparing the miracle drugs in large
quantities, transforming bioactive metabolites to medicines by selecting proper marine species, isolating the correct
metabolite, with its precise action and its target point toward a disease.

Although marine environment has umpteen numbers of species which are natural resources for antimicrobial
compounds, very few of these secondary metabolites have reached the stage of being approved as drugs, while some
metabolites and their derivatives are still under clinical trials or preclinical trials at various stages.

These trials require a large amount of these metabolites, which has lead to novel ideas like chemically modifying
marine natural products or MNPs to transform them into "druglike" products, farming organisms in natural environment,
and culturing organisms artificially [195]. Preclinical trials need very systematic, detailed pharmacokinetic investigation to
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tailor MNPs, a challenging task. Antimicrobial efficiency of marine metabolites has shown a promising future for
development as human therapeutic agents. A revolution has been set up because of the technique of genome mining
for natural product discovery. Technology is being targeted optimally for drug research, its approvals and its launches, for
the betterment of human life. This chapter has attempted to give a sketch of antimicrobial lead compounds from marine
species, a step forward toward the development of medicinal and biological agents from marine natural sources. This may
be an endeavor toward exploring an untrodden path in drug discovery, from marine environment, for the global health
benefits of mankind.
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