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Abstract: 3D Single-breath Chemical Shift Imaging (3D-SBCSI) is a hybrid MR-spectroscopic imaging
modality that uses hyperpolarized xenon-129 gas (Xe-129) to differentiate lung diseases by probing
functional characteristics. This study tests the efficacy of 3D-SBCSI in differentiating physiology
among pulmonary diseases. A total of 45 subjects—16 healthy, 11 idiopathic pulmonary fibrosis (IPF),
13 cystic fibrosis (CF), and 5 chronic obstructive pulmonary disease (COPD)—were given 1/3 forced
vital capacity (FVC) of hyperpolarized Xe-129, inhaled for a ~7 s MRI acquisition. Proton, Xe-129
ventilation, and 3D-SBCSI images were acquired with separate breath-holds using a radiofrequency
chest coil tuned to Xe-129. The Xe-129 spectrum was analyzed in each lung voxel for ratios of
spectroscopic peaks, chemical shifts, and T2* relaxation. CF and COPD subjects had significantly more
ventilation defects than IPF and healthy subjects, which correlated with FEV1 predicted (R = −0.74).
FEV1 predicted correlated well with RBC/Gas ratio (R = 0.67). COPD and IPF had significantly
higher Tissue/RBC ratios than other subjects, longer RBC T2* relaxation times, and greater RBC
chemical shifts. CF subjects had more ventilation defects than healthy subjects, elevated Tissue/RBC
ratio, shorter Tissue T2* relaxation, and greater RBC chemical shift. 3D-SBCSI may be helpful in the
detection and characterization of pulmonary disease, following treatment efficacy, and predicting
disease outcomes.
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1. Introduction

Nearly 500 million people throughout the world are directly affected by respiratory
diseases [1]. Different respiratory diseases are classified by either the organs affected or
based on whether they are obstructive or restrictive. In obstructive pulmonary diseases,
lung defects persistently hinder airflow into and out of the lungs. Two common obstructive
lung diseases include chronic obstructive pulmonary disease (COPD) and cystic fibrosis
(CF). In restrictive lung diseases, there is a reduction in lung volume, either because of
changes in the lung parenchyma or alterations leading to difficulty expanding the chest
wall during inhalation. One example of a common restrictive lung disease is idiopathic
pulmonary fibrosis (IPF).

COPD, CF, and IPF are all progressive in nature. COPD is a tissue disease associated
with genetic risk factors that is primarily caused by long-term exposure to substances such
as cigarette smoke or air pollution [2]. Meanwhile, CF is a genetic disease characterized
by airway obstruction that results from abnormally thick mucus [3]. IPF is a chronic, pro-
gressive interstitial lung disease in which there is enhanced extracellular matrix deposition.
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In most cases, IPF is triggered by injury or long-term exposure to hazardous chemicals
causing lung tissue to become scarred and thickened [4]. This reduces lung volume and
restricts the diffusion capacity for carbon dioxide (DLCO) as well as the amount of oxygen
that can pass into the blood [5].

As progressive diseases, COPD, CF, and IPF require persistent monitoring to ensure
patients are receiving the appropriate treatment as their lungs change with time. Addition-
ally, these diseases present with many phenotypes and are often accompanied by comorbid
diseases [6–8]. Due to the widely varying nature of COPD, CF, and IPF and the tendency for
comorbid disease, it is important to have a single method that can screen subjects, monitor
disease progression, and characterize the influence of co-morbidities. Currently, computed
tomography (CT) is used to image patients’ lungs and determine disease severity. While CT
is high resolution and can provide visualization of anatomical changes and defects in the
lungs, it exposes patients to radiation and does not provide direct information about func-
tionality such as ventilation or gas exchange. Since the lungs are one of the most sensitive
organs in the body to radiation, repetitive scans are damaging and increase patients’ risk
of developing radiation-induced cancer [9,10]. Spirometry, another common pulmonary
assessment, only provides information about global pulmonary function. Thus, it is critical
to develop new imaging techniques for COPD, CF, and IPF patients that have reduced risks
and provide more detailed regional information.

To address this, we have developed a non-invasive, nonradioactive imaging method
which uses 3D Single-breath Chemical Shift Imaging (3D-SBCSI) and hyperpolarized Xe-
129 [11–13]. When inhaled, hyperpolarized Xe-129 has the property of dissolving into the
lung tissue and from there binds to the red-blood-cells (RBC). Because of this property,
it can be used has a probe for each phase of gas dissolution in the lung (airway, tissue,
and blood) because it has three distinct corresponding spectral peaks [14,15]. By detecting
and measuring these peaks, we can exploit xenon’s natural sensitivity to its chemical
environment and assess the lungs based on these chemical shifts [16,17]. In a rat model,
researchers showed that 3D-MRI with hyperpolarized Xe-129 is sensitive to impairments
in gas exchange caused by fibrotic thickening [18]. When translated to human studies,
hyperpolarized Xe-129 has been used to assess regional ventilation and gas exchange
in lung tissue and RBCs of smokers and cystic fibrosis patients [19–21]. Importantly,
3D-SBCSI patients are not subjected to radiation, allowing patients to have many scans
without the risk of radiation-induced complications [22]. Xe-129 is also abundant in the
atmosphere, not very expensive, and has been shown to be very sensitive to ventilation
abnormalities [22–24]. Other methods to probe Xe-129 gas exchange, like the 1-point Dixon,
2-point Dixon and 3-point Dixon acquisitions may offer greater speed and resolution,
but 3D-SBCSI generates the full spectrum of peaks per voxel and thus provides much
more information [25,26]. In this study, we explore 3D-SBCSI with hyperpolarized Xe-129
in healthy, CF, IPF, and COPD subjects to elucidate differences among these pulmonary
disease types and to correlate these findings with spirometry.

2. Materials and Methods

A total of 45 subjects participated in this study: 16 healthy (28 ± 9.8 years old), 11 with
IPF (66 ± 11.6 years old), 13 with CF (24 ± 8.7 years old), and 5 with COPD (64 ± 11.8 years
old). Within the CF population, nine were categorized as mild (FEV1% > 60) and four as
moderate (FEV1% < 60). Each subject was imaged in a 1.5T MR scanner (Avanto, Siemens
Medical Solutions, Malvern, PA, USA), using a commercial RF coil (Clinical MR Solutions,
Brookfield, WI, USA) tuned to the Xe-129 frequency and underwent spirometry testing
before the MRI. Written informed consent was obtained from all subjects, and the study was
performed under a protocol approved by the Institutional Review Board at the University
of Virginia. Healthy and CF subjects were imaged twice for repeatability.
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All imaging was performed using a transmit/receive RF chest coil tuned to the fre-
quency of Xe-129. The subjects laid supine on the MR table and inhaled a volume of gas
mixture equal to 1/3 of their FVC, with a total maximum volume capped at 1000 mL of
isotopically enriched (83%) Xe-129 mixed with nitrogen. Xe-129 was polarized to ~35%
using a commercial polarizer (Polarean, Durham, NC, USA). Proton, ventilation, and 3D-
SBCSI images were acquired for each subject. Subjects held their breath for less than 10 s
during the imaging sequence, which proton (2D-GRE sequence with spiral trajectories;
TA < 2 s) and either 3D-SBCSI (TA ~7 s) or ventilation images (TA ~2.7 s) were acquired.
This allowed each 3D-SBCSI or ventilation image slice to be matched with a proton image
from the same breath-hold. MR imaging sequence parameters for the 3D-SBCSI were:
TR 13 ms; TE 1.0 ms; FA 25◦ centered at 200 ppm of the gas frequency; vector size 512;
weighted phase-encoding; BW 50 kHz; minimum voxel size 6.5 × 6.5 mm2 and 6–8 slices
with 20–25 mm slice thickness. For ventilation acquisition we used a 2D-GRE sequence
with spiral trajectories and the following parameters: TR 11.4 ms; TE 1.19 ms; FA 20◦

centered at the gas frequency; 12 interleaves; total acquisition time for 17 slices was 2.7 s.
3D-SBCSI images were post-processed in MATLAB (Natick, MA, USA) using a soft-

ware package developed in-house that analyzes the Xe-129 spectrum for each lung voxel
in the 3D-SBCSI image. The free-induction decay signal (FID) was zero-filled from 512 to
1024 data points, apodized with a 50 Hz Lorentzian filter, Fourier transformed, and phase-
corrected. Given that the three peaks (Xe-129 in gas, tissue, and RBC) overlapped, the
spectrum was fitted to a sum of complex Lorentzian functions and optimized with a non-
linear least-squares algorithm. Finally, the ratios of spectroscopic peaks, chemical shifts,
and T2* relaxation times were calculated on a voxel-by-voxel basis. Maps showing the
computed parameters were then generated.

Ventilation images were segmented into regions of no ventilation, hypoventilation,
normal ventilation, and hyperventilation using Advanced Normalization Tools software
package (ANTs) [27,28] and fused with proton images in ITK-SNAP [29]. We used a N4 bias
field correction, a whole lung segmentation and a Gaussian mixture model with a Markov
random field spatial prior modeling [30]. Regions of no ventilation and hypoventilation
were grouped as ventilation defects (VD); regions of normal ventilation and hyperventi-
lation were grouped as healthy/normal. Whole-lung averages were computed for each
parameter for each disease, and results were analyzed in MATLAB using one-way ANOVA
and Tukey’s test for post hoc analysis.

3. Results
3.1. Comparison of Ventilation Images

Typical ventilation images of each disease are shown in Figure 1, and segmented ven-
tilation maps are shown in Figure 2 (Figures 1 and 2). IPF subjects had 28.1 ± 6.44 percent
of lung volume occupied by ventilation defects (%VD), CF subjects had 39.1 ± 13.86 %VD,
COPD subjects had 59.4 ± 9.14 %VD, and healthy subjects had 9.6 ± 7.37 %VD (Table 1). CF
and COPD both had significantly more ventilation defects than IPF (p < 0.05) and healthy
subjects (p < 0.001); CF and COPD subjects also had more regions of no ventilation than
IPF and healthy subjects (p < 0.01). IPF had more ventilation defects than healthy sub-
jects (p < 0.001). COPD subjects also had more defects than CF subjects (p < 0.01). %VD
corresponded strongly with FEV1 predicted (R = −0.74).
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Figure 1. Ventilation images from a healthy subject and each disease type. Bright, homogeneous 
areas show that the lungs are ventilating normally. 

 
Figure 2. Ventilation images overlaid on proton images in sample healthy, IPF, CF, and COPD sub-
jects. Each row shows five lung slices from anterior (left) to posterior (right). Green areas indicate 
regions of normal ventilation and hyperventilation. Orange areas indicate regions of hypoventila-
tion. Red areas indicate regions of no ventilation. 

Table 1. Averages and standard deviations for subjects and computed parameters for each disease 
type. 

  Healthy IPF CF COPD 
 Age 28 ± 9.8 66 ± 11.6 24 ± 8.7 64 ± 11.8 
 M/F 5/11 8/3 3/10 4/1 
 FVC Predicted [%] 103 ± 8.8 66 ± 15.0 92 ± 19.6 91 ± 6.3 
 FEV1 Predicted [%] 99 ± 7.6 67 ± 14.7 76 ± 23.6 55 ± 20.9 

V
en

t il
a-No Ventilation [%] 0.4 ± 0.50 2.2 ± 0.91 14.1 ± 8.37 20.3 ± 11.25 

Figure 1. Ventilation images from a healthy subject and each disease type. Bright, homogeneous
areas show that the lungs are ventilating normally.
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Figure 2. Ventilation images overlaid on proton images in sample healthy, IPF, CF, and COPD subjects.
Each row shows five lung slices from anterior (left) to posterior (right). Green areas indicate regions
of normal ventilation and hyperventilation. Orange areas indicate regions of hypoventilation. Red
areas indicate regions of no ventilation.
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Table 1. Averages and standard deviations for subjects and computed parameters for each dis-
ease type.

Healthy IPF CF COPD

Age 28 ± 9.8 66 ± 11.6 24 ± 8.7 64 ± 11.8
M/F 5/11 8/3 3/10 4/1
FVC Predicted [%] 103 ± 8.8 66 ± 15.0 92 ± 19.6 91 ± 6.3
FEV1 Predicted [%] 99 ± 7.6 67 ± 14.7 76 ± 23.6 55 ± 20.9

V
en

ti
la

ti
on No Ventilation [%] 0.4 ± 0.50 2.2 ± 0.91 14.1 ± 8.37 20.3 ± 11.25

Hypoventilation [%] 9.2 ± 6.96 25.8 ± 6.31 25.0 ± 6.41 39.1 ± 2.23

Normal Ventilation [%] 90.4 ± 7.37 72.0 ± 6.44 60.9 ± 13.86 40.6 ± 9.14

W
ho

le
-L

un
g

C
SI

A
ve

ra
ge

s Tissue/RBC [AU] 2.66 ± 0.448 4.71 ± 0.807 3.06 ± 0.640 5.30 ± 2.040
RBC/Gas [AU] 0.39 ± 0.079 0.28 ± 0.061 0.35 ± 0.094 0.15 ± 0.068
Tissue/Gas [AU] 0.99 ± 0.196 1.31 ± 0.259 1.02 ± 0.196 0.66 ± 0.220
Tissue T2* [ms] 2.00 ± 0.089 2.12 ± 0.093 1.97 ± 0.084 2.02 ± 0.131
RBC T2* [ms] 1.72 ± 0.040 1.79 ± 0.086 1.71 ± 0.053 1.82 ± 0.061
Tissue CS [PPM] 197.69 ± 0.227 197.48 ± 0.292 197.87 ± 0.655 197.28 ± 0.434
RBC CS [PPM] 216.60 ± 0.645 213.49 ± 1.254 215.99 ± 0.910 213.74 ± 1.872
RBC-Tissue CS [PPM] 18.90 ± 0.627 16.13 ± 1.21 18.34 ± 0.859 16.55 ± 1.698

3.2. Comparison of Peak Ratios

IPF and COPD had the highest Tissue/RBC peak ratios of 4.71 ± 0.807 AU and
5.30 ± 2.040 AU, respectively. CF had a Tissue/RBC ratio of 3.06 ± 0.640 AU, and healthy
subjects had a Tissue/RBC ratio of 2.66 ± 0.448 AU (p < 0.001). Multiple comparisons
among healthy subjects and those with diseases were statistically significant (Figure 3,
Table 1).
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Figure 3. Tissue/RBC ratio maps (top) and boxplots (bottom) for each disease type. (p < 0.001 = ***, 
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COPD subjects had the lowest RBC/gas ratio, 0.15 ± 0.068 AU. The RBC/Gas ratio for 
CF was 0.35 ± 0.094 AU, IPF was 0.28 ± 0.061 AU, and healthy was 0.39 ± 0.079 AU (p < 
0.001). The differences between healthy and COPD, and between CF and COPD subjects 
were most significant (p < 0.001). The difference between healthy and IPF was also signif-
icant (p < 0.01) (Figure 4, Table 1). 

Figure 3. Tissue/RBC ratio maps (top) and boxplots (bottom) for each disease type. (p < 0.001 = ***,
+ outlier).

COPD subjects had the lowest RBC/gas ratio, 0.15 ± 0.068 AU. The RBC/Gas ratio
for CF was 0.35 ± 0.094 AU, IPF was 0.28 ± 0.061 AU, and healthy was 0.39 ± 0.079 AU
(p < 0.001). The differences between healthy and COPD, and between CF and COPD
subjects were most significant (p < 0.001). The difference between healthy and IPF was also
significant (p < 0.01) (Figure 4, Table 1).
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Figure 4. RBC/Gas ratio maps (top) and boxplots (bottom) for each disease type. (p < 0.001 = ***, p < 
0.01 = **, p < 0.5 = *). 

IPF subjects had the highest Tissue/Gas ratio, 1.31 ± 0.259 AU, and COPD subjects 
had the lowest, 0.66 ± 0.220 AU. Meanwhile, healthy and CF subjects had similar ratios of 
0.99 ± 0.196 AU and 1.02 ± 0.196, respectively (p < 0.001). The differences between healthy 
and IPF (p < 0.01), and CF and COPD (p < 0.001) were significant (Figure 5, Table 1). 

 
Figure 5. Tissue/Gas ratio maps (top) and boxplots (bottom) for each disease type. (p < 0.001 = ***, p 
< 0.01 = **, p < 0.5 = *, + outlier). 

3.3. Comparison of T2* 
Tissue T2* was 2.12 ± 0.093 ms for IPF subjects, 1.97 ± 0.084 ms for CF subjects, 2.02 ± 

0.131 ms for COPD subjects, and 2.00 ± 0.089 ms for healthy subjects (p < 0.01). Differences 

Figure 4. RBC/Gas ratio maps (top) and boxplots (bottom) for each disease type. (p < 0.001 = ***,
p < 0.01 = **, p < 0.5 = *).

IPF subjects had the highest Tissue/Gas ratio, 1.31 ± 0.259 AU, and COPD subjects
had the lowest, 0.66 ± 0.220 AU. Meanwhile, healthy and CF subjects had similar ratios of
0.99 ± 0.196 AU and 1.02 ± 0.196, respectively (p < 0.001). The differences between healthy
and IPF (p < 0.01), and CF and COPD (p < 0.001) were significant (Figure 5, Table 1).
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3.3. Comparison of T2*

Tissue T2* was 2.12 ± 0.093 ms for IPF subjects, 1.97 ± 0.084 ms for CF subjects,
2.02 ± 0.131 ms for COPD subjects, and 2.00 ± 0.089 ms for healthy subjects (p < 0.01).
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Differences between IPF and CF (p < 0.01) and between healthy and IPF subjects (p < 0.05)
were significant (Figure 6, Table 1).
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RBC T2* was 1.79 ± 0.086 ms for IPF subjects, 1.71 ± 0.053 ms for CF subjects,
1.81 ± 0.062 ms for COPD subjects, and 1.71 ± 0.040 ms for healthy subjects (p < 0.01). The
differences between healthy and IPF, IPF and CF, and CF and COPD were all significant
(p < 0.05) (Figure 7, Table 1).
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3.4. Comparison of Chemical Shifts

The tissue peak chemical shift was 197.48± 0.292 PPM for IPF subjects, 197.87 ± 0.655 PPM
for CF subjects, 197.28 ± 0.434 PPM for COPD subjects, and 197.69 ± 0.227 PPM for healthy
subjects. The tissue peak chemical shift was not significantly different (p > 0.05) between
any pair of disease types (Figure 8, Table 1).
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Figure 8. Tissue chemical shift maps (top) and boxplots (bottom) for each disease type. The color 
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The RBC peak chemical shift was 213.49 ± 1.254 PPM for IPF subjects, 215.99 ± 0.910 PPM
for CF subjects, 213.74 ± 1.872 PPM for COPD subjects, and 216.60 ± 0.645 PPM for healthy
subjects (p < 0.001). The differences between healthy and IPF, IPF and CF, healthy and
COPD, and CF and COPD were all highly significant (p < 0.001) (Figure 9, Table 1).

The separation between RBC and tissue peaks was 16.13 ± 1.208 PPM for IPF sub-
jects, 18.34 ± 0.859 PPM for CF subjects, 16.34 ± 1.884 PPM for COPD subjects, and
18.90 ± 0.628 PPM for healthy subjects (p < 0.001). The differences between healthy and
IPF, IPF and CF, and healthy and COPD were significant (p < 0.001), as well as between CF
and COPD (p < 0.01) (Table 1).
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3.5. Correlation with Spirometry

3D-SBCSI data was correlated with spirometry results, FEV1 predicted and FVC
predicted, for each subject. The strongest relationships were between FVC predicted and
RBC chemical shift (R = 0.67) and between FEV1 predicted and RBC/Gas ratio (R = 0.67).

3.6. Repeatability

For CF and healthy subjects, two 3D-SBCSI acquisitions were taken less than one hour
apart. For CF subjects, the average difference between acquisitions for the peak ratios were:
Tissue/RBC ratio 7.8 ± 7.99%, Tissue/Gas 9.3 ± 7.37%, and RBC/Gas 13.8 ± 14.93%. The
average difference for Tissue T2* was 1.0 ± 0.82% and for RBC T2* was 1.87 ± 1.80%. The
average difference for the chemical shifts were: Tissue CS 0.1 ± 0.33%, RBC CS 0.1 ± 0.14%,
and RBC-Tissue CS 1.3 ± 0.61.

For healthy subjects, the average difference between acquisitions for the peak ratios
were 3.2 ± 2.56% for Tissue/RBC ratio, 2.5 ± 3.03% for Tissue/Gas, and 5.3 ± 4.30% for
RBC/Gas. The average difference for Tissue T2* was 0.8 ± 0.69% and for RBC T2* was
2.3 ± 2.68%. The average difference for the chemical shifts were: Tissue CS 0.02 ± 0.02%,
RBC CS 0.1 ± 0.04%, and RBC-Tissue CS 0.6 ± 0.46%.

CF subjects had a larger difference between acquisitions compared to healthy subjects,
but this may be due to the fact that CF patients had greater variation in the architecture of
their lungs than healthy subjects. Results were not expected to be exactly the same due to
potential differences between breath-holds [31].

4. Discussion

To demonstrate the power of 3D-SBCSI hyperpolarized Xe-29 MRI to differentiate
among lung diseases, 45 subjects with either CF, COPD, IPF, or healthy lungs were imaged
using a ~7 s breath-hold without any complications. Additionally, proton and ventilation
images were taken for each subject and overlaid to map and analyze the level of lung venti-
lation in each disease group. Overall, the results demonstrated differences in ventilation
between the disease groups that were expected based on the underlying pathology of each
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disease. Peak ratios and T2* were also able to elucidate differences between CF, COPD, IPF,
and healthy subjects. Subjects underwent spirometry as well, and the results correlated
with 3D-SBCSI results.

4.1. Comparison of Ventilation Images

While CF and healthy subjects had no statistically significant differences in 3D-SBCSI
parameters, differences were seen in ventilation images. CF subjects had more ventilation
defects (no ventilation) than IPF and healthy subjects, which likely corresponded to the
locations of mucus plugs in the lungs. Our results showing increased ventilation defects in
CF are consistent with the xenon MRI in CF literature [32].

In IPF, the large areas of hypoventilation rather than of no ventilation were expected
as IPF is not an obstructive lung disease (Figures 1 and 2).

The reduced volume of normally ventilated regions was significant in IPF, CF, and
COPD in comparison with healthy subjects. The segmented ventilation images conveyed
which regions of the lungs experienced poor ventilation.

4.2. Comparison of Peak Ratios

The average Tissue/RBC ratio was higher in IPF and COPD subjects than in CF and
healthy subjects (Figure 3) because of impaired gas exchange from tissue damage in IPF and
COPD. Additionally, IPF and COPD subjects had more heterogeneous Tissue/RBC ratios
throughout the lungs than healthy and CF subjects; notably, in IPF subjects, the periphery
of the lungs had elevated Tissue/RBC ratios, which is consistent with the distribution
of abnormalities observed using other imaging modalities [33]. This suggests localized,
severely compromised gas exchange ability, which could be used as a marker for tracking
disease progression in these subjects. Regions of high Tissue/RBC ratios may correspond
to locations where ventilation and perfusion are mismatched, which is expected in both
COPD and IPF.

IPF and COPD subjects also had lower RBC/Gas ratios than healthy and CF subjects.
This was expected because IPF and COPD subjects have impaired gas transfer between
parenchymal tissue and RBCs. COPD subjects had even lower RBC/Gas ratios than IPF
subjects because not only was gas transfer impaired but there was also less tissue and
fewer blood vessels for the gas to transfer to RBCs. The RBC/Gas ratio in CF subjects was
expected to be the same or slightly lower than in healthy subjects because tissue is generally
healthy in this population, apart from mucus plugging, so gas transfer to RBCs is relatively
unrestricted (Figure 4).

IPF and COPD subjects had significantly different Tissue/Gas ratios compared to
healthy subjects. Given that IPF is characterized by a thicker, fibrotic parenchyma [34],
more 129-Xe would dissolve into lung tissue resulting in a higher Tissue/Gas ratio. COPD
is characterized by the destruction of parenchyma, so, as expected, little 129-Xe would
dissolve in tissue. These results, seen on Figure 5, are consistent with findings by Wang
et al. [35]. CF is characterized by airway obstruction rather than tissue defects. Thus, the
Tissue/Gas ratio was not and would not be expected to be significantly different from
healthy subjects.

The only significantly different 3D-SBCSI parameters between IPF and COPD subjects
were Tissue/Gas and RBC/Gas ratios (p < 0.001). Although both are tissue diseases, the
parenchyma is affected differently in IPF and COPD, which affects how much gas dissolves
into RBCs. Despite differences in overall tissue or RBC dissolved-phase gas, the Tissue/RBC
ratio was not significantly different between IPF and COPD subjects.

4.3. Comparison of T2*

Physiological reasons for changes in the Tissue and RBC T2* have not yet been clearly
identified or understood. However, Wolber et al. hypothesized that changes in Tissue
T2* are caused by the increasingly frequent exchange of xenon between the plasma and
RBCs [36]. The average Tissue T2* and RBC T2* were significantly longer in IPF subjects
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than in healthy subjects. Tissue T2* was likely longer due to tissue thickening in the lungs
of IPF subjects leading to less interactions due to increased distance between air/tissue
interfaces. CF subjects had shorter Tissue T2* times than each of the other groups. CF
subjects are also known to have elevated ferritin levels that create local susceptibilities,
accelerating decay time and shortening T2* [37]. As expected, COPD subjects had a similar
Tissue T2* to healthy subjects (Figure 6).

RBC T2* was longer in IPF and COPD subjects perhaps due to the lower blood
oxygenation. CF subjects do not have impaired gas exchange nor do have thick, fibrotic
tissues, so their RBC T2* was expected to be similar to healthy subjects, which it was
the case.

Regional heterogeneities in RBC T2* maps corresponded well with heterogeneities
in the Tissue/RBC maps (Figures 3 and 7). However, global values for RBC T2* and
Tissue/RBC were not significantly correlated (R = 0.40), which indicates that there could be
several interdependent causes of impaired gas exchange (higher Tissue/RBC ratios).

4.4. Comparison of Chemical Shifts

The tissue center did not shift significantly in any subjects (Figure 8). The RBC center
shifted by an average of 2.86 PPM in COPD subjects, 3.11 PPM in IPF subjects, and 0.61 PPM
in CF subjects, relative to healthy subjects (Figure 9). In all groups, the RBC peak moved
closer to the tissue peak, reducing the separation between the peaks by 2.35 PPM in COPD
subjects, 2.77 PPM in IPF subjects, and 0.56 PPM in CF subjects, relative to healthy subjects.

Previous studies found that RBC chemical shift was approximately 2 PPM lower in
IPF subjects than in healthy subjects while the tissue chemical shift was not significantly
different [38]. Norquay et al. found that as the blood oxygenation level increased the RBC
peak shifted further from the stationary gas peak [39]. Based on this, a decrease in the
RBC chemical shift was expected in hypoxic IPF and COPD subjects [40,41]. These studies
were completed using whole-lung HP Xe-129 spectroscopy, whereas our work presents
comparable results on a regional level.

4.5. Correlation with Spirometry

The 3D-SBCSI results were analyzed along with spirometry results to further under-
stand 3D-SBCSI parameters. However, the two probe fundamentally different phenomena:
3D-SBCSI probes gas exchange regionally, while spirometry probes whole-lung ventila-
tion. The correlation between FVC predicted and Tissue/RBC for healthy and COPD
subjects was very weak, as was the correlation between FVC predicted and RBC chemical
shift. 3D-SBCSI data was able to separate subjects more distinctly than spirometry. Eleven
subjects had an FVC predicted between 75–85% (full range for all subjects was 31–136%)
but their RBC chemical shifts ranged from 212–217 PPM (full range for all subjects was
211.0–217.8 PPM).

This indicated that Tissue/RBC and RBC CS were more sensitive parameters than
FVC predicted or FEV1 predicted and are capable of distinguishing between subjects with
similar FVC predicted values among the same disease. These 3D-SBCSI parameters may
be sensitive to subtle changes caused by disease phenotype or differences in pathological
alterations in lung structure that affect gas exchange and ventilation. For example, there
were four subjects with FVC predicted of 94–95% but Tissue/RBC ranged from 2.11 to 3.04
and RBC CS ranged from 215.95 to 217.11 for the same subjects. In addition, six subjects had
an FVC predicted of 76–77%, and Tissue/RBC ranged from 3.27 to 5.00 for these subjects.
The differences may be a result of disease severity and Xe-129 MRI seems to provide better
differentiation between patients who have similar lung function and thus may provide
a more objective measure of disease, which would be a great tool for providing more
personalized treatment.
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4.6. Limitations

Study limitations included small sample size and no differentiation by severity within
IPF and COPD subjects. Our healthy volunteers tended to be closer to the age range of CF
participants. While a limitation, this is also consistent with previous xenon MRI literature.
Healthy and CF subjects were much younger than IPF and COPD subjects due to the
differing disease populations which for CF tends to be a pediatric disease while COPD and
IPF only manifests later in life.

5. Conclusions

The results of this study indicate that 3D-SBCSI is sensitive to the physiology of lung
diseases and can therefore be used to help differentiate among healthy, IPF, CF, and COPD
lung disease types. This method also provides additional MRI based markers that may
reflect the underlying lung physiology, like voxel based full Xe-129 gas spectra, multiple
lung compartment T2*, and chemical shift, which no other current techniques can offer.
All this regional information combined may be useful for monitoring disease progression
on a regional level as well as for characterizing disease phenotypes and co-morbidities in
the future.
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