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The fine structure constant α is a funda-
mental physical constant that describes
the electromagnetic interaction between
charged particles and serves as the cou-
pling constant of quantum electrody-
namics (QED). It is dimensionless and
thus remains the same under all systems
of units. It is worth noting that α cannot
be calculatedbyQEDitself; itmust bede-
termined experimentally, often with the
help ofQEDdirectly or indirectly. Deter-
minations ofα fromdifferent sources can
be used to test QED and other sectors of
the Standard Model of particle physics,
providedboth theory and experiment can
reach a sufficiently high precision. How-
ever, one cannot both testQEDandmea-
sureα simultaneously, and so at least two
independentmeasurements are required.
One of the two most precise determi-
nations of α so far is from the anoma-
lous magnetic moment or g e − 2 of the
electron, which yields α to an accuracy
of 0.24 ppb (parts per billion) [1]. The
other one comes from the cesium re-
coil experiment that gives rise to α at
0.20 ppb [2]. The g e − 2 determination
of α involves a monumental QED cal-
culation, whereas the Cs recoil one re-
lies on QED only in an indirect way, be-
cause the Rydberg constant R∞ used in
the Cs recoil determination was already

established to very high precision by
hydrogen and deuterium transition fre-
quencies together with their correspond-
ing QED calculations. However, these
two determinations of α have a 2.5σ dis-
crepancy that may have some implica-
tions for new physics beyond the Stan-
dard Model [2]. From a metrology view-
point, with the adoption of the 2019 re-
definition of the SI base units, amore pre-
cise valueofαwouldmeanamoreprecise
value of the electron mass me according
to R∞ = α2 me (c/4π�).

The helium 23PJ (J = 0, 1, 2) fine
structure is another venue to derive a pre-
cise value of α, as was first proposed by
Schwartz [3] in 1964 aiming at a ppm
(parts per million) determination. It dif-
fers from either the g e − 2 or the Cs re-
coil determination in that it is a bound-
state QED problem. Compared to the
electron g e − 2 problem, a splitting be-
tween two fine structure levels in 23PJ is
more sensitive to α by a factor of ∼137.
Helium is also more appealing to exper-
imentalists than hydrogen since the 23PJ
energy levels in helium are more widely
spaced than 22PJ in hydrogen, and the
lifetime of 23P is a factor of 100 longer
than 22P. Historically, the first break-
through for realizing the Schwartz pro-
posal was the derivation of order meα

6

relativistic andQED corrections byDou-
glas and Kroll [4] in 1974. In 1995, Yan
and Drake [5] evaluated these correc-
tions to a very high precision and thus
laid a foundation for pursuing a ppb level
determination of α, instead of the origi-
nal ppm. Other milestones in theory in-
clude the work by Zhang, Yan and Drake
[6] in 1996 for the QED corrections of
order meα

7 lnα, the work by Pachucki
[7] in 2006 for meα

7 and the extension
of meα

7 to helium-like ions by Pachucki
and Yerokhin [8] in 2010.

Since Schwartz’s proposal was pub-
lished, significant progress has been
made on the experimental frontier using
various measurement techniques. The
interplay between theory and experiment
has stimulated measurements with ever-
increasing accuracy. Some systematic
effects, long considered negligible, are
now becoming important, such as quan-
tum interference. Recently, the group at
University of Science and Technology of
China (USTC) led by Shui-MingHu [9]
has measured the fine structure splittings
ν02 and ν12 in the 23PJ manifold of he-
lium by laser spectroscopy and achieved
an accuracy of 4 and 80 ppb, respectively.
Their results are in good agreement with
the QED calculations of Pachucki and
Yerokhin [8] up to order meα

7. The
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significance of the work fromHu’s group
is that, once the theory at the next order
meα

8 is completed, an atomic physics
value ofα at 2 ppb could be derived. Very
recently, a microwave measurement of
ν12 at 10 ppb by Hessels’s group at York
[10] was reported. Although the York’s
result is a factor of 8moreprecise than the
corresponding USTC value, it disagrees
not only with the USTC one by about
4.5 standard deviations, but also with the
theory [8] by about 1.5 times the theory
uncertainty. In order to resolve these dis-
crepancies, more measurements and at
least one independent QED calculation
are highly desirable. It is expected that
the experimental uncertainty in the larger
splitting ν02 could be reduced to below
1 ppb in the near future [10] and thus
an atomic physics value of α at 0.5 ppb

or below could be determined, which
would be comparable to the g e − 2 and
Cs recoil values. Before entering this
exciting sub-ppb era, however, the most
challenging task that remains ahead for
theorists is to calculate the QED effect at
ordermeα
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