
iological

sychiatry:
OS
Archival Report

B
P
G

Pharmacological Enhancement of Adult
Hippocampal Neurogenesis Improves Behavioral
Pattern Separation in Young and Aged Male Mice

Wei-li Chang, Karly Tegang, Benjamin A. Samuels, Michael Saxe, Juergen Wichmann,
Denis J. David, Indira Mendez David, Angélique Augustin, Holger Fischer, Sabrina Golling,
Jens Lamerz, Doris Roth, Martin Graf, Sannah Zoffmann, Luca Santarelli, Ravi Jagasia, and
René Hen
ª

ISS
ABSTRACT
BACKGROUND: Impairments in behavioral pattern separation (BPS)—the ability to distinguish between similar
contexts or experiences—contribute to memory interference and overgeneralization seen in many neuropsychiatric
conditions, including depression, anxiety, posttraumatic stress disorder, dementia, and age-related cognitive
decline. Although BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis,
its significance as a pharmacological target has not been tested.
METHODS: In this study, we applied a human neural stem cell high-throughput screening cascade to identify
compounds that increase human neurogenesis. One compound with a favorable profile, RO6871135, was then
tested in young and aged mice for effects on BPS and anxiety-related behaviors.
RESULTS: Chronic treatment with RO6871135 (7.5 mg/kg) increased adult hippocampal neurogenesis and improved
BPS in a fear discrimination task in both young and aged mice. RO6871135 treatment also lowered innate anxiety-like
behavior, which was more apparent in mice exposed to chronic corticosterone. Ablation of adult hippocampal
neurogenesis by hippocampal irradiation supported a neurogenesis-dependent mechanism for RO6871135-
induced improvements in BPS. To identify possible mechanisms of action, in vitro and in vivo kinase inhibition and
chemical proteomics assays were performed. These tests indicated that RO6871135 inhibited CDK8, CDK11,
CaMKIIa, CaMKIIb, MAP2K6, and GSK-3b. An analog compound also demonstrated high affinity for CDK8,
CaMKIIa, and GSK-3b.
CONCLUSIONS: These studies demonstrate a method for empirical identification and preclinical testing of novel
neurogenic compounds that can improve BPS and point to possible novel mechanisms that can be interrogated for
the development of new therapies to improve specific endophenotypes such as impaired BPS.

https://doi.org/10.1016/j.bpsgos.2024.100419
Pattern separation is the process of separating overlapping sen-
sory information, contexts, and experiences into distinct neural
representations. It is believed that this process facilitates the rapid
storage of new memories without inducing large amounts of
interference (1–3). Computational theories and simulations pre-
dicted that this role is performed by the dentate gyrus (DG) (4–7).
This function of the DG was later empirically established in ro-
dents (8–14). In mammals, the DG is one of 2 brain regions (with
the subventricular zone) that continue to generate new neurons
throughout development and adulthood, a phenomenon known
as adult hippocampal neurogenesis (AHN) (15,16).

Previous work has shown the importance of AHN for
behavioral pattern separation (BPS) in rodents: ablating AHN
causes impairments in BPS, whereas enhancing AHN with
exercise, enrichment, or genetic manipulation improves BPS
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(17–25). In addition, transiently silencing immature adult-born
granule cells during discrete epochs of a fear discrimination
task can disrupt pattern separation, underscoring the role of new
neurons in this cognitive task (26). AHN also decreases dramat-
ically with age (18,27–30), as does BPS performance (20,31–33).

In humans, tasks have been developed to test pattern
separation, and when studied in conjunction with functional
magnetic resonance imaging, they have also been shown to
reliably engage the DG and downstream CA3 region
(14,34–42). Deficits in BPS may contribute to over-
generalization of negative emotion seen in depression, anxiety,
and trauma-related disorders (43–50). BPS also declines with
aging in humans (42,51,52), an effect that is even more pro-
nounced in patients with mild cognitive impairment (37,42,53)
and further impaired in Alzheimer’s disease (53,54).
y of Biological Psychiatry. This is an open access article under the
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Based on these observations, enhancement of AHN is
thought to be a promising target for therapeutic development
to treat conditions demonstrating BPS deficits, such as
depression, anxiety disorders, posttraumatic stress disorder,
and age-related cognitive decline as well as dementia (50). In
the present study, a high-throughput in vitro screening
cascade was used to empirically identify compounds with
human neurogenic properties. One family of promising
neurogenic molecules from this screen, piperazinones, was
chemically optimized and the resulting compound RO6871135
was then tested in vivo. We found that RO6871135 enhanced
AHN and improved BPS in a neurogenesis-dependent manner.

METHODS AND MATERIALS

See the Supplement for detailed methods and materials.

High-Throughput Screen for Human Neurogenesis

Human neural stem cells (hNSCs) were derived from human
embryonic stem cells according to previously reported pro-
cedures (55,56).

Animal Care

All experimental procedures were conducted in compliance
with the National Institutes of Health Guide for the Care and
Use of Laboratory Animals and approved by the Institutional
Animal Care and Use Committee at the New York State Psy-
chiatric Institute. Chronic corticosterone experiments were
conducted in compliance with protocols approved by another
Institutional Animal Care and Use Committee (council directive
no. 87–848, October 19, 1987, Ministère de l’agriculture et de
la Forêt, Service Vétérinaire de la Santé et de la Protection
Animale). Mice were housed 2 to 5 per cage and maintained on
a 12-hour light/dark schedule with access to food and water ad
libitum, except when otherwise stated. All data presented are
from male mice.

Drug Administration

For behavioral studies, adult male C57BL/6 mice received 7.5
mg/kg of RO6871135 or vehicle daily by oral gavage for 21
days before behavioral testing. On behavioral testing days,
animals were gavaged after behavior was completed.

Behavior

Anxiety-related and BPS behavioral tasks were performed as
described in Supplemental Methods. For fear discrimination
context parameters, see Tables S1 and S2. Hippocampal
irradiation (57–59) and chronic corticosterone (60) in-
terventions were performed as described previously.

Binding Analyses

In vitro pharmacological screening for off-target effects was
also performed as described (61), tested at Cerep (now Euro-
fins Pharma Discovery). In vitro kinase screening assays were
performed to determine kinase activity inhibition as described
(62) via LeadHunter Drug Discovery Services Panels (Eurofins
DiscoverX Products, LLC), and dissociation constants (Kd) for
compound-kinase interactions were calculated. In situ kinase
binding was assayed using the KiNativ platform (ActivX)
(63–65). Brain and liver tissue samples were collected from
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RO6871135- or vehicle-treated mice. Chemical proteomics
analysis was conducted in hNSCs using 2 close chemical
analogs of RO6871135: 1 neurogenically active and 1 neuro-
genically inactive compound.

Statistical Analyses

Statistical analyses were performed using the Python pack-
ages statsmodels (66) and SciPy (67), R version 4.3.2, and
GraphPad Prism (version 9.5.1 for macOS; GraphPad Soft-
ware, http://www.graphpad.com). For all comparisons, values
of p , .05 were considered as significant.

RESULTS

In Vitro Neurogenesis Screen

hNSCs were derived from human embryonic stem cells as
previously described (55,68) (Figure S1A). hNSCs were
exposed to factors known to modulate neurogenesis and then
stained for DAPI to quantify cell number and Tuj1, a marker of
immature neurons (Figure S1B). As expected, DAPT, which
blocks Notch signaling, accelerated differentiation (69),
resulting in the upregulation of Tuj1 and reduced proliferation,
evidenced by reduced cell number. Consistent with previous
in vitro and in vivo findings, Wnt3a promoted both proliferation
and differentiation of hNSCs to immature neurons (70,71).
Addition of the known mitogen FGF-2 also promoted prolifer-
ation of neural progenitor cells while inhibiting neuronal dif-
ferentiation. Recapitulation of these effects supported the use
of hNSCs as a model to screen for novel human neurogenic
modulators (Figure 1A). Approximately 1 million compounds
were screened, and the results are plotted as a histogram with
.10,000 and .3000 hits, 3 and 4 standard deviations from the
mean, respectively (Figure S2A). The dose-response curve of a
chemically optimized molecule from an original hit,
RO6871135 (Figure 1B), had a potency of 26 nM for increasing
hNSC cell counts and was essentially inactive on the counter
screen in human embryonic stem cell–derived mesenchymal
stem cells (Figure S2B). To determine whether RO6871135
was truly neurogenic, high content screening was performed to
directly quantify both nuclei and immature neurons (Figure 1C).
Dose-response curves of RO6871135 on cell number
(Figure S2C) and neurite network (Figure S2D) revealed po-
tency in the range of 20 nM, consistent with potency seen in
the previous step of the screen, which used an ATP (adenosine
triphosphate) assay to quantify cell number. RO6871135 was
profiled in a standard battery of drug development assays at
Roche (61), such as hepatic enzyme activity effects and other
safety tests, indicating a favorable profile (Table S3). Off-target
assays to assess risk of adverse drug reactions (61,72) indi-
cated no pharmacological activity at concentrations relevant to
in vitro potencies and in vivo testing (Table S4).

In Vivo Screening for Increased Neurogenesis

RO6871135 showed good pharmacokinetic parameters after
single-dose administration in mice (Table S3). After 14 days of
oral administration in 129/Sv male mice (Figure 2A, top), there
were dose-dependent increases in markers of proliferation
(Ki67), survival of adult-born cells (BrdU), and increased
numbers of doublecortin (DCX)1 immature neurons (Figure 2).
ww.sobp.org/GOS
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Figure 1. RO6871135 increases in vitro hu-
man neurogenesis. (A) High-throughput in vitro
screening cascade to identify novel neurogenic
compounds selected for in vivo testing. (B) Mo-
lecular structure of RO6871135. (C) Represen-
tative images of differentiating human embryonic
stem cell–derived neural stem cells in the pres-
ence or absence of 50 nM of RO6871135 in the
media. DAPI in red for cell number, including
hNSCs and neural progenitor cells, while Tuj1
staining shown in green reflects initial differenti-
ation or immature neurons. hMSC, human
mesenchymal stem cell; hNSC, human neural
stem cell.
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For behavioral experiments, a longer treatment schedule was
used before testing to allow for the accumulation of immature
granule cells, which generally require at least 2 weeks to begin
integrating into the surrounding circuit (73,74). Of note, these
histology studies were conducted in 129/Sv mice, and there
are baseline differences in neurogenesis markers and sensi-
tivity to enhancement of neurogenesis from exercise between
strains (75,76). C57BL/6 mice were used for all behavioral
studies.
Chronic RO6871135 Alters Contextual Fear
Discrimination but Not Contextual Fear
Conditioning

After .21 days of treatment (Figure 2A), there was no
observed difference in freezing between vehicle- and
RO6871135-treated groups on the retrieval day after contex-
tual fear conditioning (Figure 2E). There was also negligible
freezing in both treatment groups in novel context C on day 3
(Figure 2F). On day 4, when mice were re-exposed to context A
that followed the similar context B, both treatment groups
exhibited comparable levels of freezing between the 2 contexts
(Figure 2D, G). Over subsequent days, freezing levels in the 2
contexts diverged. Repeated-measures analysis of variance of
freezing in both treatment groups indicated a significant effect
of context and day and a significant context 3 day interaction.
Freezing time in context A versus B was statistically different in
vehicle-treated mice starting on day 8 and in RO6871135-
treated mice by day 6.
Biological Psychiatry: G
Freezing difference scores were calculated for each mouse
(freezingA 2 freezingB) and compared between treatment
groups with repeated-measures analysis of variance
(Figure 2H). There was a significant effect of group, day, and a
group 3 day interaction; days 8 and 10 were significantly
different by post hoc testing. We also confirmed that there was
increased DCX staining after RO6871135 in behaviorally tested
mice (Figure 2I).

RO6871135 Partially Rescues Lower AHN and BPS
Deficits in Aged Mice

We also tested RO6871135 in aged (.18 months) and young
mice (Figure 3A). Compared with young mice, there were
dramatic decreases in all measures of neurogenesis in vehicle-
treated aged mice, in keeping with previous findings
(18,27–30). RO6871135 in aged mice significantly increased
detectable BrdU and DCX staining (Figure 3B). For the fear
discrimination task, we used a nonrandomized order for
context presentation (Figure 3C), given that aged mice were
expected to have difficulty with the randomized order para-
digm (20). Young and aged mice showed comparable levels of
freezing in the shock-associated context A after 1 day of
exposure, indicating no effect of age on contextual fear con-
ditioning (Figure 3D). There was no significant difference in
freezing between contexts A and B in young mice on the first
day of exposure to both contexts but significantly higher
freezing levels in context B in both vehicle- and RO6871135-
treated aged mice (Figure 3D). By the next day, young mice
were discriminating between the 2 contexts, while vehicle- and
lobal Open Science March 2025; 5:100419 www.sobp.org/GOS 3
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Figure 2. Chronic in vivo administration of RO6871135 increases neurogenesis and improves pattern separation. (A) Timelines of experimental design: 14-
day administration for histology studies is shown on the top row, and 21-day administration for behavioral testing followed by histology shown on the bottom
row. (B) Positive cell counts per slice (6SEM) for Ki67, BrdU, and DCX. There was a significant effect of treatment group in all measures (Ki67 F2,26 = 26.64, p,

.0001; BrdU F2,25 = 30.60, p , .0001; DCX F2,26 = 4.658, p , .05). Controls (n = 9) had lower cell counts of Ki67 (p , .0001) and BrdU (p , .0001) than mice
treated with 7.5 mg/kg of RO6871135 (n = 10), and they had lower cell counts of all 3 markers than mice treated with 15 mg/kg of RO6871135 (n = 10; Ki67 p,

.0001; BrdU p, .0001; DCX p, .05). (C) Schematic for contextual fear conditioning and fear discrimination tasks. (D) Percent time freezing across days in the
fear discrimination task. Vehicle-treated controls (n = 8) had a significant context 3 day interaction (F6,84 = 2.876, p , .05), with significant differences in
freezing starting on day 8. RO6871135-treated mice (n = 8) also had a significant context 3 day interaction (F6,84 = 7.899, p , .0001), with significant dif-
ferences in freezing between contexts by day 6. (E, F) Freezing time after single-shock contextual fear conditioning in the same context or a novel context.
RO6871135 treatment did not alter expression of contextual fear (t14 = 20.434, NS) and did not affect generalization of fear to a different, novel context
(t14 = 20.490, NS). (G) Freezing time on the first day of exposure to the similar context B at the beginning of the fear discrimination task, showing similar
freezing levels to the shock context A in both groups (context F1,28 = 1.157, NS; group F1,28 = 0.500, NS; group 3 context F1,28 = 0.001, NS). (H) Difference
score across days, calculated by subtracting the freezing time in context B from freezing time in context A. There was a significant effect of group (F1,14 =
5.948, p, .05) and a significant group3 day interaction (F6,84 = 2.256, p, .05). Post hoc testing indicated significant differences on days 8 and 10 (p, .05). (I)
DCX staining in dentate sections from the same mice that underwent behavioral testing. After more than 5 weeks of treatment with 7.5 mg/kg of RO6871135,
there was a significant increase in DCX staining (t15 = 22.648, p , .05). Representative images of DCX staining are shown in Figure 4F. p $ .05 is not
significant, *p , .05, **p , .01, ***p , .001, ****p , .0001. DCX, doublecortin; NS, not significant; p.o., per oral; RO, RO6871135; veh, vehicle.
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RO6871135-treated aged mice had nearly identical freezing
levels in contexts A and B (Figure 3E). Vehicle-treated aged
mice failed to discriminate between contexts by day 9, while
RO6871135-treated aged mice successfully discriminated
between contexts after day 5 (Figure 3E). With additional days
of exposure, aged vehicle-treated mice did eventually
discriminate (Figure S3). We did not observe an effect of
RO6871135 in young-adult mice using this behavioral para-
digm, given that vehicle-treated young mice already
4 Biological Psychiatry: Global Open Science March 2025; 5:100419 w
discriminated by the second day of exposure to both contexts
(Figure S4).

RO6871135 Effects on Anxiety-Related Behavioral
Tests

In the novelty suppressed feeding (NSF) test, which measures
approach-avoidance behavior by latency to feed in a novel
arena, RO6871135 significantly decreased latency in both
young (Figure 3F) and aged (Figure 3G) mice. Comparing NSF
ww.sobp.org/GOS
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Figure 3. Aged mice have much lower measures of adult hippocampal neurogenesis. They also have a reduced fear discrimination, which is partially
rescued with treatment by RO6871135. (A) Timeline of experimental design. (B) Positive cell counts per slice (6SEM) for Ki67, BrdU, and DCX. Measures from
vehicle-treated young mice (n = 11) are shown for reference compared with vehicle-treated aged mice (n = 10). Among aged mice, RO6871135 (n = 10/group)
significantly increases counts of cells positive for BrdU (F2,29 = 15.99, p , .0001) and DCX (F2,29 = 8.745, p , .005) but does not restore them to the level of
young mice. (C) Schematic for nonrandomized fear discrimination task (n = 15 young; 24/group aged). (D) Freezing time after single-shock contextual fear
conditioning in the same context A 1 day after foot shock or on first exposure to the similar context B (context F1,128 = 3.672, NS; group F2,128 = 6.091, p ,

.005; group 3 context F2,128 = 6.754, p , .005). There was no significant effect of context in the young mice and elevated freezing in the similar context B in
both groups of aged mice (vehicle p, .005, RO6871135 p, .05). (E) Percent time freezing across days in the fear discrimination task in young and aged mice.
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latency between vehicle-treated young and aged mice, there
was no difference between the age groups (Figure S5).

In the open field test (OFT), mice treated with RO6871135
showed increased locomotor activity compared with vehicle-
treated mice. Aged mice exhibited less locomotion in the OFT,
with no significant age 3 treatment interaction (Figure S6A).
There was no main effect of RO6871135 on exploration of the
center zone. Aged mice had higher percent distance in the
center zone, and we did not observe any significant age 3

treatment interaction center distance (Figure S6B).

Irradiation Blocks RO6871135 Effects on
Contextual Fear Discrimination

To investigate whether immature granule cells were required
for the effects of RO6871135 on pattern separation, we used a
well-established method of bilateral X-irradiation to perma-
nently ablate AHN across the whole DG (57–59), followed by 2
months of recovery from inflammatory effects of irradiation and
then treatment with RO6871135 and fear discrimination testing
(Figure 4A). There was no effect of drug treatment on
contextual fear conditioning (Figure S7). Vehicle-treated irra-
diated mice did not discriminate between contexts A and B
until day 10 (Figure 4B). Freezing in irradiated RO6871135 mice
showed no significant effect of context and no context 3 day
interaction (Figure 4C). The difference scores of freezing in A
and B showed no significant effect of the treatment group and
no group3 day interaction (Figure 4D). Irradiation did not block
the effect of RO6871135 in NSF, and drug-treated irradiated
mice exhibited decreased latency to feed compared with
vehicle-treated irradiated controls (Figure 4E). Ablation of AHN
in irradiated mice was confirmed with qualitative histological
assessment (Figure 4F).

RO6871135 Reverses Behavioral Effects of Chronic
Corticosterone and Stimulates AHN

We next looked at RO6871135 effects after chronic cortico-
sterone exposure (Figure 5A), a model of chronic stress used for
anxiety- and depression-related models. Chronic corticoste-
rone increased innate anxiety-like behavior, as measured by
exploration of the center zone, and these effects were reversed
in mice that had received RO6871135 (Figure 5B). Corticoste-
rone exposure also increased anxiety-like behavior in the NSF
test, with increased latency to feed. Treatment with RO6871135
partially reversed this effect and significantly decreased latency
to feed compared with the corticosterone/vehicle group
(Figure 5C). RO6871135 increased the number of DCX1 cells in
the setting of chronic corticosterone treatment as well
(Figure 5D, E). Notably, these experiments were conducted at a
different facility from noncorticosterone studies, leading to
some differences in control group behavioral measures.
=

Vehicle-treated young mice had a significant context 3 day interaction (F7,196 = 4.
second day of exposure to both contexts. Vehicle-treated aged mice also had a s
elevated freezing in context B on the first day, did not demonstrate differentia
RO6871135 had a significant context 3 day interaction (F7,322 = 9.860, p , .000
higher freezing in the shock context on days 5, 6, 8, and 9 of the experiment. (F) L
mice (n = 14–15/group/age), represented as a survival curve on the left and as the
p, .05; aged c2 = 4.854, p, .05. There was no significant effect of RO6871135 o
.05 is ns, *p , .05, **p , .01, ***p , .001, ****p , .0001. DCX, doublecortin; ns/
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FunctionalActivity andBindingProfilesofRO6871135

As stated above, a panel of assays to screen for G protein–
coupled receptor binding was negative at relevant concentra-
tions (Table S4). To identify putative targets of RO6871135, a
series of binding assays were performed. In vitro binding
against a panel of 96 kinases with the KINOMEscan panel
(Table S5) revealed significant functional inhibitory activity for
CDK11. Although not included in the initial inhibition assay,
CDK8 was added for the calculation of Kd values. Inhibitory
activity for CDK8 and CDK11, but no other kinases, was seen
at submicromolar concentrations (Table S6).

After the biochemical assays above, we tested for activity in
murine brain tissue. In situ kinase profiling was performed
using KiNativ for brain tissue from RO6871135-treated mice
(Tables S7 and S8). Liver tissue from the same animals was
used for comparison (Table S8). Based on previous validation
(63), .35% inhibition was considered significant. RO6871135
caused .50% inhibition for CDK8 and CDK11, as well as for
CaMKIIa, CaMKIIb, and MAP2K6 in the brain.

A chemical proteomics study was conducted to define the
potential targets of RO6871135 in hNSCs (Figure S8). The
enriched proteins on the active RO6871135 analog versus the
inactive analog are highlighted in Figure S9. CaMKIIa is,
among the statistically significant differences, the most
enriched protein on the active versus inactive analogs. Seven
kinases (GSK-3a, GSK-3b, MAPK1, MAPK3, CaMKIIg,
CSNK1A1, and CDK8) exhibited more binding to the active
RO6871135 analog than the inactive one.

Top hits from in vitro (KINOMEscan), in situ (KiNativ), and
chemical proteomics assays are summarized in Table 1. CDK8
activity was found in all 3 assays. CDK11 and GSK-3b were
among the top candidates in 2 of 3 assays. CaMKIIa, which
was not directly tested in the KINOMEscan assay, was strongly
positive in the other 2 assays. CaMKIIb and MAP2K6 were also
not directly tested in the KINOMEscan assay but were strongly
positive in the in situ assay.

DISCUSSION

We demonstrated that chronic treatment with RO6871135 was
sufficient to enhance AHN and improve BPS in both young and
aged male mice and that BPS effects are neurogenesis
dependent. This candidate compound was identified from a
screening cascade testing for neurogenic effects on hNSC
in vitro, which we have also described here. Immature adult-
born granule cells from AHN have been shown to play a role
in encoding contextual information (26,59,77) and in support-
ing distinct neural patterns for different contexts (78). The
present findings demonstrate a pharmacological method for
recapitulating improvements in BPS seen with other means of
increasing AHN (20,25).
598, p , .0001), with significantly higher freezing in the shock context by the
ignificant context 3 day interaction (F7,378 = 8.994, p , .0001), but, beyond
l freezing across the subsequent 7 days. Aged mice after treatment with
1), again with elevated freezing in context B on day 2, but with significantly
atency to feed in the novelty suppressed feeding tests in young and aged (G)
latency measures on the right. Log-rank (Mantel-Cox) test: young c2 = 5.680,
n latency to feed in the home cage in either age group (data not shown). p$

NS, not significant; p.o., per oral; RO, RO6871135; veh, vehicle.
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Figure 4. Irradiation blocks the effect of RO6871135 on behavioral pattern separation, but not on novelty suppressed feeding latency to feed. (A) Timeline of
focal irradiation followed by 8 weeks of recovery and then initiation of daily dosing of RO6871135 and behavioral testing, as conducted with nonirradiated mice.
(B) Vehicle-treated mice with chronic ablation of adult hippocampal neurogenesis showed a significant context 3 day interaction, with a significant difference
in freezing on day 10 (n = 9). (C) Irradiated mice (n = 9) that received RO6871135 (n = 9) had no significant effect of context (F1,16 = 3.333) and no context 3 day
interaction (F6,96 = 1.889). (D) The difference scores had a significant effect of day (F6,90 = 6.607, p , .0001), but no significant effect of drug group (F1,15 =
0.1623, NS) and no group 3 day interaction. (E) Latency to feed in the novelty suppressed feeding test shows that decreased latency in the RO6871135-
treated group remains even after irradiation (n = 8–9/group). (Top) Survival curve log-rank (Mantel-Cox) test: c2 = 6.034, p , .05. (Bottom) Latency mea-
sures of individual mice in the novelty suppressed feeding. There was no significant effect of RO6871135 on latency to feed in the home cage (data not shown).
(F) Top left panel shows an atlas image of the dentate gyrus and approximate field of view for microscope images (red rectangle). Following panels show
representative images of doublecortin staining in nonirradiated and irradiated mice treated with vehicle of RO6871135. Lack of staining in irradiated mice
confirms ablation of adult hippocampal neurogenesis and lack of immature neurons observable by DCX staining. One example image from the ventral hip-
pocampus is shown here, but irradiation was applied to the whole hippocampus. Quantification of DCX staining from nonirradiated mice is shown in Figure 2I.
*p , .05. DCX, doublecortin; NS, not significant; RO, RO6871135; veh, vehicle.
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RO6871135 is not currently being developed as a clinical
molecule due to evidence of proliferation in the liver and other
peripheral organs of mice and rats in vivo, as measured by
Biological Psychiatry: G
Ki67 staining (data not shown). While there were no detrimental
effects of RO6871135 over the time courses examined,
including in 18-month-old mice, chronic carcinogenicity
lobal Open Science March 2025; 5:100419 www.sobp.org/GOS 7
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Figure 5. Chronic corticosterone increases anxiety-like behavior, which is reversed by treatment with RO6871135. (A) Experimental timeline. Mice are
treated with vehicle or corticosterone for 4 weeks before starting daily RO6871135 or vehicle treatment for another 4 weeks while corticosterone or vehicle is
continued (n = 15/group). (B) There was no significant effect of corticosterone on total distance traveled in an open field, but RO6871135 increased locomotion
compared with both the vehicle and corticosterone groups (F2,42 = 26.828, p , .0001). Stars indicate significant differences in post hoc testing by Tukey’s
honest significant difference test for multiple comparisons. Chronic corticosterone decreased the percent of distance traveled in the center of the open field
arena, and this effect was reversed with RO6871135 treatment (F2,42 = 9.724, p , .001). Mice that received chronic corticosterone also spent decreased time
the center of the open field arena, and this effect was reversed with RO6871135 treatment (F2,42 = 8.421, p , .001). (C) Chronic corticosterone increased
latency to feed in the novelty suppressed feeding test, and RO6871135 partially reversed this effect, represented as a survival curve and the latency values per
mouse. Log-rank (Mantel-Cox) test: c2 = 32.98, p , .0001. Bonferroni-corrected a = 0.017 for multiple comparisons, and all 3 treatment groups had
significantly different latency values compared with either other group. There was no difference in home cage food consumption relative to body weight
between vehicle/vehicle mice and those treated with RO6871135 (data not shown). (D) Representative images of DCX staining in mice treated with vehicle vs.
corticosterone and vehicle vs. RO6871135. (E) Quantification of DCX staining (F2,18 = 8.297, p , .01). There was no significant change in DCX staining from
chronic corticosterone alone, but RO6871135 treatment increased DCX in corticosterone-exposed mice. p $ .05 is not significant, *p , .05, **p , .01, ***p ,

.001, ****p , .0001. C/R, corticosterone/RO6871135; C/V, corticosterone/vehicle; DCX, doublecortin; V/V, vehicle/vehicle.
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studies over longer time courses would be needed to properly
derisk the compound. Alternatively, chemical optimization
could potentially increase central efficacy. Therefore, we did
not further test RO6871135 in female mice to see whether
8 Biological Psychiatry: Global Open Science March 2025; 5:100419 w
effects generalize, but this should be evaluated with future
candidate compounds. In humans, there are known sex dif-
ferences in psychiatric illness rates (79–81), likely due to an
interplay of the biological variable of sex and the psychosocial
ww.sobp.org/GOS
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Table 1. A Summary of Proteins (Putative Neurogenic
Piperazinone Targets) That Showed Significant Binding or
Activity Changes in the Presence of RO6871135

Assay KINOMEscan KiNativ Chemoproteomics

CDK11b 11 11 –

CDK8a 1 11 1

CaMKIIa Not tested 11 11

CaMKIIb Not tested 11 –

GSK-3a – – 11

GSK-3bb – 1 11

MAP2K6 Not tested 11 –

KINOMEscan results represent an in vitro assay of RO6871135. The KiNativ
assay was performed in situ on brain tissue collected from mice treated with
RO6871135. Three proteins with high inhibition in the KiNativ assay were not
tested in the KINOMEscan assay. 1 indicates a significant hit for that assay,
while 11 denotes more binding or activity relative to the other positive hits.
Raw values for individual assays are shown in Figure S9 and Tables S4–S8.

aCDK8 was found across all 3 assays.
bCDK11 and GSK-3b were identified in 2 assays.
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construct of gender (82–85). The current study serves as a
proof of concept for high-throughput screening and preclinical
testing of neurogenic compounds for BPS effects, which could
then be followed by studies to identify the exact mechanisms
of action and determine the impact of sex, age, or stress
exposure on these effects.

In these studies, much of the context discrimination is
driven by increased freezing in the shock context, as mice
continue to experience a foot shock on subsequent days of
exposure. This increased freezing cannot be attributed to a
general increase in immobility from drug treatment, given that
RO6871135 treatment actually increased locomotion. In addi-
tion, this could not be attributed to a general increase in
anxiety-like behavior, given that RO6871135 decreased la-
tency to feed in the NSF test, and while contextual fear con-
ditioning after a single foot shock is unchanged with
RO6871135, we demonstrated that the more challenging task
of discriminating from a very similar context is where the
neurogenic effects are most apparent, consistent with previous
findings (25,26). It is possible that RO6871135 acts by
enhancing fear learning, driving up freezing in the shock
context earlier than vehicle-treated mice, and this is not
mutually exclusive with improved BPS, which is believed to
support learning and memory (3,86). The fear discrimination
task is the sum of 2 possible processes: fear learning in the
shock context and safety learning and/or extinction learning in
the nonshock context. As observed in other studies (25,87), the
level of freezing after initial fear conditioning appears to influ-
ence the direction that freezing behavior diverges later in the
task. When baseline freezing is low, as in Figure 2D, discrim-
ination is achieved with increased freezing in context A.
However, when baseline freezing is higher, as in the aged mice
shown in Figure S3, behavioral discrimination is marked by
decreased freezing in context B. Although not directly tested in
this study, aged mice have not demonstrated an altered
response to foot shock compared with young mice (33).

Treatment with RO6871135 after ablation of AHN with tar-
geted hippocampal irradiation failed to improve BPS, but
continued to decrease latency to feed in NSF, suggesting that
Biological Psychiatry: G
RO6871135 effects on BPS, but not innate anxiety, are neu-
rogenesis dependent. Indeed, the relationship between AHN
manipulations and innate anxiety-like behaviors has been less
consistent and more apparent with chronic stress in previous
studies. While some manipulations require neurogenesis to
affect NSF (57,60), others do not (87,88), and some neurogenic
manipulations have no effect on NSF at all (25,89). In the OFT,
RO6871135 altered innate anxiety-like behavior only in mice
exposed to chronic corticosterone, consistent with results
from genetically enhanced AHN (25,89,90). Enhanced neuro-
genesis has been shown to increase resilience to chronic
stress (90–94); therefore, the ability of novel neurogenic com-
pounds to enhance resilience to other models of chronic stress
should be tested in future studies.

In vivo RO6871135 significantly elevated Ki67, BrdU, and
DCX cell counts, and behavior was tested after 3 weeks of
treatment, when immature neuron levels would be expected to
plateau (95). Given that there were no notable discrepancies in
the effects on these 3 neurogenesis markers, the normal
neurogenic process does not appear to be altered by
RO6871135, as a disproportionate increase in DCX staining
would be expected if the compounds were delaying maturation
or inducing dematuration.

Pharmacologically induced increases in AHN have been
observed with serotonin reuptake inhibitors such as fluoxetine
(57,88), tricyclic antidepressants (57,96), monoamine oxidase
inhibitors, and norepinephrine reuptake inhibitors (97).
RO6871135 showed no direct activity on the serotonin or
norepinephrine system at our experimental concentrations and
therefore has a novel mechanism of action compared with
existing neurogenic medications. However, as with many
therapeutics, including many currently available medications,
the exact mechanisms of action for RO6871135 are not yet
known. Looking at the kinases that were inhibited by
RO6871135 in vitro or in situ or those that bound specifically to
the neurogenic analog does provide some intriguing targets.
The strongest convergence was on cyclin-dependent kinases
CDK8 and CDK11, which are both relatively enriched in the
hippocampus compared with other brain regions (98). CDKs
and CDK inhibitors are instrumental in neural development,
regulating cell fate and differentiation (99), and there is evi-
dence that CDK inhibition may be a promising target to upre-
gulate AHN (100). Other CDKs are being targeted by candidate
chemotherapeutic agents (101), further highlighting how their
role in regulation of cell proliferation and maturation can be
exploited for pharmacological manipulation. RO6871135
induced in situ inhibition of CaMKIIa and CaMKIIb, 2 highly
abundant proteins in the brain, and the neurogenic analog
strongly bound to CaMKIIa as well. Given how ubiquitous
CaMKII is, additional studies would be needed to understand
how neurogenic compounds interact with it, but CaMKII is
known to be crucial for learning and plasticity in mice
(102–107) and normal neural development in humans
(108–111). MAP2K6, also binding significantly to RO6871135
in this in situ assay, activates mitogen-activated protein kinase
p38 (112) within the MAPK/ERK/JNK signaling cascades.
Within these cascades, p38 has been shown to have a role in
stress response, development, apoptosis, and senescence
(113) and may even mediate age-related decline in AHN (114),
although there have been some conflicting reports of the
lobal Open Science March 2025; 5:100419 www.sobp.org/GOS 9
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directionality of its effects (114–118). GSK-3b binding was also
seen in situ, and this kinase is involved in the Wnt/b-catenin
pathway, a regulator of AHN (71,119,120) that may also be a
promising target for counteracting neural loss in neurodegen-
erative disorders (121,122). While the top hits from our activity
and binding assays can point to targets for additional neuro-
genic compounds, clinically effective medications often have
multiple targets, and a more efficient method for identifying
candidate compounds remains an empirical, high-throughput
screen, such as the one described above, followed by addi-
tional studies to determine the precise mechanism of action.

Since an initial report of AHN in humans in 1998 (15),
techniques for demonstrating evidence of AHN have continued
to evolve (29,123–134). While the number of new cells might be
quite low in human adults (127), their impact on hippocampal
circuitry may proportionally increase when the system is
challenged, that is, in the settings of stress, neuro-
degeneration, or other pathology (135–139). There is also ev-
idence that, although proliferation of adult-born cells
decreases with age, maturation time also lengthens, such that
the total number of immature neurons in the system is still a
significant proportion of cells (140,141). Moreover, AHN in
mice may be a useful readout for interventions that affect
broader hippocampal functioning in humans, with many
neurogenic manipulations in mice (exercise, enrichment, se-
lective serotonin reuptake inhibitors) having therapeutic or
resilience-building properties in humans.

In this study, we demonstrated that pharmacologically
enhancing AHN is a means for improving BPS. Studies of
neural functioning during BPS in humans find that a homolo-
gous neural circuit is engaged (34–36,42), and investigations in
clinical populations implicate this cognitive process as a
promising therapeutic target (14,42–44,48,50–54,142–144). It
has even been shown that perceived clinical response to an-
tidepressants is correlated with improvements in BPS perfor-
mance (145). While medications such as selective serotonin
reuptake inhibitors and other treatments for anxiety and
depression can increase AHN (57,96,97), they are not effective
in some cases (146,147) and also have side effects that are not
tolerable to many patients (148–150). Identification of com-
pounds with novel neurogenic mechanisms may provide a
means to increase AHN with a higher efficiency and reduced
side-effect profiles, ultimately increasing the effectiveness in
individuals with insufficient response to existing medications.
They may also provide direct and symptomatic treatment for
individuals with BPS deficits that work in concert with other
types of therapy, including pharmacotherapy, psychotherapy,
neural modulation, and/or cognitive rehabilitation. Further
translation of neurogenesis as a treatment target should be
pursued in clinical trials of neurogenic agents to directly test for
improvements in BPS and assess how this correlates with
general clinical improvement.
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