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Abstract

Resistant starch (RS), fed as high amylose maize starch (HAMS) or butyrylated HAMS (HAMSB), opposes dietary protein-

induced colonocyte DNA damage in rats. In this study, rats were fedWestern-type diets moderate in fat (19%) and protein

(20%) containing digestible starches [low amylose maize starch (LAMS) or low amylose whole wheat (LAW)] or RS

[HAMS, HAMSB, or a whole high amylose wheat (HAW) generated by RNA interference] for 11 wk (n = 10/group). A

control diet included 7% fat, 13% protein, and LAMS. Colonocyte DNA single-strand breaks (SSB) were significantly

higher (by 70%) in rats fed the Western diet containing LAMS relative to controls. Dietary HAW, HAMS, and HAMSB

opposed this effect while raising digesta levels of SCFA and lowering ammonia and phenol levels. SSB correlated

inversely with total large bowel SCFA, including colonic butyrate concentration (R2 = 0.40; P = 0.009), and positively with

colonic ammonia concentration (R2 = 0.40; P = 0.014). Analysis of gut microbiota populations using a phylogenetic

microarray revealed profiles that fell into 3 distinct groups: control and LAMS; HAMS and HAMSB; and LAW and HAW.

The expression of colonic genes associated with the maintenance of genomic integrity (notablyMdm2, Top1,Msh3, Ung,

Rere, Cebpa, Gmnn, and Parg) was altered and varied with RS source. HAW is as effective as HAMS and HAMSB in

opposing diet-induced colonic DNA damage in rats, but their effects on the large bowel microbiota and colonocyte gene

expression differ, possibly due to the presence of other fiber components in HAW. J. Nutr. 142: 832–840, 2012.

Introduction

Colorectal cancer (CRC)11 is amajor cause of prematuremorbidity
and mortality in westernized industrial countries and is appearing

rapidly in developing economies with greater affluence (1). This
time trend supports the importance of environmental influences
in its etiology whereas genetic factors are thought to contribute
#30% of new cases, strengthening the case for control through
prevention (2). A study by the European Prospective Investiga-
tion into Cancer and Nutrition (EPIC) showed that dietary fiber
dose-dependently lowered CRC risk (3), whereas an earlier
international comparison of population studies found that
greater dietary protein intakes increase risk (4). Further analysis
of the EPIC data showed that consumption of red and processed
meat increased CRC risk (5). Unrepaired DNA damage is a
prerequisite for carcinogenesis and we showed that feeding high-
protein diets substantially increased the number of colonic DNA
strand breaks in rats (6–8). Significantly greater damage was
seen with some protein sources, including red meat and casein,
than with others, such as chicken, which is consistent with
prospective population studies. Damage was dose-dependently
opposed by dietary RS (resistant starch) fed as high amylose
maize starch (HAMS) (6–8) or butyrylated HAMS (HAMSB)
(9). Resistant starch (RS), the starch and the products of its
digestion, escapes from the small intestine and enters the large
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bowel and so contributes to total dietary fiber intake. In the large
bowel, RS is fermented by the microbiota, releasing SCFA. The
major SCFA (acetate, propionate, and butyrate) are thought to
generally contribute to optimal colonic function, but butyrate is
thought to be particularly important (10–12). It is a preferred
metabolic substrate for colonocytes and acts to maintain a
normal phenotype in these cells through several complementary
mechanisms. In our studies on RS, dietary protein, and DNA
damage, the strongest protective relationships were with large
bowel butyrate (7), consistent with its proposed role in
promoting colonic integrity. This suggestion is supported by
nutritional studies with HAMSB. Starches acylated to a high degree
of substitution (such as HAMSB) pass into the large bowel where
the esterified SCFA is released by bacterial action. HAMSB
consumption produces a sustained rise in large bowel SCFA,
specifically as the esterified acid, and is as effective as HAMS in
opposing diet-inducedDNA damage (9). Other laboratory studies
include experiments in rodents treated with a carcinogen (azoxy-
methane) where RS significantly lowers precancerous lesions and
tumor burden (13–16). Collectively, these experimental data
provide mechanistic support for the dose-dependent reduction in
CRC risk with greater fiber intake, which was found in the EPIC
study (3) and also in an early case-control study that showed
attenuation by fiber of excess risk with greater protein consump-
tion (17). In addition to direct effects of butyrate, there are
changes in circulating biomarkers that suggest adaptive changes in
gene expression (18). RSmay also selectively stimulate the growth
of beneficial bacterial that are resident in the colon, thereby
contributing to a lower risk of diseases, including CRC (19).

RS occurs in foods for a variety of reasons, including the
degree of gelatinization of the starch, i.e., the less gelatinized a
starch, the lower its ileal digestibility and the higher its RS
content. One of the important determinants of gelatinization is
the relative content of amylose and amylopectin. The former is a
smaller, linear polymer that gelatinizes relatively slowly on
heating with water compared with amylopectin. It is also
quicker to retrograde on cooling. Both factors contribute to the
presence of RS in processed foods made with HAMS (20).
Recently, we described a short-term feeding trial in which rats
were fed a high amylose wheat flour (HAW) generated by RNA
interference and showed that HAW raised large bowel SCFA
(21), consistent with greater RS content. HAW is a genetically
modified grain and we deemed it important to determine whether
it was as effective as other RS sources in opposing diet-induced
colonic DNA damage in rats as a prelude to feeding trials in
humans. Changes in large bowel bacterial populations and
selected colonocyte genes associated with cellular integrity were
also measured.

Materials and Methods

Animals and diets. Sixty male Sprague-Dawley rats of ~200 g weight

were obtained from the Animal Resource Centre, Murdoch University,
Perth, Australia. They were housed in wire-bottomed cages in a room

with controlled temperature (238C) and lighting (a 12-h-light/-dark

cycle) and allowed free access to food and water. The rats were randomly

assigned to 1 of 6 groups (n = 10/group) and fed the respective
experimental diets for 11 wk. The dietary compositions (Supplemental

Table 1) were based on the AIN-93 diet (22). The composition of dietary

wheat components (Supplemental Table 2) was determined using

standard analytical methods as previously described (21). In the maize
starch diets, casein (~80%protein) was the main protein source, with the

remainder coming fromwheat bran (~20%) (Supplemental Table 2). The

control diet contained 7% fat, 13% protein, a highly digestible starch

[low amylose maize starch (LAMS); National Starch Food Innovation],

and 22% wheat bran as the fiber source. The control treatment is

designated C-LAMS. The other diets, all moderate in fat (19%) and

protein (20%) (deemed a Western diet), differed primarily with respect to
the sources and forms of polysaccharides. The polysaccharide sources were

LAMS, HAMS (Hi-maize, National Starch Food Innovation), HAMSB

(prepared by National Starch Food Innovation with a degree of substi-

tution of 0.23), HAW, or a commercial low amylose wheat flour (LAW)
[CSIRO Plant Industry (21)]. These treatments with a Western diet

background are designated W-LAMS, W-HAMS, W-HAMSB, W-LAW,

and W-HAW, respectively. LAMS, HAMSB, and HAMS were obtained as

purified ingredients (i.e., powder), whereas LAWand HAWwere added as
a ground meal. Diets were balanced for the high levels of fiber and protein

by changingwheat bran, HAMS, or casein levels in the formulations where

appropriate (Supplemental Table 2). The fat used in the diets was a blend
of palm and canola oils prepared by Goodman Fielder Limited (Australia)

that contained ~39% SFA, 46% MUFA, and 15% PUFA. Group food

intakes and individual body weights were monitored daily throughout the

study. At the completion of the dietary intervention period, rats were
anesthetized with 4% halothane/oxygen to allow collection of gut tissues,

digesta, and hepatic portal vein blood at the time animals were killed. The

rats were not starved before anesthesia and may be regarded as being in

a postabsorptive state as sampling started at 0830 h on each day. Ex-
perimental procedures were approved by the Animal Ethics Committee of

CSIRO Food and Nutritional Sciences and complied with the Australian

Code of Practice for the Care and Use of Animals for Scientific Purposes.

Measurement of DNA strand breaks. A 6-cm segment of colon was

removed from rats at a point 3 cm from the distal end for isolation of
colonocytes to enable measurement of DNA single-stranded breaks

(SSB) using a single-cell gel electrophoresis (comet) assay (23). Comet

tail moment (a product of tail length and the fraction of DNA in the tail)
was calculated for 50 cells from each of 3 slides per rat using Comet

Score v1.5 software (TriTek). Cells with morphology indicative of

apoptosis or necrosis were excluded from analyses.

Colonic mucus layer thickness measurement. Mucus layer thick-

ness was measured as previously described (24). For each animal, 10
measurements were taken at different points along 3 tissue segments,

giving 30 thickness measurements in total. Mean thickness was

calculated using an image analysis program (24).

SCFA, phenols, and ammonia. Frozen fecal and cecal digesta were

thawed and then distilled and homogenized with heptanoic acid added as
internal standard (to give 5 mmol/kg of feces). The contents were analyzed

for SCFA in duplicate by GLC as previously described (25). Portal vein

plasma SCFA concentrations were determined by diethyl ether extraction

(26). Total SCFA levels were calculated from the sum of acetic, propionic,
butyric, isobutyric, caproic, isovaleric, and valeric acid. Phenol levels were

determined by a previously described method (27), and ammonia was

measured using the indophenol blue procedure (28).

Microbiota analysis. A custom phylogenetic microarray developed and

validated for gut bacteria was used to analyze the microbiota (29). The

cecal contents from the 6 dietary treatment groups (n = 10/group) were
collected and pooled randomly to 2 groups for each treatment (n = 5/

group). Each of the 2 cecal pools from each treatment group were

processed as follows and run on the microarray. RNA was extracted

from the samples as previously described (30). Prokaryote 16S ribosomal
RNA genes were amplified using the primer sets 27F (59-AGAGTTT-

GATCMTGGCTCAG-39) and T7/1492R (59-TCTAATACGACT CAC-

TATAGGGGGYTACCTTGTTACGACTT-39; the underlined region is

modified to include a T7 promoter sequence) (31). The PCR amplicons
were purified with the MinElute PCR purification kit (Qiagen) and then

added as a template for in vitro transcription-based synthesis of single-

stranded RNA (cRNA) using the MEGAScript T7 In Vitro transcription

kit (Ambion). After purification with a MEGAclear kit (Ambion), 1 mg
of the sample cRNA and 140 ng of standard cRNA were labeled at the

same time using Label IT mArray Cy5 reagent (Mirus) for 1 h at 378C
while protected from light and then 0.1 volumes of the 103 stop reagent
were added (Mirus) to terminate the labeling reaction. The labeled
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cRNA (25mL) was fragmented using 53 fragmentation buffer (Mirus) at

948C for 15 min so that the effects of fragmentation on signal intensity

could be evaluated on the microarray. Without further purification steps
that compromised signal intensity, 6 mL (;120 ng) of the labeled cRNA

samples in 24 mL hybridization solution were hybridized overnight with

the microarray (CombiMatrix) at 428C as previously described (29).

Gene expression analysis. Distal colonic tissue samples were removed

from RNAlater stabilization reagent (Sigma), placed in 1 mL of TRIzol

Reagent (Invitrogen), and homogenized using beads (mix of 2.5-mm glass

and 0.1- to 1.0-mmdiameter silicon-zirconian beads) in aMiniBeadbeater-
8 (BioSpec Products). Total RNA was extracted (using TRIzol Reagent

manufacturer’s instructions) and further purified using RNAeasymini spin

columns (QIAGEN) with a DNase on-column digestion per the manufac-
turer’s instructions. RNA integrity was checked using a Bioanalyzer 2100

(Agilent Technologies) and quantified using a NanoDrop ND-1000 Spec-

trophotometer (Thermo Fisher Scientific).

Dietary effects on colonocyte DNA damage and repair pathways
were determined by examining candidate rat genes from the 9 replication

and repair pathways listed in the Kyoto Encyclopedia of Genes and

Genomes (32) and other related genes (e.g., for DNA topological change

and chromatin remodelling) listed in Gene Ontology (33). Whole
genome expression arrays were used (Affymetrix Rat Gene 1.0 STArray,

Affymetrix). Labeling and hybridization protocols were performed using

100 ng of total RNA using the standard Affymetrix procedure without
the ribosomal RNA reduction step. The hybridized probe arrays were

stained with a streptavidin and phycoerythrin conjugate, scanned

(GeneArray scanner), and analyzed by Affymetrix Microarray Suite

software. The relative levels of the differentially expressed genes of
interest (as identified by microarray data analysis) were determined by

qRT-PCR on RNA that had been reverse transcribed (method described

in Supplemental Text; see Supplemental Table 3 for primer details).

Statistical analyses. Data on body, organ, and digesta weights, digesta

pH, and biochemistry are presented as the mean6 SEM for each treatment

group. The effect of treatments was determined by 1-way ANOVA and

differences between treatments were analyzed post hoc by Tukey’s honestly
significant difference test. Relationships betweenmeasures were determined

by Pearson correlation analysis. Analyses were performed using a SigmaStat

statistical software program (SigmaStat 2.0 for Windows, SPSS). For the
gene expression microarray array data, 1-way ANOVA and post hoc

pairwise comparisons using Tukey’s honestly significant difference test

were performed on the normalized gene expression data using R (R version

2.11.0, R Foundation for Statistical Computing). The gene expression

qRT-PCR datawere normalized (to the endogenous controls) and analyzed
for differential expression by the same method.

Principal components analysis (PCA) was carried out on normalized

array signal intensities from the microbiota microarray using the Genespring

7.3 software program (Agilent Technologies). P , 0.05 was considered
significant for all datasets.

Results

There were no significant differences in final body weight
between the treatment groups consuming the Western diet, and
body weights of all but the rats consuming W-HAMS and W-
HAMSB were significantly greater than for the rats fed C-LAMS
(Table 1). Group food intake (measured on a weekly basis) did
not differ between any of the treatments (data not shown). Cecal
tissue and digesta weights were significantly higher and digesta
pH was significantly lower in the W-HAMS and W-HAMSB
groups relative to the C-LAMS, W-LAMS, and W-LAW groups.
However, whereas cecal tissue weight was significantly higher,
digesta mass and pH were unaffected in rats fed W-HAW (Table
1). Although the weight of colonic tissue was unaffected by
dietary treatment, the weight of colonic digesta was significantly
higher in the W-HAMSB group than in all other groups. Colonic
digesta pHwas significantly lower in theW-HAMS andW-HAW
groups, but not the W-HAMSB group, relative to the C-LAMS,
W-LAMS, and W-LAW groups (Table 1). Dietary treatment did
not affect the weights of liver, spleen, and heart, but kidney
weight was significantly higher in the W-HAMSB and W-LAW
groups relative to the C-LAMS group (Table 1). Testicular
(epididymal) fat pad weight was significantly greater in the W-
LAW group than in the C-LAMS group (Table 1).

The cecal and colonic SCFA pools and hepatic portal venous
SCFA concentrations are presented in Table 2. The levels in the
cecum, colon, and portal vein did not differ significantly among
the C-LAMS, W-LAMS, or W-LAW groups. The total and
individual SCFA pools within the cecum were significantly
greater thanW-LAMS whenW-HAMS,W-HAMSB, or W-HAW

TABLE 1 Effects of including different sources of starch in a Western diet moderate in fat and protein
on final body, gut tissue, digesta, and organ weights, and digesta pH of rats1

Variables C-LAMS W-LAMS W-HAMS W-HAMSB W-LAW W-HAW

Body weight, g 479 6 11a 538 6 14b 523 6 8ab 525 6 17ab 558 6 10b 547 6 13b

Cecum weights, g

Tissue 1.22 6 0.08a 1.01 6 0.08a 1.80 6 0.13b 1.90 6 0.16b 1.13 6 0.09a 1.70 6 0.13b

Digesta 1.57 6 0.15a 1.36 6 0.11a 3.35 6 0.48b 3.97 6 0.35b 1.75 6 0.10a 2.36 6 0.27a

Cecum pH 6.79 6 0.10a 6.84 6 0.09a 6.34 6 0.11b 6.22 6 0.07b 6.68 6 0.07a 6.62 6 0.11a

Colon weights, g

Tissue 1.86 6 0.13 1.73 6 0.11 1.98 6 0.20 1.87 6 0.19 2.18 6 0.11 2.07 6 0.21

Digesta 1.79 6 0.23a 1.82 6 0.13a 2.25 6 0.22a 3.50 6 0.41b 1.81 6 0.18a 1.85 6 0.24a

Colon pH 6.74 6 0.06a 6.71 6 0.18a 6.12 6 0.05b 6.38 6 0.08ab 6.71 6 0.05a 6.28 6 0.12b

Mucus thickness, mm 600 6 50 680 6 50 550 6 40 580 6 50 590 6 40 600 6 60

Organ weights, g

Liver 16.0 6 0.5 17.8 6 0.8 17.5 6 0.6 18.5 6 1.3 18.7 6 0.6 17.6 6 0.8

Spleen 0.76 6 0.04 0.84 6 0.11 0.73 6 0.03 0.80 6 0.04 0.86 6 0.10 0.75 6 0.15

Heart 1.30 6 0.03 1.47 6 0.06 1.35 6 0.03 1.34 6 0.04 1.40 6 0.03 1.37 6 0.02

Kidney 1.34 6 0.03a 1.47 6 0.05ab 1.46 6 0.04ab 1.56 6 0.05b 1.55 6 0.04b 1.51 6 0.05ab

Epididymal fat 5.00 6 0.51a 7.43 6 0.72ab 6.42 6 0.43ab 7.27 6 0.83ab 8.03 6 0.40b 7.42 6 0.62ab

1 Values are mean 6 SEM, n = 10. Means in a row with superscripts without a common letter differ, P , 0.05. C-LAMS, control diet

containing low amylose maize starch; W-HAMS, Western diet containing high amylose maize starch; W-HAMSB, Western diet containing

butyrylated high amylose maize starch; W-HAW, Western diet containing high amylose wheat flour; W-LAMS, Western diet containing low

amylose maize starch; W-LAW, Western diet containing low amylose wheat flour.

834 Conlon et al.



was consumed. The W-HAMS, W-HAMSB, and W-HAW diets
also resulted in greater cecal acetate, propionate, butyrate, and
total SCFA pools than in the C-LAMS group, although these
were not always significant. The concentrations of SCFA in the
cecum were not significantly changed apart from propionate,
which was significantly higher for the W-HAW group than all
other groups. The relative proportions of individual SCFA in the
cecum also changed in response to diet. The percentage of total
SCFA as acetate was significantly lower (and the percentage of
butyrate significantly higher) for the W-HAMSB group relative
to the W-LAW and W-LAMS groups and the percentage of
propionate was significantly higher for the W-HAW group
relative to other groups. In the colon, significant differences in

SCFA pools in response to treatment were found for propionate,
which was significantly higher in the W-HAW group than in the
C-LAMS and W-LAMS groups. Colonic concentrations of
acetate, propionate, and total SCFA differed significantly. The
acetate concentration was lower in theW-HAMSB group than in
the C-LAMS and W-HAW groups. The propionate concentra-
tion was greater in the W-HAW group than in all other groups
and total SCFAwas greater in the W-HAW group than in the W-
HAMS and W-HAMSB groups. The concentrations of hepatic
portal venous acetate and butyrate were significantly higher in
rats fed W-HAMS and W-HAMSB, respectively, than in those
fed W-LAMS, and propionate concentrations were significantly
higher in rats fed W-HAMS and W-HAW.

TABLE 2 Effects of including different sources of starch in a Western diet moderate in protein and fat
on individual and total SCFA levels in cecal and colonic digesta, and hepatic portal vein plasma
of rats1

Variables C-LAMS W-LAMS W-HAMS W-HAMSB W-LAW W-HAW

Cecum SCFA

Pool, mmol

Acetate 94 6 14a 67 6 11a 188 6 32b 158 6 18b 107 6 15ab 151 6 22b

Propionate 16 6 2a 11 6 2a 33 6 4b 32 6 5b 16 6 2a 42 6 7b

Butyrate 62 6 7a 39 6 6a 136 6 26b 167 6 28b 69 6 7a 104 6 27b

Total 178 6 22a 121 6 18a 377 6 56b 369 6 51b 200 6 24ab 308 6 47b

Concentration, mmol/kg tissue

Acetate 75 6 6 65 6 7 72 6 8 59 6 3 78 6 7 80 6 10

Propionate 13 6 1a 10 6 1a 13 6 1a 12 6 1a 12 6 1a 22 6 3b

Butyrate 51 6 4 37 6 4 50 6 5 61 6 6 51 6 4 52 6 9

Total 144 6 9 117 6 11 143 6 10 135 6 9 146 6 11 161 6 15

Percentage of total, %

Acetate 52 6 2a 56 6 2a 50 6 2a 44 6 1b 53 6 1a 49 6 3ab

Propionate 9 6 1a 9 6 1a 9 6 1a 9.0 6 1a 8 6 0a 14 6 2b

Butyrate 35 6 2a 31 6 2a 35 6 3a 44 6 1b 35 6 1a 32 6 4a

Colon SCFA

Pool, mmol

Acetate 57 6 7 56 6 4 65 6 7 59 6 5 48 6 7 78 6 14

Propionate 9 6 1a 8 6 1a 12 6 2ab 14 6 2ab 9 6 1a 21 6 4b

Butyrate 24 6 4 26 6 3 28 6 7 45 6 6 26 6 7 33 6 7

Total 93 6 10 94 6 8 110 6 14 123 6 11 87 6 15 137 6 18

Concentration, mmol/kg tissue

Acetate 49 6 4a 47 6 3ab 42 6 3ab 30 6 2b 43 6 5ab 57 6 7a

Propionate 8 6 1a 7 6 1a 7 6 1a 7 6 1a 8 6 1a 15 6 2b

Butyrate 21 6 4 22 6 2 17 6 3 23 6 3 24 6 5 27 6 5

Total 81 6 7ab 78 6 5ab 70 6 5a 63 6 5a 78 6 11ab 103 6 11b

Percentage of total, %

Acetate 60 6 3ab 60 6 2ab 62 6 3a 49 6 2b 57 6 3ab 55 6 4ab

Propionate 10 6 1a 9 6 1a 10 6 1a 11 6 1a 10 6 1a 14 6 1b

Butyrate 25 6 3 27 6 2 23 6 3 36 6 2 28 6 3 26 6 4

Portal vein SCFA

Concentration, mmol/L

Acetate 399 6 14ab 338 6 23a 528 6 66b 465 6 36ab 405 6 43ab 449 6 42ab

Propionate 52 6 6ab 39 6 6a 71 6 10ab 95 6 14b 59 6 11ab 93 6 13b

Butyrate 223 6 30ab 166 6 15a 264 6 39ab 354 6 38b 204 6 29ab 251 6 61ab

Total 674 6 43a 542 6 40a 863 6 91b 914 6 81b 668 6 78ab 793 6 89ab

Percentage of total, %

Acetate 60 6 3 63 6 2 62 6 3 52 6 2 62 6 2 58 6 4

Propionate 8 6 1a 7 6 1a 8 6 1ab 10 6 1ab 8 6 1ab 12 6 1b

Butyrate 32 6 3 30 6 1 30 6 3 38 6 1 30 6 1 30 6 5

1 Values are mean 6 SEM, n = 9–10. Labeled means without a common letter differ, P , 0.05. C-LAMS, control diet containing low

amylose maize starch; W-HAMS, Western diet containing high amylose maize starch; W-HAMSB, Western diet containing butyrylated high

amylose maize starch; W-HAW, Western diet containing high amylose wheat flour; W-LAMS, Western diet containing low amylose maize

starch; W-LAW, Western diet containing low amylose wheat flour.
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Levels of ammonia and phenols within the cecal and colonic
digesta differed significantly between dietary treatments (Table 3).
W-HAMS, W-HAMSB, and W-HAW had similar effects on both
of the protein fermentation products, lowering concentrations
or pools significantly relative to one or more of the C-LAMS,
W-LAMS, and W-LAW treatments. No significant effects were
found for pools of ammonia in the cecum or pools of phenols in
the colon.

The number of SSB in colonic DNA (Fig. 1) was significantly
greater (by 70%) in rats fed W-LAMS than in those fed C-LAMS.
However, SSB numbers were significantly lower than for the
W-LAMS treatment when W-HAMS, W-HAMSB, or W-HAW,
but not W-LAW, was consumed.

The thickness of the colonic mucus layer did not significantly
differ between treatment groups (data not shown).

Significant inverse relationships were found between SSB and
the concentrations of SCFAwithin the hepatic portal vein (acetate:
R2 = 0.32, P = 0.04; propionate: R2 = 0.33, P = 0.04; butyrate:
R2 = 0.28, P = 0.07; total SCFA: R2 = 0.36, P = 0.02) and cecal
concentrations of butyrate (R2 = 0.40, P = 0.009) and total SCFA
(R2 = 0.40, P = 0.009) but not acetate (R2 = 0.25) or propionate
(R2 = 0.22). There were no significant relationships between SSB
and cecal SCFA pools or between SSB and colonic concentrations
or pools of SCFA. When pools of SCFA in the cecum and colon
were combined, an inverse relationship was found between total
SCFA and SSB (R2 = 0.46, P = 0.002). A positive relationship was
observed between SSB and the concentration of ammonia within
the colon (R2 = 0.40, P = 0.014) but not the cecum (R2 = 0.17).
There was no significant relationship with pools of ammonia
within the colon or cecum or with concentrations or pools of phe-
nols within the cecum or colon.

Different diets were associated with changes in expression of
some candidate DNA damage and repair genes. Box plots
depicting the impact of diet on the expression of 8 genes
associated with DNA damage, repair, and cell growth displaying
significant alteration by one or more of the diets, as detected by
microarray, are shown in Figure 2. The expression ofMdm2was
significantly downregulated by W-HAMS and W-HAMSB com-
pared to C-LAMS.Mdm2 was also downregulated in rats by W-
HAMSB compared to W-LAWandW-HAW. When the effects of
W-HAMSB were compared to the effects of W-LAMS, W-LAW,
and W-HAW, there was significant downregulation of Top1,

Parg, andMsh3. Furthermore,Msh3was also downregulated by
W-HAMS compared with W-LAMS, W-LAW, and W-HAW. In
contrast, W-HAMSB resulted in the significant upregulation of
Gmnn, Cebpa, and Ung. Expression of Gmnn was significantly
higher in rats consuming W-HAMSB than those receiving the C-
LAMS, W-HAMS, and W-HAW diets. Cebpa expression was
significantly higher in the W-HAMSB group than in the W-
HAMS group and Ung was significantly upregulated in the W-
HAMSB group compared with the W-LAMS and W-HAW
groups. When the W-HAW treatment was compared to the C-
LAMS and W-HAMSB diets, the greatest DNA damage and
repair-related transcriptional response was the significant down-
regulation ofRere. The above microarray differential expression
data were confirmed by qRT-PCR (Supplemental Fig. 1), except
for Msh3, where differences were reduced and only the elevated
expression in the W-LAW group was clearly evident.

Fecal microbial population profiles were determined using a
custom phylogenetic microarray and PCA showed that the
profiles fell into 3 defined groups: C-LAMS and W-LAMS, W-
HAMS and W-HAMSB, and W-LAWand W-HAW (Supplemen-
tal Fig. 2). A heat map showing some of the major differences in
abundance of selected species and genera in response to diet is
presented in Supplemental Figure 3. Lactic acid producing
bacteria of clostridial cluster XVI were in significantly higher
abundance in the W-HAW group compared to the WHAMS and
W-HAMSB groups, and Eubacterium ventriosum andRoseburia
cecicola, which belong to clostridial cluster XIVa, were signif-
icantly higher in both W-HAMS and W-HAMSB groups.
Bacteria of clostridial cluster IV, Spirochaeta sp., and the
uncultured gram-negative Cytophaga-Flavobacteria-Bacteroi-
des group were also significantly higher in abundance in rats
consuming the RS diets compared with the C-LAMS and W-
LAMS diets (data not shown).

Discussion

The current data confirm our earlier findings of more colonocyte
SSB in rats fed diets high in protein and also that HAMS and
HAMSB opposed this damage (6–9,24). These data are consis-
tent with findings from population studies showing increased
CRC risk with greater fat and protein consumption but a

TABLE 3 Effects of including different sources of starch in a Western diet moderate in protein and fat
on ammonia and phenol levels in cecal and colonic digesta of rats1

Variables C-LAMS W-LAMS W-HAMS W-HAMSB W-LAW W-HAW

Cecum ammonia

Pool, mmol 24.0 6 3.7 15.2 6 2.4 13.6 6 3.2 16.4 6 1.6 19.3 6 2.9 17.5 6 2.0

Concentration, mmol/kg tissue 15.6 6 2.7a 13.0 6 1.7a 4.8 6 0.7b 6.7 6 0.7b 13.7 6 1.5a 8.9 6 0.8b

Cecum phenols

Pool, mmol 10.6 6 1.9a 8.0 6 2.2ab 4.9 6 0.8b 5.1 6 0.5b 7.8 6 1.6ab 4.2 6 0.7b

Concentration, mmol/kg tissue 8.5 6 1.3a 7.7 6 1.9a 2.0 6 0.2b 2.0 6 0.2b 5.7 6 1.1a 2.4 6 0.4b

Colon ammonia

Pool, mmol 10.0 6 0.9a 12.1 6 2.2a 3.9 6 1.2b 6.2 6 1.0b 9.8 6 0.9a 4.9 6 1.0b

Concentration, mmol/kg tissue 7.8 6 0.6a 9.5 6 0.9a 2.3 6 0.6b 3.3 6 0.6b 8.9 6 0.5a 3.4 6 0.7b

Colon phenols

Pool, mmol 5.8 6 1.0 5.1 6 0.9 3.1 6 1.2 2.4 6 0.7 4.3 6 0.7 3.5 6 1.6

Concentration, mmol/kg tissue 5.3 6 1.2a 4.4 6 0.9a 2.4 6 1.2ab 1.4 6 0.3b 4.0 6 0.8a 2.5 6 1.1ab

1 Values are mean 6 SEM, n = 4–10. Means in a row with superscripts without a common letter differ, P , 0.05. C-LAMS, control diet

containing low amylose maize starch; W-HAMS, Western diet containing high amylose maize starch; W-HAMSB, Western diet containing

butyrylated high amylose maize starch; W-HAW, Western diet containing high amylose wheat flour; W-LAMS, Western diet containing low

amylose maize starch; W-LAW, Western diet containing low amylose wheat flour.
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lowering of risk by dietary fiber. The present study adds new
knowledge in showing that W-HAW, but not W-LAW, also
significantly lowered SSB compared to W-LAMS, although the
W-HAW and W-LAW groups were not significantly different
from each other. Previous animal studies on diet and CRC have
generally used genotoxic agents to induce damage (e.g., azoxy-
methane). In keeping with the current data, they have shown
that aberrant crypt foci or adenoma formation was increased by
high dietary protein and that this was opposed by RS (13–16).
The mechanisms behind increased SSB and other genetic damage
probably involve increased exposure to cytotoxic agents gener-
ated by bacteria. One possibility for proteins containing heme
iron (such as red meat) is the formation of DNA adducts through
bacterial generation of damaging reactive species (34). However,
casein (fed in this study) induces damage but does not contain
heme, suggesting involvement of other genotoxic protein pro-
ducts such as ammonia and phenols (6,24). Higher dietary
protein can raise large bowel digesta ammonia in rats (35) and
increase CRC risk through enhancing colonocyte proliferation
(36). Ammonia is absorbed from the colon in its unprotonated
form (i.e., at more alkaline pH). Our earlier studies showed that
cecal ammonia level was inversely related to pH, consistent with
diminished absorption. In the present study, SSB correlated
positively with colonic digesta ammonia concentration. The
apparent anomaly between current and previous findings can
be reconciled by the fact that the levels throughout the large
bowel may be influenced by the type of dietary fiber (35). There
was no significant relationship between SSB and large bowel
phenol levels, although levels of ammonia and phenols were
significantly lowered by the RS treatments.

Recently, we showed dose-dependent changes in circulating
concentrations of several CRC-related biomarkers in rats fed
HAMS and red or white (chicken) meat (18). The present data,
demonstrating colonic transcriptional changes in genes associ-
ated with DNA damage and repair, indicate that these previous
findings may reflect altered gene expression. The expression of
genes involved in DNA damage recovery were downregulated in

rats fed W-HAMSB. These were Mdm2, which encodes a key
negative regulator of the p53 tumor suppressor protein that is
overexpressed in neoplasia (37); Parg, which is stimulated by
DNA strand breaks (38), markers of topological stress, e.g., Top1
(39); and Gmnn, which can kill cancer cells without harming
normal ones (40). In contrast, expression of the base-excision
repair pathway gene Ung and the cell cycle damage checkpoint
gene Cepba were higher in rats fed HAMSB. The changes suggest
that protective mechanisms were operating through different reg-
ulatory pathways for W-HAWandW-HAMS and /or W-HAMSB
with differential expression of Mdm2, Top1, Parg, Gmnn, and
Ung. The HAW diet had the most significant impact on the
chromatin remodeling gene, Rere. These results suggest there are
fewer interruptions to DNA integrity by the moderate fat/protein
base with the inclusion of HAMS, HAMSB, or HAW to the diet.
For W-HAMSB, the underlying protective mechanism probably
involves the fine maintenance of genomic homeostasis while pre-
venting replication of damaged cells, whereas for W-HAW, chro-
matin restructuring seems to be a key feature, suggesting that
protection could occur at a different stage of the cell cycle process.

This study was carried out over 3 mo and confirms that
dietary effects on large bowel SCFA and DNA damage were
sustained in the longer term. As expected, SCFA levels were
highest in rats fed RS and lowest in those fed LAMS, consistent
with its high digestibility. Large bowel SCFA were intermediate
in rats fed H-LAW, supporting the suggestion that RS is higher in
whole grain foods compared with refined ones (41). This may
contribute to the protective effect of whole grains in lowering the
risk of diet-related disease through the generation of SCFA (42).
However, for maximal effect, a high amylose content may be
necessary (43). Digesta total SCFA and butyrate were highest in
rats fed W-HAMSB, consistent with acylated starches supplying
SCFA both as the esterified acid and through fermentation of
undigested starch. There were substantial differences between
W-HAWand the other RS types. Changes in SCFA and pH were
distributed more evenly through the large bowel in rats fed W-
HAW. This may be of some value, because most chronic large
bowel disease (including CRC) is localized in the distal colon
and rectum, where SCFA supply is lowest (44). It has been sug-
gested that a combination of RS plus nonstarch polysaccharide
(NSP) is optimal in ensuring the supply of SCFA to these viscera
(45). Our data support this, because HAW contained both fiber
polysaccharides integrally, whereas the other diets (apart from
W-LAW) required the addition of fiber. This may also explain a
difference in SCFA between W-HAWand other RS treatments –
the significantly higher propionate levels. The fermentation of
NSP mixtures gives different SCFA patterns relative to when
they are fed separately (46) and HAW had an altered NSP
content as well as more amylose.

In contrast to earlier studies, where higher dietary protein
induced a dose-dependent thinning of the mucus layer (7), there
was no effect of diet on mucus barrier thickness. This may reflect
the higher level of indigestible matter (as NSP) in this study,
because indigestible styrofoam particles increase small intestinal
mucin secretion in rats (47). The cereal NSP in the present study
might have similar effects.

Feeding of RS alters the composition of the large bowel
microbiota (48–51) and HAMS can function as a prebiotic in
animals (48). In humans, a diet high in RS and NSP raises fecal
levels of a range of bacteria, including Ruminococcus bromii,
thought to be important for starch degradation and SCFA
production (49). In this study, phylogenetic array analysis
followed by PCA showed that the gut microbiota profiles fell
into 3 distinct groupings. One consisted of the C-LAMS and W-

FIGURE 1 Effects of including different sources of starch in

Western diets moderate in protein and fat on DNA SSB (comet assay

tail moments) in colonocytes of rats. Values are mean 6 SEM, n = 9–

10. Values without a common letter differ, P , 0.05. C-LAMS, control

diet containing low amylose maize starch; SSB, single-strand break;

W-HAMS, Western diet containing high amylose maize starch; W-

HAMSB, Western diet containing butyrylated high amylose maize

starch; W-HAW, Western diet containing high amylose wheat flour;

W-LAMS, Western diet containing low amylose maize starch; W-

LAW, Western diet containing low amylose wheat flour.
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LAMS treatments, suggesting relatively little effect of increasing
the fat and protein content of the diet on the large bowel micro-
biota. The profiles of the W-HAMS– andW-HAMSB–treated rats
also clustered together, indicating little effect of the extra
butyrate delivered by HAMSB relative to HAMS. The micro-
biota profiles of rats receiving the wheat treatments comprised
the third grouping. These groupings suggest the feeding of RS
alters the relative proportions of the gut microbiota but also that
the further addition of mixed forms of NSP from a whole meal
flour leads to other changes in the microbiota profiles. Our an-
alyses also revealed a common feature of the microbial profiles

associated with the RS diets: the high abundance of clostridial
cluster IV bacteria (except Faecalibacterium prausnitzii). The
butyrate-producing ability of many bacteria in this cluster is
expected to have contributed to the increased butyrate and SCFA
produced in response to RS diets.

There has been debate around the potential for greater SCFA
production through fermentation to induce a colonic epithelial
hyperproliferation and, hence, contribute to CRC. This propo-
sition is supported by the greater incidence of polyps in mutant
CRC-prone mice when fed fermentable NSP as apple pomace
(52). However,.90% of those tumors were in the small intestine

FIGURE 2 Boxplots showing ef-

fects of including different sources

of starch in Western diets moder-

ate in protein and fat on colonic

gene expression of Mdm2 (A),

Top1 (B), Msh3 (C), Ung (D), Rere

(E), Cebpa (F), Gmnn (G), and Parg

(H) in rats. Standard gene symbols

are used (32,33). The limits of the

boxes represent the lower and

upper quartile range, and the solid

line within the box represents the

median value. Whiskers extend to

the lowest and highest values

within 1.5 times the quartile range

and values outside this range are

shown as circles. C-LAMS, control

diet containing low amylose maize

starch (n = 5); W-HAMS, Western

diet containing high amylose maize

starch (n = 8); W-HAMSB, West-

ern diet containing butyrylated high

amylose maize starch (n = 9); W-

HAW, Western diet containing

high amylose wheat flour (n = 8);

W-LAMS, Western diet containing

low amylose maize starch (n = 7);

W-LAW, Western diet containing

low amylose wheat flour (n = 6).
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and are not relevant to CRC. The current data and those from
other studies from this and other laboratories show that the changes
due to RS consumption are consistent with improved bowel health.
A previous short-term study with HAW in rats showed higher large
bowel SCFA levels and the current data suggest that this new RS
source HAWoffers benefits similar to HAMS and HAMSB.
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