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ABSTRACT Hahella sp. strain CCB-MM4 is a halophilic bacterium isolated from estu-
arine mangrove sediment. The genome sequence of Hahella sp. CCB-MM4 provides
insights into exopolysaccharide biosynthesis and the lifestyle of the bacterium thriv-
ing in a saline mangrove environment.

Hahella sp. strain CCB-MM4 was isolated from soil samples obtained from Matang
Mangrove Forest located in Perak, Malaysia, in September 2014 (1). The genus

Hahella was first discovered in 2001; thus far, only three species that were isolated from
a marine environment, namely, Hahella chejuensis (2), Hahella ganghwensis (3), and
Hahella antarctica (4), have been described. Among them, the genome of H. chejuensis
has been sequenced and published (5), while the genome of H. ganghwensis was
registered in the NCBI database. Phylogenetic analysis revealed that strain CCB-MM4 is
most closely related to H. ganghwensis, with a 16S rRNA gene sequence similarity of
98.43%, as analyzed using the EzTaxon server (6).

CCB-MM4 was cultured aerobically at 30°C with agitation in artificial seawater
medium (7) until late-logarithmic phase, and the culture was used for genomic DNA
extraction using the DNeasy blood and tissue kit (Qiagen, USA). A library for sequencing
was constructed using the Nextera XT DNA sample preparation kit (Illumina, USA). The
library was sequenced on an Illumina MiSeq instrument with 250-bp paired-end
chemistry, and a sequencing coverage of more than 100-fold was obtained. De novo
assembly of the reads was performed using SPAdes version 3.9.0 (8). The genome of
Hahella sp. CCB-MM4 was assembled into 161 scaffolds, and the N50 value was
232,349 bp. The draft genome is 6,663,740 bp long, with an average G�C content of
49.7%. Genome annotation was accomplished using the Rapid Annotation using
Subsystem Technology server and the NCBI Prokaryotic Genome Annotation Pipeline
(9, 10). Annotation of the genome identified 6,110 predicted genes, of which 6,050
were protein-coding genes, and the remaining 60 were RNA genes (57 tRNAs and one
16S-23S-5S rRNA operon). Of the protein-coding genes predicted, 69.14% (4,184) were
assigned a putative function and 30.84% were annotated as hypothetical proteins.

H. chejuensis is known for its ability to produce a large amount of extracellular
polysaccharides (2, 5). Open reading frame prediction revealed the presence of genes
related to exopolysaccharide synthesis in the genome of CCB-MM4. Genes encoding
key enzymes involved in alginate biosynthesis, including mannose-1-phosphate gua-
nylyltransferase, phosphomannomutase, and GDP-mannose 6-dehydrogenase, were
detected in the genome. A group of genes responsible for alginate polymerization and
secretion, alg8, alg44, algE, algG, algK, and algL (11), were also observed in the
CCB-MM4 genome. The synthesis of extracellular polysaccharides enables bacteria
to form biofilms and may confer an additional survival advantage in withstanding
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environmental stresses (12). Ectoine and hydroxyectoine biosynthesis is triggered in
response to high or changing salinity, which enables halophiles to cope with the
changes in osmotic pressure and survive under stress environments (13, 14). Ectoine
and hydroxyectoine biosynthesis genes, including those for diaminobutyrate-2-
oxoglutarate transaminase, L-2,4-diaminobutyric acid acetyltransferase, ectoine hy-
droxylase, and L-ectoine synthase, were annotated in the CCB-MM4 genome. An-
notation also revealed that the genome of CCB-MM4 harbors genes encoding
enzymes that are associated with cellulose hydrolysis (cellulase, �-glucanase, en-
doglucanase, and �-glucosidase) and chitin and N-acetylglucosamine utilization, as
well as complex carbohydrate utilization genes. The genome data of Hahella sp.
CCB-MM4 contribute to a better understanding of the biological potential of
Hahella and will facilitate the uncovering of the industrial usefulness of this strain.

Accession number(s). This whole-genome shotgun project can be accessed at
DDBJ/EMBL/GenBank under the accession no. MRYI00000000.
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