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Abstract

Aims Machine learning (ML) is widely believed to be able to learn complex hidden interactions from the data and has the
potential in predicting events such as heart failure (HF) readmission and death. Recent studies have revealed conflicting results
likely due to failure to take into account the class imbalance problem commonly seen with medical data. We developed a new
ML approach to predict 30 day HF readmission or death and compared the performance of this model with other commonly
used prediction models.
Methods and results We identified all Western Australian patients aged above 65 years admitted for HF between 2003 and
2008 in the linked Hospital Morbidity Data Collection. Taking into consideration the class imbalance problem, we developed a
multi-layer perceptron (MLP)-based approach to predict 30 day HF readmission or death and compared the predictive perfor-
mances using the performance metrics, that is, area under the receiver operating characteristic curve (AUC), area under the
precision–recall curve (AUPRC), sensitivity and specificity with other ML and regression models. Out of the 10 757 patients
with HF, 23.6% were readmitted or died within 30 days of hospital discharge. We observed an AUC of 0.55, 0.53, 0.58, and
0.54 while an AUPRC of 0.39, 0.38, 0.46, and 0.38 for weighted random forest, weighted decision trees, logistic regression,
and weighted support vector machines models, respectively. The MLP-based approach produced the highest AUC (0.62)
and AUPRC (0.46) with 48% sensitivity and 70% specificity.
Conclusions We show that for the medical data with class imbalance, the proposed MLP-based approach is superior to other
ML and regression techniques for the prediction of 30 day HF readmission or death.
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Introduction

Heart failure (HF) is a global public health problem affecting
millions of people and has high hospital readmission rates
and a growing prevalence.1,2 The cost of in-hospital treat-
ment of HF absorbs a big portion of healthcare budgets.3,4

Some HF readmissions result from an early discharge from
hospital, bad discharge planning, and poor in-hospital care.5

Some of these may be considered as avoidable readmissions.

There is now motivation to identify, at the time of discharge,
patients who are at risk of readmission.6 Models that predict
readmission can stratify high-risk patients leading to increase
in the research in predicting HF readmissions.

Healthcare business models are gradually shifting towards
data-driven systems.7 This is because the availability of large
amounts of medical data has the potential to be used in
new ways to gain insights on how to improve healthcare
outcomes. Machine learning (ML) techniques have already
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been applied for various diseases.8 Previous studies have
complemented administrative data with clinical information
to develop predictive models. However, clinical data are not
always integrated electronically in health databases in
many jurisdictions, making it problematic to apply predictive
models derived from clinical data. Moreover, medical data
often are limited by class imbalance where the majority of
the data belong to one outcome event resulting in poor
performance of prediction models and incongruent results
questioning the utility of ML techniques.9–15 Lastly, most
ML studies have used area under the receiver operating
characteristic curve (AUC) as the only performance metric
to assess the model performance. It was reported in Davis
and Goadrich16 that precision–recall curves are better for
highly imbalanced datasets.

In our study, we evaluated different ML models for the
prediction of 30 day HF readmission or death using a linked
administrative health dataset with the aim to address the
class imbalance problem seen in medical datasets. We
hypothesized that with the right choice of ML algorithm, a
better prediction can be achieved than with the standard
regression methods.

Methods

Cohort and data sources

We obtained extracts of linked data from two core datasets
[Hospital Morbidity Data Collection (HMDC) and mortality

database] of the Western Australian Data Linkage System.17

This is a whole-of-population record linkage system with
dynamic linkages based on probabilistic matching algorithms
between multiple core datasets. Data are maintained by the
Western Australian Department of Health and supplied
by hospitals under mandatory reporting rules and laws. A
detailed description of the datasets and cohorts that supplied
this study has been reported previously.18

We identified patients in the HMDC extract above 65 years
who were residents of Western Australia and were admitted
to any hospital in Western Australia with a principal discharge
diagnosis of HF (International Classification of Diseases, 10th
Revision, Australian Modification Code I50) in 2003–2008
(Figure 1). The age limit was applied to capture complete
medication history data (deemed necessary). As our patients
aged 65 years or more own a concession card, the use of a
concession card for the purchase of medicine gets recorded
automatically into the Pharmaceutical Benefits Scheme
(PBS) data, ensuring robust capture of medicine data in this
age group. Patient characteristics were obtained from these
admissions. Co-morbidities and HF history were identified
by looking back 20 years from the 2003–2008 HF admissions,
while the outcome of death or 30 day readmissions for HF
were identified by looking forward from the initial HF admis-
sions. Data on history of medication use and out-of-hospital
services were obtained from linked records from the PBS
and Medicare Benefits Schedule, respectively. As the ejection
fraction of HF patients is not routinely collected in the admin-
istrative data, we were unable to subclassify the subtypes of
HF. The PBS dataset contains the dispatch of medications
such as beta-blockers [Anatomical Therapeutic Chemical

Figure 1 Cohort identification flow chart. The final cohort contains 10 757 HF patients admitted to WA hospitals in 2003–2008. HF, Heart failure; WA,
Western Australia.
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Table 1 Characteristics of HF patients in the study cohort

Characteristic

Count (percentage)

Alive and non-readmitted within
30 days

Readmitted or dead within
30 days

Total number of HF patients 8211 (76.3) 2546 (23.7)
Age (years), mean (SD) 81.1 (7.6) 83.1 (7.6)
Male (%) 4028 (49.0) 1247 (49.0)
Indigenous status: Aboriginal or Torres Strait Islander (%) 141 (1.7) 35(1.4)
History of heart failure 3642 (44.3) 1422 (55.8)
Length of stay (days), mean (SD) 10.39 (15.9) 16.22 (46.8)
Co-morbidities (%)

Ischaemic heart disease 4506 (54.9) 1457 (57.2)
Hypertension 5497 (66.9) 1751 (68.8)
Atrial fibrillation 3398 (41.4) 1102 (43.3)
Diabetes 2458 (29.9) 806 (31.6)
Chronic obstructive pulmonary disease 2240 (27.3) 783 (30.7)
Peripheral vascular disease 1547 (18.8) 549 (21.5)
Stroke 1014 (12.3) 366 (14.4)
Dementia 545 (6.6) 270 (10.6)
Depression 691 (8.4) 272 (10.7)
Cancer 2811 (34.2) 934 (36.7)
Chronic kidney disease 2027 (24.7) 795 (31.2)
Cardiogenic shock 68 (0.8) 30 (1.1)
Cardiomyopathy 344 (4.2) 115 (4.5)

SEIFA (%)
5th quintile (least disadvantage) 552 (6.7) 182 (7.1)
4th quintile 1398 (17.0) 439 (17.2)
3rd quintile 1450 (17.6) 474 (18.6)
2nd quintile 1810 (22.0) 555 (21.8)
1st quintile (highest disadvantage) 3001 (36.5) 896 (35.2)

ARIA (%)
Major cities of Australia 4247 (51.7) 1334 (52.4)
Inner regional Australia 2514 (30.6) 692 (27.1)
Outer regional Australia 897 (10.9) 327 (12.8)
Remote Australia 330 (4.0) 118 (4.6)
Very remote Australia 223 (2.7) 75 (2.9)

History of drugs in the last 6 months (%)
No supply of BB or RAASi 2298 (28.0) 731 (28.7)
1 or more supplies of RAASi only 3249 (39.6) 1097 (43.1)
1 or more supplies of BB only 741 (9.0) 205 (8.0)
1 or more supplies of both BB and RAASi 1518 (18.5) 411 (16.1)

At least one visit to health professionals in the last 6 months
GP 6929 (84.4) 2131 (83.7)
Specialist 3980 (48.8) 1079 (42.4)
Diagnostic 6556 (79.8) 2028 (79.6)
Allied Health 1384 (16.8) 353 (13.9)

At least one emergency admission in the last 6 months 3591 (43.7) 1303 (51.1)
Charlson Comorbidity Index score, mean (SD) 4.2 (3.0) 4.8 (3.1)
At least two supplies of ATC drugs in the last 6 months

Alimentary tract and metabolism 4868 (59.3) 1660 (65.2)
Blood and blood forming organs 3835 (46.7) 1183 (46.5)
Cardiovascular system 7190 (87.6) 2251 (88.4)
Dermatologicals 730 (8.9) 253 (9.9)
Genito urinary system and sex hormones 388 (4.7) 123 (4.8)
Systemic hormonal preparations, excluding sex hormones and

insulins
974 (11.9) 356 (14.0)

Antiinfectives for systemic use 3101 (37.8) 1071 (42.1)
Antineoplastic and immunomodulating agents 276 (3.4) 111 (4.3)
Musculo-skeletal system 2390 (29.1) 770 (30.2)
Nervous system 4883 (59.5) 1674 (65.7)
Antiparasitic products, insecticides, and repellents 243 (2.9) 79 (3.1)
Respiratory system 1977 (24.0) 616 (24.2)
Sensory organs 1950 (23.7) 656 (25.8)

Readmission or death within 30 days 2546 (23.6)
Readmission within 30 days (emergency only) 1121 (10.4)
Death within 30 days 1574 (14.6)

ARIA, Accessibility/Remoteness Index of Australia; ATC, Anatomical Therapeutic Chemical Index; BB, beta-blocker; GP, general practitioner;
HF, heart failure; RAASi, renin–angiotensin–aldosterone system index; SD, standard deviation; SEIFA, Socio-Economic Indexes for Areas.
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(ATC) Code C07AB], angiotensin-converting enzyme inhibitors
(ATC Code C09AA), and angiotensin receptor blockers (ATC
Code C09CA)].

Data preprocessing

The preprocessing of HMDC admission records involved the
following steps (Figure 1):

(1) First, we separated the admissions during the period of
interest (2003 to 2008) from historic data and follow-
up records.

(2) Admissions may contain multiple records for each patient.
Some of these records are transfer admissions (patient
transferred from one hospital to another). Two consecu-
tive admission records were defined as a transfer if the ad-
mission and separation (discharge) dates were within
1 day of each other. If so, these were merged into a single
hospital admission. This left us with 248 389 patients.

(3) Next, we identified and extracted only the HF admissions
(index HF admissions). We also excluded patients who
were not residents of Western Australia and were left
with 12 811 patients.

(4) We then applied an age limit and excluded patients aged
less than 65 years. This reduced the number of patients
to 10 757.

(5) Finally, we linked the cohort from Step 4 with matching
records of emergency department visits, death records,
medications, and out-of-hospital care (e.g. general prac-
titioner visits) to create the linked study database.

Extraction of features (variables)

We extracted all relevant available features for our HF cohort,
from the linked study database (Table 1). There was a total
of 47 variables, which included patient demographics,
admission characteristics, medical history (co-morbidities),
visits to emergency departments, history of medication use,
healthcare services out of hospital, and death. The continuous
variables such as age and length of stay were normalized to
zero mean and unit variance, and the categorical variables
were encoded as one-hot-encoding vectors before using as
inputs to the prediction models.

Model description

Multi-layer perceptron
In short, a multi-layer perceptron (MLP) is a feedforward arti-
ficial neural network with an input layer, at least one hidden
layer, and an output layer.19 Every node in the input layer is
fully connected to all the nodes of the hidden layer. Similarly,
all the nodes of the hidden layer are fully connected to the
nodes of the output layer as shown in Figure 2. The informa-
tion flows from the input layer, through the hidden layers,
towards the output layer. The network uses nonlinear trans-
formations to learn high-level abstractions in the data to
build the predictive model. The number of hidden layers,
number of nodes in the hidden layers, the type of activation
function, and the loss function are among the hyper-
parameters, which need to be adjusted for every problem.

Figure 2 Our three-layer multi-layer perceptron network with one hidden layer ‘h’ containing 50 hidden nodes. ‘W’ represents the node weights, ‘b’
denotes the node biases, ‘x’ is the input feature vector, and ‘y’ represents the binary output.
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We used grid search approach to tune the hyper-parameters
of the MLP network. We used the traditional grid search for
hyperparameter optimization, where stepwise exhaustive
searching through a range of parameter values was consid-
ered. For the number of layers, we used a range from 5 to
50, and for the number of neurons, we used a range from 5
to 100 with the step size being 5 in both cases. The number
of training epochs was selected by observing the minimum
validation error. For our study, we modelled an MLP network
containing an input layer with the number of nodes equal to
the total number of features available, one hidden layer of 50
nodes, and an output layer of one node. All the hyper-
parameters were chosen by a trial and test method. We
chose a rectified linear unit as the non-linear transformation
for the hidden layer and a sigmoid for the output layer. The
number of nodes (n = 50) in the hidden layer were also
empirically chosen to yield the best performance.

The class imbalance problem
Only 24% of the HF patients were readmitted or died within
30 days of the index HF hospital discharge in our study
confirming the highly imbalanced data (i.e. a low proportion
of outcome events compared with patients who did not
experience the outcome) often seen with medical data. To ad-
dress the class imbalance seen with our dataset, we set the
minority class weight to three times the weight of the majority
class (based on the imbalance in our data) to produce a model
with better generalization. These class weights are used dur-
ing the training of MLP model to increase the misclassification
cost of minority class samples. This makes the training process
pay more attention towards the minority class samples, thus
increasing the sensitivity of the prediction model.

Splitting of study cohort
We divided our cohort into three random sets of data to build
a generalized model for 30 day HF readmission or death. We
kept 70% of the data for the training of the prediction model,
15% of the data were used for the validation of the model
during the development phase, and the remaining 15% of
the data were used to test the performance of the model
(over unseen data). The proportion of minority class samples
in the training, validation, and testing datasets was kept
similar to that in the original dataset. The performance of
the model was tested using four performance measures, that
is, AUC, area under the precision–recall curve (AUPRC),
sensitivity, and specificity. We report sensitivity and specific-
ity because the prediction of readmission/death is as impor-
tant as the prediction of no readmission or death.

We compared our MLP-based approach with a clinical
score called LACE, the standard statistical method (logistic
regression), and other ML algorithms such as decision tree,
random forest (RF), and support-vector machine (SVM) tech-
niques for predicting 30 day HF readmission or death in our
cohort.10 The LACE score uses length of hospital stay (L),

acuity of admission [A (emergency or not)], Charlson
Comorbidity Index score (C), and number of emergency visits
in the last 6 months (E) of the patient to predict the risk of
30 day readmission or death.20 The machine learning
approaches predicted the distinct classes in classification
mode. The quantitative output of the regression approaches
was dichotomized into distinct classes by applying the most
commonly used threshold of 0.5 to the output probabilities.
We also developed the weighted versions of the decision
tree, RF, and SVM models, which deal with the class imbal-
ance by assigning more weight to the minority class samples.
We tested a wide range of hyper-parameters such as depth
of the tree, minimum number of samples to split a node,
and number of trees in the RF algorithm using grid search.
The validation set was evaluated using the validation error
during the training process. We present the results of the
hyper-parameter configuration, which gives the best perfor-
mance for each algorithm. Lastly, we compared the reported
performance of three of the best four models used by the
Frizzell et al., that is, logistic regression with backward
stepwise selection, logistic regression with least absolute
shrinkage and selection operator (LASSO), and RF model with
their performance on our data.

Software packages
All the programming codes used in this work were written in
Python programming environment v3.6. The MLP-based
approach was implemented using the Keras Library v2.1.5
with Tensor Flow backend v1.8.0. We used the scikit-learn
library v0.19.1 for developing all other prediction models
including the logistic regression. To create the models, we
set the corresponding parameter, namely, class_weights in
the scikit library implementation.

Results

We had access to the patients’ demographics and socio-
economic indicators, medical history, out-of-hospital services,
medication history, and deaths. Table 1 presents the charac-
teristics of the patients in our cohort. Of the 10 757 patients
with HF, 2546 (23.6%) were readmitted or died within 30 days
of the index HF hospital discharge. The mean age of HF
patients was 82 (SD: 7.6) years with approximately an equal
proportion of men and women (i.e. 49 vs. 51%). More than half
of patients (55%) had ischaemic heart disease. Other common
co-morbidities included hypertension (67%), atrial fibrillation
(42%), diabetes (30%), chronic obstructive pulmonary disease
(28%), and chronic kidney disease (26%). The average length
of hospital stay during the index HF admission was 11.7 (SD:
26.7) days. The out-of-hospital services included visits to gen-
eral practitioners (84%), pathologists (80%), specialists (47%),
and allied health professionals (16%). About half of the
patients (46%) had at least one emergency admission within
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the past 6 months of the index admission. The mean Charlson
Comorbidity Index score was 4.3 (SD: 3.0). The socio-economic
(Socio-Economic Indexes for Areas) and remoteness (Accessi-
bility/Remoteness Index of Australia) variables, provided by
the Australian Bureau of Statistics, show that 3897 (36%) HF
patients belonged to the most disadvantageous quintile of the
cohort and 5581 (52%) HF patients were from the major cities
of Western Australia. The Socio-Economic Indexes for Areas
values are based on education, occupation, and economic
resources of the residents of an area using information from
the five yearly census.21 The accessibility/remoteness index
divides Australia into categories of remoteness based on the
relative access to services.22

The performance of different models for the prediction of
30 day HF readmission or death on our dataset is provided
in Table 2. While the standard logistic regression model
produced an AUC of 0.57 and an AUPRC of 0.45 with 62.26%
accuracy, 48.37% sensitivity, and 66.85% specificity, the ML
models produced AUC in the range 0.50–0.63, AUPRC in the
range 0.31–0.46, accuracy ranging from 64.93 to 76.39%,
and specificity in the range 70.01 to 99.75%. The weighted
versions of the prediction models consistently outperformed
their non-weighted counterparts on our data. Of note, the
MLP-based approach outperformed the standard logistic
regression model for all predictive performance measures.
In Table 3, we present the results reported by Frizzell et al.10

and compare with the performance of the reproduced
statistical and ML models used in their study using our data.
The AUCs of RF, logistic regression, and LASSO regression-
based models reported by Frizzell et al. were 0.61, 0.62, and
0.62, respectively. With our data, these models yielded AUCs
of 0.50, 0.56, and 0.64, respectively. Note the difference in
the results of the LR and RF models between Tables 2 and 3.
Table 3 provides the results, which are based on the specifica-
tions provided by Frizzell et al.10 (page 2 of the supplementary
appendix), while the results in Table 2 are based on our own
models. This difference appears as an AUC of 0.576 and
0.501 for LR and RF, accordingly, in Table 2 where we used
our own models and an AUC of 0.56 and 0.50 for LR and RF
models, accordingly, in Table 3 based on the LR and RF param-
eters provided by Frizzell et al.10 Of note, our newly built

MLP-based approach yielded the best AUC of 0.62 with
48.42% sensitivity and 70.01% specificity on our data.

Discussion

In our study, we investigated different ML-based models to
predict 30 day HF readmission or death using the linked
administrative health data. We report improved performance
by using the MLP approach compared with the standard
regression model and other ML-based predictive models. In
addition, in our study, we have also taken into consideration
the class imbalance issue, which is commonly encountered
with medical data.

Several attempts have been made previously to build
readmission models for HF taking into account the common
limitations seen with this type of datasets. Koulaouzidis
et al.23 used the naive Bayes classifier on telemonitored data,
such as left ventricular systolic dysfunction, New York Health
Association score, co-morbidities, blood pressure, and
medications, to predict HF readmissions. They concluded that
weight and diastolic blood pressure are the most useful

Table 2 Performance measure of our prediction models developed for the HF cohort

Model AUC AUPRC Accuracy (%) Sensitivity (%) Specificity (%)

LACE 0.551 0.448 59.85 45.54 64.80
Logistic regression 0.576 0.455 62.26 48.37 66.85
Random forests 0.501 0.319 76.39 0.52 99.75
Weighted random forests 0.548 0.386 76.22 21.71 88.07
Decision trees 0.520 0.367 66.97 22.84 81.22
Weighted decision trees 0.528 0.379 64.18 31.44 74.16
Support-vector machines 0.528 0.367 71.80 16.03 89.76
Weighted support-vector machines 0.535 0.377 65.36 31.39 75.78
Multilayer perceptron 0.628 0.461 64.93 48.42 70.01

AUC, area under the receiver operating characteristic curve; AUPRC: area under the precision–recall curve; LACE, length of stay (L), acuity
of admission (A), Charlson Comorbidity Index score (C), and number of emergency visits in the last 6 months (E).

Table 3 The performance of our reproduced prediction models
from Frizzell et al.10 on our HF cohort compared with the predic-
tion models of Frizzell et al.10 based on their data (results extracted
from the paper)

Model

Frizzell et al.10

dataset
Our cohort

AUC AUC
Sensitivity

(%)
Specificity

(%)

Logistic regression 0.62 0.56 33.18 79.92
Random forests 0.61 0.50 1.71 99.00
LASSO regression 0.62 0.64 0.51 100
Multilayer
perceptron

— 0.62 48.42 70.01

AUC, area under the receiver operating characteristic curve; HF,
heart failure; LASSO, least absolute shrinkage and selection opera-
tor; LR, logistic regression; RF, random forest.
Note the slight difference in the results of LR and RF models on our
cohort between Tables 2 and 3. The models in Table 3 were devel-
oped based on specifications given by Frizzell et al. (page 2 of the
supplementary appendix), while those in Table 2 are based on
our own devised models.
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factors to predict HF readmissions. Mortazavi et al.13 used
more sophisticated ML algorithms, such as RF, boosting,
and RF combined with SVM to predict 30 and 180 day
readmissions (all cause and HF specific). While their boosting
model (AUC of 0.68) outperformed the standard logistic re-
gression model (AUC of 0.54) for 30 day HF readmission,
the sensitivity of the model was only 0.45, meaning it was
only 45% accurate in identifying true HF readmissions. Taking
cue from the commonly used two-stage screening processes
in the medical field, Turgeman and May14 presented a hybrid
of a C5.0 tree and SVM classifier for predicting HF
readmissions, but their model also showed a low sensitivity
of 25.8%. Zheng et al.15 used a hybrid of swarm intelligence
heuristic and SVM to model readmissions and achieved
78.4% accuracy and 97.3% sensitivity. As their dataset had a
class imbalance ratio of 1 to 5, the authors used replication-
based random oversampling technique, which may have
limited their study results due to an overfitting problem.24

Futoma et al. used neural network to predict HF readmissions
with an imbalanced dataset composing of the diagnosis and
procedures assigned for each hospital admission but only pre-
sented their models’ performance in terms of AUC (0.67),
which is not considered to be an adequate performance
metric for imbalanced datasets.11,16

Recently, Frizzell et al.10 compared the effectiveness of ML
algorithms and standard regression methods to predict
30 day all-cause readmissions in HF patients. For regression
analysis, they used the logistic regression with backward step-
wise selection and logistic regression with LASSO, while for ML
analyses, the tree-augmented naive Bayes network, gradient-
boosted model, and an RF model were used. All the
models produced AUCs in the range 0.59–0.62 in their study
(Table 3). The authors concluded that ML techniques are
unable to outperform the standard regression models to pre-
dict HF readmissions. However, the dataset used in their work
was imbalanced, and performance metrics other than AUC
were not provided. Furthermore, no attempt was made to ad-
dress the class imbalance problem in their study. We report
that our MLP-based approach has shown ability to outperform
the standard regression and other ML algorithms used by
Frizzell et al. for the prediction of 30 day HF readmission or
death on our data. We first developed prediction models using
algorithms used by Frizzell et al. and trained and tested these
models on our data. We also developed the weighted versions
of the techniques used by Frizzell et al. and trained and tested
on our data. The weighted versions improved the predictive
performance. We then developed, trained, and tested the
new MLP-based approach, which was not investigated by
Frizzell et al. in their work. This MLP-based approach
outperformed all the other approaches based on our data.
Furthermore, AUC alone is not the most appropriate measure
for an imbalanced dataset. For example, the AUC for the
LASSO technique applied to our data yielded an AUC of 0.64,
but the sensitivity of this model was only 0.51%. This means

that the model can predict an actual readmission or death as
a readmission or death with only 0.51% accuracy, which is
poor. The LASSO model only learnt to predict the majority
group in the data (no readmission or death), thus yielding high
specificity close to 100%, but the MLP-based approach
developed in our study is trained to identify both outcomes
(classes) and produced better sensitivity than the other
models. Therefore, other performance measures such as
sensitivity and specificity, when working on datasets with high
class imbalance, should be provided. Considering these
performance metrics, our MLP-based approach holistically
outperforms the other prediction models.

Lastly, some of the previous studies have reported slightly
higher AUCs than ours.9,11,13 However, our MLP-based
approach produces a comparable AUC of 0.63 with only 47
variables (vs. hundreds in other studies); signifying more var-
iables may not necessarily lead to better prediction, and basic
variables from the core hospitalization and death datasets are
sufficient. Of note, the prediction models developed in the
previous studies performed poorly on our dataset, highlight-
ing the utility of our MLP approach (Table 3).

Limitations and future work

This work is based on retrospective data that portends
some limitations. Because of policy restrictions, some of
the clinical data (e.g. heart rate or laboratory values) were
missing that could have potentially further improved the
model performance. Another limitation of this study was
the exclusion of patients younger than 65 years, which allows
us to capture complete medication history data of our HF
cohort. This study does not deal with the types of HF such
as HF with preserved ejection fraction and HF with reduced
ejection fraction due to the unavailability of ejection fraction
in our administrative data.

Apart from these, for hyperparameter optimization for the
grid search, we only considered traditional stepwise range
values for the parameters (i.e. the number of layers and
the number of neurons). However, the consideration of a
performance measure that takes class imbalance problem
for parameter tuning can be further investigated.

Conclusions

We show in our study that for Western Australian-linked
administrative medical data with class imbalance, the
proposed MLP-based approach with the right class weight
settings is superior to other ML and statistical techniques
for the prediction of 30 day HF readmission or death. In our
study, we also demonstrate the importance of other perfor-
mance measures, in addition to the AUC, for medical datasets
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with a high-class imbalance while predicting HF readmissions
and deaths.
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