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Abstract

Chronic antibody mediated rejection (cAMR) remains a significant barrier to achieving long-

term graft survival in kidney transplantation, which results from alloantibody production from

B lymphocytes and plasma cells. APRIL (A proliferation-inducing ligand) and BLyS (B lym-

phocyte stimulator) are critical survival factors for B lymphocytes and plasma cells. Here we

describe the results of APRIL/BLyS blockade in a murine cAMR kidney transplant model.

c57/B6 mice underwent kidney transplantation with Bm12 kidneys (minor MHC mismatch),

a well-described model for chronic rejection where animals cannot make donor specific anti-

body but rather make antinuclear antibody (ANA). Following transplantation, animals

received TACI-Ig (to block APRIL and BLyS) or no treatment. Animals were continued on

treatment until harvest 4 weeks following transplant. Serum was analyzed for circulating

anti-nuclear autoantibodies using HEp-2 indirect immunofluorescence. Spleen and trans-

planted kidneys were analyzed via H&E. ANA production was significantly decreased in

APRIL/BLyS blockade treated animals (p<0.0001). No significant difference in autoantibody

production was found between syngeneic transplant control (B6 to B6) and APRIL/BLyS

blockade treated animals (p = 0.90). Additionally, disruption of splenic germinal center archi-

tecture was noted in the APRIL/BLyS blockade treated animals. Despite the significant

decrease in autoantibody production and germinal center disruption, no significant differ-

ence in lymphocyte infiltration was noted in the transplanted kidney. APRIL/BLyS blockade

resulted in a significant decrease of autoantibody production and disrupted splenic germinal

center formation in a chronic kidney transplant model, however in this model no difference in

kidney transplant pathology was seen, which may have to do with the absence of any T cell

centric immunosuppression. Regardless, these findings suggest that APRIL/BLyS blockade

may play a role in decreasing antibody formation long-term in kidney transplantation. Future

investigations will use APRIL/BLyS blockade in conjunction with T lymphocyte depleting

agents to determine its efficacy in chronic rejection.
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Introduction

Antibody mediated rejection (AMR) is widely recognized as a common cause for late kidney

allograft failure.[1–3] Mature B lymphocytes and plasma cells (terminally differentiated B lym-

phocytes) play a critical role not only in the development of AMR through donor specific anti-

body (DSA) production, but they also function as effector cells in T lymphocyte activation,

which may result in cellular rejection.[4, 5] Current strategies used to treat AMR include anti-

CD20 antibodies (rituximab), antibody removal (plasmapheresis, intravenous immunoglobu-

lin), and proteasome inhibitors to target plasma cells, which are the producers of alloantibody.

[6, 7] Despite these efforts, chronic antibody mediated rejection (cAMR) remains a significant

barrier to achieving long-term graft survival in kidney transplantation. As a result, novel and

effective strategies to treat antibody mediated rejection remain an unmet need.[8]

Due to the multiple functions of B lymphocytes as both effector and alloantibody-produc-

ing cells, it is our hypothesis that B lymphocytes will need to be targeted at various stages of

development in order to successfully prevent DSA production and rejection. APRIL (A prolif-

eration-inducing ligand) (TNFSF 13a) and BLyS (B lymphocyte stimulator) (TNFSF 13b) are

critical survival factors for plasma cells and B lymphocytes, respectively. APRIL plays an

important role in plasmablast and plasma cell survival.[9, 10] BLyS acts as an important co-

stimulator of B lymphocyte survival and proliferation.[4, 11, 12] APRIL and BLyS have been

individually investigated as potential therapeutic targets in oncology and transplant clinical tri-

als, respectively. A recent randomized-controlled trial investigated the efficacy of anti-BLyS

antibody (belimumab, GlaxoSmithKline) in addition to standard-of-care immunosuppression

to reduce naïve B cells. Although this endpoint was not met, belimumab reduced memory B

cells, which suggests it may have a role in long-term desensitization strategies in patients with

pre-existing DSA.[13] B cell maturation antigen (BCMA), which APRIL and BLyS bind to on

the surface of memory B and plasma cells, has been targeted in multiple myeloma clinical trials

using anti-BCMA antibody with promising results.[14, 15]

We have previously reported the significant B lymphocyte depletion and DSA reduction

that occurs with APRIL/BLyS blockade in allosensitized mice.[16] However, APRIL/BLyS

blockade did not result in any difference in acute rejection rates, which may be due to a need

for extended treatment. Therefore, our goal of the current study was to determine the effect of

targeting both APRIL and BLyS in a chronic rejection kidney transplant model. Previously,

MHC class II-mismatched Bm12 (B6.H-2bm12) to B6 (c57/BL6) has been described as a murine

model of chronic heart rejection but has not been applied to murine kidney transplant models.

[17–19] Here we describe the results of APRIL/BLyS blockade in a novel murine chronic rejec-

tion kidney transplant model.

Materials and methods

Animals

C57BL/6 (H-2b) and B6.H-2bm12 (H-2bm12) mice were purchased from Jackson Laboratories

(Bar Harbor, ME) and housed in the University of Wisconsin Laboratory Animal Facility. All

procedures were performed in accordance with the Animal Care and Use Policies at University

of Wisconsin. Animal health including animal deaths, room temperature, 12-hour light/dark

cycles, and cage cleaning among other sanitation duties were performed daily by WIMR hous-

ing staff. Food and water were available ad libitum. This research was prospectively approved

by School of Medicine and Public Health Institutional Animal Care and Use Committee at the

University of Wisconsin (M005204). Animals that underwent transplantation were monitored

daily post-transplant. Animal health was evaluated by activity level, weight gain or loss,
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hunched posture, and other signs of distress. C57BL/6 animals were transplanted with a Bm12

kidney with simultaneous nephrectomy as previously described.[20] Animals were then ran-

domized to no treatment or APRIL/BLyS blockade (treated with TACI-Ig (Transmembrane

activator and calcium modulator and cyclophilin ligand interactor-Immunoglobulin) (100 μg

TACI-Ig in PBS, i.p. injection 3x/week for 28d)) post-transplantation. TACI-Ig blocked both

APRIL and BLyS. Animals were anesthetized with isoflurane during surgery or injections and

sacrificed via cardiac puncture. Buprenorphine (1mg/kg SQ) was used administered post-

transplant and every 72 hours for the first week following surgery. C57BL/6 animals trans-

planted with a c57BL/6 kidney were used as syngeneic transplant control. The contralateral

native kidney was removed on day 1 post-transplant, leaving the animal to rely fully on the

transplanted kidney. Spleen, blood, urine, and kidney were collected at 28d post-transplant for

immediate utilization, storage in 10% formalin for immunohistochemistry (IHC), or were pro-

cessed to single cells and cryopreserved in liquid nitrogen.

Quantification of circulating autoantibodies and biochemical

Serum samples were collected from mice 1 month post-transplant at the time of harvest. Cir-

culating autoantibody levels were determined using NOVA Lite HEp-2 indirect immunofluo-

rescent assay. Briefly, the serum was diluted to 1:40 with PBS, incubated with antigen substrate

slides and unreacted antibodies are washed off. The substrate was then incubated with anti-

mouse IgG FITC and the unbound reagent was washed off. A fluorescent microscope was used

to image autoantibody positive samples. Quantification was performed using a custom macro

written for ImageJ software (NIH, imagej.nih.gov/ij/). Three to five non-overlapping pictures

of representative images were taken from animals for ImageJ analysis.

Urine protein and creatinine was measured on an IdexxVetTest 8008 bioanalyzer (Idexx

Laboratories, West Sacramento, CA) using compatible assay chips according to manufactur-

er’s instructions. Proteinuria severity was calculated using the urine protein to creatinine

(UPC) ratio and graded as none (UPC <0.5), mild (UPC 0.5–1.0), moderate (UPC 1.0–2.0),

and severe (UPC >2.0).

Flow cytometry

Single cell suspensions of splenocytes were prepared from fresh cells. Flow methods were simi-

lar to Allman and Gross.[21, 22] After Ficoll purification, splenocytes underwent ACK lysis of

red blood cells. After counting and re-suspension in R10 (RPMI with 10% Fetal Calf Serum),

500,000 cells were added to cluster tubes and stained. Cells from each tissue were stained for B

lymphocyte subsets, T lymphocyte subsets, and regulatory T cells (Tregs). Antibodies used for

B lymphocyte subsets include: Alexa Fluor 488 anti-mouse IgD (11-26c.2a BioLegend), PerCP

rat anti-mouse CD45R/B220 (RA3-6B2 BD Pharmingen), PE rat anti-mouse CD24 (M1/69

BD Pharmingen), PE/Cy7 rat anti-mouse IgM (R6-60.2 BD Pharmingen), BV421 rat anti-

mouse CD3 (17A2 BioLegend), BV605 hamster anti-mouse CD27 (LG.3A10 BD Horizon),

BV711 rat anti-mouse CD38 (90/CD38 BD OptiBuild), FITC rat anti-mouse CD21/CD35

(7G6 BD Pharmingen), PE rat anti-mouse CD5 (clone 53–7.3 BD Pharmingen), APC anti-

mouse CD23 (B3B4 BioLegend), and viability dye Ghost Dye Red 780 (13-0865-T100 Tonbo

Biosciences). Antibodies used for T lymphocyte subsets and Tregs include: PE rat anti-mouse

CD25 (PC61 BD Pharmingen), PE/Cy5 rat anti-mouse CD4 (GK1.5 BioLegend), BV605 rat

anti-mouse CD8α (53–6.7 BD Horizon), Alexa Fluor 647 anti- mouse FOXP3 (150 D BioLe-

gend), and viability dye Ghost Dye Red 780 (13-0865-T100 Tonbo Biosciences). Flow cytome-

try was performed on a BD LSR II at the UWCCC Flow Cytometry Laboratory and data

analyzed with FlowJo (TreeStar, Inc., Ashland, OR).
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B lymphocyte subset gating. Cells were gated to remove non-singlets, then gated through

a live/dead gate, and lastly through tight lymphocyte gate based on forward and side scatter.

CD3- lymphocytes were gated in and then visualized as IgD versus CD45R. Memory B lym-

phocytes were defined as CD3-CD27+CD45R+ from the CD3- gate. From the CD3- lymphocyte

gate, mature B (CD3-CD21+IgM+), transitional 1 (T1) (CD3-CD21-IgM++), and transitional 2

marginal zone (T2 MZ) B (CD3-CD21++IgM++) lymphocytes were gated. Additionally,

CD45R versus CD5 were gated as CD45R+CD5- cells then visualized as CD23 versus CD21.

Gates were drawn for CD21-CD23- (newly formed B lymphocytes) and CD21intCD23+ (follic-

ular (Fo) B lymphocytes).

Plasma cell gating. Cells were gated to remove non-singlets, then through a large gate to

ensure capture of the typically larger plasma cells, and were subsequently visualized in an IgD

versus CD45R gate. IgD-CD45R- cells were then visualized as CD27 versus IgM. Plasma cells

were defined as CD3-IgD-CD45R-CD27+IgM-CD38+. Normalized cell counts for plasma cells

were calculated based on the large gate, rather than the lymphocyte gate as was used for other

lymphocyte populations.

T lymphocyte subset gating. Cells were gated to remove non-singlets, then gated through

a tight lymphocyte gate based on forward and side scatter. Cells were then visualized as CD4

versus CD3 and CD8 versus CD3. T lymphocytes were defined as CD4+CD3+ or CD8+CD3+.

CD4+CD3+ cells were further gated as CD25 versus FOXP3. Tregs were defined as

CD4+CD3+CD25+FOXP3+.

Histology

Kidneys were collected at time of euthanasia and 1/3 of the spleen was preserved in 10% for-

malin for at least 24 hours, processed, paraffin embedded, and cut into 5 μm sections. After

deparaffinizing and rehydrating, spleen sections were stained with anti-PAX5 (Abcam,

ab140341 polyclonal). The ImmPRESS HRP reagent and ImmPACT DAB substrate were used

to detect anti-PAX5 primary antibody as a brown pigment. Kidney sections were washed in

distilled water, counter-stained with hematoxylin and eosin (H&E) or periodic acid-Schiff

(PAS) stain and dehydrated through an ethanol series. Slides were imaged on a Nikon Eclipse

E600 supplied with an Olympus DP70 camera. Automated quantification was performed

using a custom macro written for ImageJ software (NIH, imagej.nih.gov/ij/). All H&E and

PAS slides were reviewed by a transplant pathologist (WZ) blinded to study groups and scored

for rejection according to Banff 2013 guidelines.[23]

Statistics

Statistics were performed using the statistical packages that are part of Prism 7 for Windows, v

7.0b. ANOVA, T-tests, and chi-square were primarily used. P values of 0.05 or less were con-

sidered significant. Statistical calculations to determine power were determined prior to imple-

mentation of this experiment.

Results

APRIL/BLyS blockade significantly decreased anti-nuclear autoantibody

production

Animals were harvested 4 weeks following transplant and their tissues were collected to evalu-

ate for changes in ANA production, chronic kidney rejection, and B and T lymphocyte popu-

lations. This model has previously been established in preclinical cardiac transplant models as

a method to study chronic rejection without immunosuppression because all allografts will
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develop vasculopathy.[24] ANA was used as a marker for antibody production because the

minor MHC mismatch between Bm12 and C57/Bl6 (3 amino acids) does not result in alloanti-

body production, but rather autoantibody.[25] Post-transplant treatment with APRIL/BLyS

blockade resulted in a significant reduction of serum ANA (p<0.0001) (Fig 1). Serum ANA

detected in the APRIL/BLyS blockade treated group was not significantly different from that

seen in the syngeneic kidney transplant group.

APRIL/BLyS blockade reduces mature B lymphocytes but does not alter

newly formed B lymphocytes

Splenic B lymphocyte populations were evaluated using flow cytometry. Overall, mature B

lymphocyte populations, which rely on BLyS for development, were significantly decreased in

the APRIL/BLyS blockade treated group. Follicular B cells (CD3-CD21intCD23+) were reduced

in APRIL/BLyS blockade treated animals compared to both untreated transplant (p<0.008)

and syngeneic transplant (p<0.05) (Fig 2A). Newly formed B cells (CD3-CD21-CD23-)

remained unchanged between groups (Fig 2B). Additionally, early stages of transitional 1 (T1)

B cells were not significantly different between treated and untreated groups (Fig 3A). How-

ever, transitional zone B cells in later stages of development were depleted with APRIL/BLyS

blockade as seen in the transitional 2 (T2) marginal zone B cell population (CD3-CD21++IgM+

+) (p<0.009) (Fig 3B). Mature B cells (CD3-CD21+IgM+) were also significantly reduced in the

APRIL/BLyS blockade treated group compared to untreated transplant and syngeneic trans-

plant (p<0.004) (Fig 3C).

Fig 1. APRIL/BLyS blockade resulted in significant reduction of anti-nuclear autoantibodies (ANA).

Representative images from indirect immunofluorescence assay detecting circulating anti-nuclear autoantibodies

(ANA). (A) B6-B6 transplant group, (B) Bm12-B6 transplant group with no treatment. Arrowheads indicate high-

intensity staining. (C) Bm12-B6 transplant group treated with APRIL/BLyS blockade. Arrows indicate low-intensity

staining. (D) Densitometry using FITC anti-IgG to detect ANA formation in serum. Graph depicts percentage of total

area that was fluorescent. APRIL/BLyS blockade resulted in a significant decrease of total fluorescence indicating a

significant decrease in circulating ANA.

https://doi.org/10.1371/journal.pone.0223889.g001
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Plasma cell, but not memory B cell, populations declined following

treatment with APRIL/BLyS blockade

Memory B and plasma cells were assessed to determine if APRIL/BLyS blockade affected long-

lived B lymphocyte populations. Memory B cells (CD3-CD27+CD45R+) were unchanged

despite treatment with APRIL/BLyS blockade (Fig 4A). Plasma cells (CD3-IgD-CD45R-C-

D27+IgM-CD38+) were significantly decreased in APRIL/BLyS blockade treated group com-

pared to untreated transplant groups (p<0.04) (Fig 4B).

Fig 2. Follicular B lymphocytes were significantly depleted with APRIL/BLyS blockade, but newly formed B cells

remained unchanged. Flow cytometry was used to assess immature and mature B lymphocyte populations in spleen.

Each graph shows number of cells per 100,000 lymphocytes. (A) Follicular B lymphocytes were defined as

CD3-CD21intCD23+. (B) Newly formed B cells were identified as CD3-CD21-CD23-. (C) Representative flow

cytometry data of follicular and newly formed B cells by group. Number shown represents percentage of total cells in

gate. �p<0.05, ��p<0.008.

https://doi.org/10.1371/journal.pone.0223889.g002

Fig 3. APRIL/BLyS blockade significantly depleted mature B and transitional 2 (T2) marginal zone B lymphocyte subsets, but preserved immature B lymphocytes.

Flow cytometry was used to assess immature and mature B lymphocyte populations in spleen. Each graph shows number of cells per 100,000 lymphocytes. (A) T1 B cells

were defined as CD3-CD21-IgM++. (B) T2 marginal zone B cells were identified as CD3-CD21++IgM++. (C) Mature B cells were defined as CD3-CD21+IgM+. �p<0.03,
��p<0.004.

https://doi.org/10.1371/journal.pone.0223889.g003
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Germinal centers in spleen were significantly disrupted in groups treated

with APRIL/BLyS blockade

Splenic germinal centers were evaluated via immunohistochemistry using PAX5 antibody in

order to further characterize changes in B lymphocyte populations. PAX5 has previously been

established as a marker for B lymphocytes.[26] Germinal centers demonstrated normal archi-

tecture in syngeneic and untreated groups but was completely disrupted in APRIL/BLyS block-

ade treated animals (Fig 5). The depletion of B lymphocytes in splenic germinal centers was

also confirmed by an overall decrease in anti-PAX5 staining in APRIL/BLyS blockade treated

groups compared to other groups (p<0.0001).

APRIL/BLyS blockade results in significantly decreased regulatory T cells

(Tregs) but increases effector T cell populations

After characterizing B lymphocytes with APRIL/BLyS blockade, T cell populations were

assessed in order to determine if the changes seen in B lymphocyte populations resulted in T

cell alterations. Interestingly, both CD3+CD4+ and CD3+CD8+ T cell populations were signifi-

cantly increased in the APRIL/BLyS blockade treated group compared to both syngeneic trans-

plant (p<0.009) and untreated transplant groups (p<0.005). Conversely, Tregs in untreated

and treated transplant groups were significantly lower compared to syngeneic transplant

(p<0.05) (Fig 6).

Despite changes in ANA production and B lymphocytes, APRIL/BLyS

blockade did not prevent rejection or preserve kidney function

Finally, we evaluated the transplanted kidneys 4 weeks post-transplant. Histology was reviewed

by a transplant pathologist (blinded) and scored for acute and chronic peritubular capillaritis

(ptc), glomerulitis (g), tubulitis (t), vasculitis (v), interstitial inflammation (i), mi

Fig 4. Plasma cells, but not memory B cells, were significantly decreased with APRIL/BLyS blockade. Flow

cytometry was used to assess long-lived B cell populations in spleen. (A) Graph shows number of cells per 100,000

lymphocytes. Memory B cells were defined as CD3-CD27+CD45R+. (B) Graph shows number of plasma cells per

100,000 cells collected. Plasma cells were defined as CD3-IgD-CD45R-CD27+IgM-CD38+. (C) Representative flow

cytometry data of memory B and plasma cells by group. Number shown represents percentage of total cells in gate.
�p<0.05.

https://doi.org/10.1371/journal.pone.0223889.g004
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(microcirculation inflammation), and arteriolar hyalinosis (ah) according to Banff 2013. Over-

all, no difference in rates of cellular rejection were seen between untreated and treated trans-

plant groups (Fig 7). The overwhelming level of cellular rejection noted in the treated group is

Fig 5. Spleen PAX5 significantly decreased in APRIL/BLyS blockade treated mice. Preservation of splenic germinal

center seen in (A) syngeneic transplant control and (B) untreated transplant group. B lymphocytes are shown in

brown; T lymphocytes are shown in blue. (C) Destruction of normal germinal center seen in animals treated with

APRIL/BLyS blockade as indicated black outline. (D) Densitometry using anti-PAX5 antibody to detect B lymphocytes

in splenic germinal centers. Graph depicts percentage of total area of spleen staining for anti-PAX5.

https://doi.org/10.1371/journal.pone.0223889.g005

Fig 6. APRIL/BLyS blockade significantly reduces regulatory T cells (Tregs), but increases effector T cell

populations. Flow cytometry was used to assess T cell populations in spleen. Each graph shows number of cells per

100,000 lymphocytes. (A) CD3+CD4+ T cells. (B) CD3+CD8+ T cells. (C) Regulatory T cells (Tregs) were defined as

CD3+CD4+CD25+FoxP3+. (D) Representative flow cytometry data of CD3+CD4+ and CD3+CD8+ from B6-B6 (Left),

Bm12-B6 (Middle), and Bm12-B6 + APRIL/BLyS blockade treated group (Right). Number shown represents

percentage of total cells in gate. �p<0.05. ��p<0.009.

https://doi.org/10.1371/journal.pone.0223889.g006
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consistent with the significant increase in T cells and decrease seen in Tregs. In the untreated

group, 16.7% (N = 1) developed active AMR whereas no animals in the APRIL/BLyS blockade

treated group developed AMR. Significant tubulitis, interstitial inflammation, and vasculitis

was noted in both untreated and treated transplant groups. Syngeneic transplant group did

not develop any ACR or AMR (Table 1).

Renal function was measured in each group using a urine protein to creatinine (UPC) ratio.

Consistent with the rejection seen on histology, untreated and treated transplant groups had

worse renal function compared to syngeneic transplant, although not significantly different

(Fig. 7D). In the syngeneic transplant group, 66.7% (N = 2) and 33.3% (N = 1) of animals had

none (UPC <0.5) or mild proteinuria, respectively. APRIL/BLyS blockade treated group dem-

onstrated slightly worse renal function than the untreated group. Seventy-five percent (N = 3)

in the untreated group had no proteinuria compared to 33.3% (N = 1) in the treated group. No

animals in the untreated group had moderate proteinuria (UPC 1.5–2.0), however 33.3%

(N = 1) in the treated group developed moderate proteinuria (Fig 7D).

Discussion

Chronic rejection remains a significant cause of late kidney allograft loss; therefore, novel thera-

pies are required to treat this ongoing problem. Bm12 (H-2bm12) to c57/B6 (H-2b) minor MHC

mismatch has previously been described as a murine chronic heart rejection model with severe

cardiac allograft vasculopathy and fibrosis evident within 4 weeks.[27–29] However, this

chronic rejection model has yet to be described in the kidney transplant literature. Therefore,

Fig 7. APRIL/BLyS blockade did not prevent rejection in kidney transplant model. Animals underwent kidney

transplant and were randomized to receive no treatment or APRIL/BLyS blockade for 1 month post-transplant. (A)

B6-B6 kidney transplant did not develop any evidence of rejection. Arrowhead indicates normal kidney tubule. (B)

Bm12-B6 developed rejection in 100% of animals and 16.7% (N = 1) developed AMR. Arrow indicates damaged

tubule. (C) Bm12-B6 animals treated with APRIL/BLyS blockade also overwhelmingly developed ACR. Arrow

indicates damaged tubule. (D) Urine protein and creatinine (UPC) was measured to assess kidney function. UPC ratio

was scored as none (UPC<0.5), mild (0.5–1.0), moderate (UPC 1.0–2.0), and severe (UPC>2.0) proteinuria.

Proteinuria was not improved in animals who received APRIL/BLyS blockade.

https://doi.org/10.1371/journal.pone.0223889.g007
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we investigated the effect of targeting the B lymphocyte survival factors APRIL and BLyS on

chronic antibody mediated rejection in a murine kidney transplant model. APRIL/BLyS block-

ade via TACI-Ig resulted in significant changes in both B and T lymphocyte populations. Specif-

ically, follicular, T2 marginal zone, mature B lymphocytes and plasma cells were depleted with

APRIL/BLyS blockade. These changes in mature B lymphocyte populations were further con-

firmed by the disruption of splenic germinal center architecture in treated animals. Importantly,

animals treated with APRIL/BLyS blockade demonstrated a significant decrease in anti-nuclear

autoantibody that was reduced to syngeneic transplant levels. This autoantibody decrease is

consistent with the significant depletion of plasma cells seen in APRIL/BLyS blockade treated

animals, which are the primary source of antibody production. Immature B lymphocyte popula-

tions such as newly formed and T1 B lymphocytes, which are less dependent on APRIL and

BLyS for survival, were not altered with APRIL/BLyS blockade. In addition to not altering

immature B lymphocytes, long-lived memory B cells were not depleted.

Despite depleted mature B lymphocytes, these changes did not result in any difference in

rejection seen in untreated versus treated groups. Significant cellular rejection was seen in

APRIL/BLyS blockade treated animals, which corresponds to increased effector T lymphocyte

and decreased regulatory T lymphocyte populations. No AMR developed in APRIL/BLyS

blockade treated group whereas 16.7% (N = 1) of untreated animals demonstrated active anti-

body mediated rejection on biopsy. No differences in renal function, as measured by urine

protein to creatinine ratio, were seen between untreated and treated groups.

Interestingly, CD3+CD4+ and CD3+CD8+ T lymphocytes significantly increased compared

to both untreated animals and syngeneic transplant control. The increase in effector T lym-

phocytes demonstrated here may be due to the depletion of regulatory B lymphocytes, which

would normally downregulate inflammation and autoimmunity through IL-10.[30]

Table 1. Banff scoring.

Tx control

(N = 3)

No treatment

(N = 6)

APRIL/BLyS blockade (N = 6)

Banff score Mean SD Mean SD Mean SD P
t 0.3 0.6 3.0 0.0 3.0 0.0 NS

i 0.0 0.0 3.0 0.0 3.0 0.0 NS

g 0.0 0.0 0.2 0.4 0.0 0.0 NS

ah 0.0 0.0 0.0 0.0 0.0 0.0 NS

v 0.0 0.0 1.7 0.5 1.5 1.0 NS

ptc 0.0 0.0 0.3 0.8 0.0 0.0 NS

cg 0.0 0.0 0.0 0.0 0.0 0.0 NS

ci 0.0 0.0 0.0 0.0 0.0 0.0 NS

ct 0.0 0.0 0.0 0.0 0.0 0.0 NS

cv 0.0 0.0 0.0 0.0 0.0 0.0 NS

mm 0.0 0.0 0.0 0.0 0.0 0.0 NS

mvi 0.0 0.0 0.5 1.2 0.0 0.0

AMR, % (N)

Active

0% (0) — 16.7% (1) — 0% (0) — NS

ACR

Negative 100% (3) — 0% (0) — 0% (0) — NS

I 0% (0) — 0% (0) — 16.7% (1) — NS

IIA 0% (0) — 33.3% (2) — 33.3% (2) — NS

IIB 0% (0) — 66.7% (4) — 33.3% (2) — NS

III 0% (0) — 0% (0) — 16.7% (1) — NS

https://doi.org/10.1371/journal.pone.0223889.t001
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APRIL and BLyS have been extensively studied as therapeutic targets to reduce autoanti-

body in several preclinical models of autoimmune diseases including systemic lupus erythema-

tous (SLE), IgA nephropathy, Sjorgren’s syndrome and rheumatoid arthritis.[31–35] In a

preclinical murine SLE model, dual APRIL and BLyS inhibition, but not BLyS blockade alone,

reduced plasma cells and IgM levels.[36] Furthermore, APRIL/BLyS blockade with TACI-Fc

completely prevented SLE disease progression including renal injury and arrested autoanti-

body production and onset of nephritis.[37] As indicated above, decreased B lymphocytes and

autoantibody production through APRIL/BLyS blockade has been established in preclinical

autoimmune disease models. However, the novelty of our current study is that we report

decreased autoantibody production in a preclinical kidney transplant model using APRIL/

BLyS blockade. Although changes in B lymphocyte populations and decreased autoantibody

production did not translate to improved renal function or decreased rejection, these initial

findings are important to note and may indicate modifications that need to be made to the

chronic rejection model presented here. It is possible that if the post-transplant period was

extended beyond 4 weeks, then significant differences in AMR would be seen between

untreated and treated groups as was seen in circulating autoantibody levels. Additionally,

future investigations will use APRIL/BLyS blockade in conjunction with T lymphocyte deplet-

ing agents to determine its efficacy in chronic rejection. By including a T lymphocyte depleting

agent

Conclusions

APRIL/BLyS blockade successfully reduced autoantibody production in a novel chronic kid-

ney transplant rejection model. Decreased autoantibody production is likely due to depleted

mature B lymphocyte populations including plasma cells. The findings presented here are fur-

ther supported by the autoimmune literature in which APRIL/BLyS inhibition has been exten-

sively studied as a method to reduce autoantibody and disease severity. However, this study

remains novel due to the finding of decreased autoantibody with APRIL/BLyS blockade in a

kidney transplant model. Additionally, the commonly used Bm12 to B6 chronic heart trans-

plant model has not previously been described in kidney transplant literature. Despite these

changes, cellular rejection and kidney function were not improved, which may be due to the

absence of any T cell centric immunosuppression. Regardless, these findings suggest that

APRIL/BLyS blockade may play a role in decreasing antibody formation long-term in kidney

transplantation.
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