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Immune checkpoint blockade (ICB) has become a standard treatment for non-small cell
lung cancer (NSCLC). However, most patients with NSCLC do not benefit from these
treatments. Abnormal vasculature is a hallmark of solid tumors and is involved in tumor
immune escape. These abnormalities stem from the increase in the expression of pro-
angiogenic factors, which is involved in the regulation of the function and migration of
immune cells. Anti-angiogenic agents can normalize blood vessels, and thus transforming
the tumor microenvironment from immunosuppressive to immune-supportive by
increasing the infiltration and activation of immune cells. Therefore, the combination of
immunotherapy with anti-angiogenesis is a promising strategy for cancer treatment. Here,
we outline the current understanding of the mechanisms of vascular endothelial growth
factor/vascular endothelial growth factor receptor (VEGF/VEGFR) signaling in tumor
immune escape and progression, and summarize the preclinical studies and current
clinical data of the combination of ICB and anti-angiogenic drugs in the treatment of
advanced NSCLC.

Keywords: NSCLC, immunotherapy, immune checkpoint blockade, angiogenesis inhibitors, combination therapy,
tumor microenvironment
INTRODUCTION

Lung cancer is one of the most common cancer types with high mortality in the world (1).
Adenocarcinoma, squamous cell carcinoma and large cell carcinoma are the three major kinds of
NSCLC comprising 85% of all lung cancers (2). Because of the lack of early diagnosis indicators,
more than 70% of cancer patients have experienced local invasion, lymph node and distant
metastasis at the first diagnosis (3). These patients have extremely poor prognoses. The five-year
survival rate of patients at this stage is only 4% (4).
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In the past decade, immunotherapy has made significant
progress for the treatment of NSCLC. Improving the
therapeutic effect via combination strategy has become the
main direction in the field. A number of clinical trials testing
the combination of immunotherapy and anti-angiogenesis have
shown promising results in different tumor types including
NSCLC. However, due to the complicated regulatory
mechanisms of these two kinds of therapies, how to
collaboratively use them to obtain the maximal therapeutic
effect remains to be answered. Understanding the potential
mechanisms of combination might help to select appropriate
patients and treat them at right timing with optimized dosages
of drugs.
IMMUNE CHECKPOINTS AND
INHIBITORS

Immune checkpoint inhibitors (ICIs) are widely used in the
treatment of NSCLC. A series of receptor/ligand pairs such as
CD28-CTLA4/B7 and programmed cell death-1/programmed
death ligand 1 (PD-1/PD-L1) are involved in the antitumor
immune response at different stages (5, 6). These costimulatory
and coinhibitory receptor/ligand pairs are collectively referred to
as immune checkpoints (7). PD-1 is expressed on a variety of
immune cells, such as T cells, NK cells, B cells, and monocytes
(8). The PD-1 pathway mediates inhibitory signaling triggered by
the binding to PD-L1. PD-L1 expressed on cancer cells could
suppress effector T cells and thus prevent T cell-mediated tumor
destruction (9). Therefore, blocking the PD-1/PD-L1 inhibitory
pathway can reactivate the immune attack on tumor cells,
thereby treating cancer (10).

A number of PD-1, PD-L1 and CTLA-4 inhibitors, including
Pembrolizumab (11), nivolumab (12), atezolizumab (13),
durvalumab (14), avelumab (15) and ipilimumab (16), have been
approved for the treatment of advanced NSCLC. Pembrolizumab
and nivolumab have been approved by the U.S. Food and Drug
Administration (FDA) for the treatment of non-small cell lung
cancer with positive PD-L1 expression. The PACIFIC (17) Phase III
clinical trial (NCT02125461) in Europe makes durvalumab the only
phase III immunotherapy drug recommended by the current
guidelines. Japan is also conducting trails of atezolizumab, such as
J-TAIL (NCT03645330) (https://clinicaltrials.gov/ct2/show/
NCT03645330), J-TAIL-2 (NCT04501497) (https://clinicaltrials.
gov/ct2/show/NCT04501497), and durvalumab, AYAME
(NCT03995875) (https://clinicaltrials.gov/ct2/show/NCT03995875).
In China, according to the ORIENT-11 study (NCT03607539),
sintilimab has been approved as the first-line treatment for non-
squamous NSCLC combined with pemetrexed and platinum
chemotherapy. The Phase III trial (NCT03134872) (18) of SHR-
1210 combined with pemetrexed and carboplatin in the treatment of
non-squamous non-small cell lung cancer is also ongoing.
Nevertheless, due to the tumor heterogeneity and the complexity
of the tumor microenvironment (TME), the overall response rates to
ICI therapy keep at low levels (19). To increase the therapeutic
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efficacy, combination strategies have become the major focus of
cancer immunotherapy (20). A large number of clinical trials are
testing the combination of immunotherapy with traditional therapies
such as surgery, chemotherapy, radiotherapy, targeted therapy and
other treatment methods.

ICIs obtain therapeutic effect by inducing a durable antitumor
immune response (21). However, high levels of immunosuppressive
cells in the TME and insufficient infiltration of effector cells into
tumor severely impair the antitumor immunity, and thus decreasing
the efficacy of ICIs. Recent studies have shown that pro-angiogenic
factors in tumor promote the development of immunosuppressive
cells, and neovessels reduce the infiltration of effector cells (22). The
combination with anti-angiogenic agents is thought to be a
promising strategy to enhance the therapeutic efficacy of ICIs.
TUMOR ANGIOGENESIS AND INHIBITORS

Angiogenesis is a hallmark of cancer associated with occurrence,
proliferation and metastasis of tumors (23). Targeting the
angiogenesis pathway has been found to be effective in
the treatment of a variety of cancers including NSCLC. The
abnormal structure and function of tumor angiogenesis facilitate
the development of a hostile tumor microenvironment
characterized by increased interstitial pressure, hypoxia and
acidosis (24). Hypoxia further induces the expression of genes
involved in blood vessel formation and cell proliferation, and thus
exacerbating the TME (25). VEGFs, a family of secreted
glycoproteins, play an essential role in the angiogenesis of
tumor, which include VEGF-A, VEGF-B, VEGF-C, VEGF-D,
VEGF-E, VEGF-F, placental growth factor (PIGF) (26). There are
three VEGF receptors, VEGFR-1, -2 and -3. The effect of VEGF in
promoting angiogenesis is mainly mediated by VEGFR-2.
Signaling pathways downstream VEGFR-2, such as
phospholipase C gamma (PLCg), Raf and phosphoinositide-3-
kinase (PI3K) (22), promote angiogenesis and vascular
permeability by regulating the differentiation, migration,
proliferation and survival of microvascular endothelial cells
(27). Both monoclonal antibodies blocking the interaction
between VEGF and VEGFR or small molecules targeting
downstream signaling could inhibit tumor angiogenesis (28). As
listed in Figure 1, both monoclonal antibodies and small
molecule inhibitors interfering angiogenesis have been
approved for the treatment in various cancer types.

Bevacizumab, or Avastin, is a humanized monoclonal antibody
binding to VEGF-A. It has been approved for the treatment of
advanced non-squamous NSCLC. Phase III clinical trials showed
that bevacizumab combined with carboplatin and paclitaxel
significantly improved the therapeutic efficacy (29). Ramucirumab
is a recombinant human IgG1 monoclonal antibody targeting
VEGFR2. According to the results of the REVEL study, the FDA
and European Medicines Agency (EMA) have approved the
combination of Ramucirumab and docetaxel for the treatment of
metastatic NSCLC and progressed disease after the treatment of
platinum (30).
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Nintedanib is a small molecular inhibitor targeting three critical
receptors signaling in angiogenesis, VEGFR, fibroblast growth factor
receptor (FGFR) and platelet-derived growth factor receptor
(PDGFR). The LUME-Lung 1 study showed that nintedanib in
combination with pemetrexed significantly improved progress-free
survival (PFS) of patients (31). It was approved by EMA as the
second-line treatment for stage IV NSCLC. In addition, tyrosine
kinase inhibitors (TKIs) including sorafenib, sunitinib and apatinib
have also been clinically studied in advanced NSCLC, but no obvious
overall survival (OS) benefit was observed. Anlotinib is another small
molecular inhibitor targeting multiple receptor tyrosine kinases
(RTKs), including VEGFR2 and VEGFR3. The results of the
ALTER 0303 trial showed that anlotinib significantly prolonged
the OS and PFS of patients with advanced NSCLC (32). It has been
approved as the third-line treatment for advanced NSCLC.

Although a number of angiogenesis inhibitors have been tested in
clinical trials, anti-angiogenesis alone showed limited therapeutic
effect in cancer treatment (33). Most of the angiogenesis inhibitors
were approved for the combination therapy with other drugs. Given
that reduced vessels in tumor will result in decreased delivery of
combinatory drugs as well, these results challenge the well-accepted
mechanism of anti-angiogenesis in reducing vascular supply, and
thus suppress tumor growth by starving tumor. This paradox is
Frontiers in Immunology | www.frontiersin.org 3
resolved by recent findings of vessel normalization, a process
recovering the perfusion function and structure of vessels in
tumor, which enhanced antitumor immune response by increasing
immune cell infiltration and oxygen supply in tumor (33–36).
Consistent with the mechanism of vessel normalization, low dose
of anti-VEGFR2 antibody showed better effect on reprogramming
the tumor microenvironment and displayed better therapeutic
efficacy than the high-dose treatment (37). The vessel
normalization theory provides novel perspectives in the
combination of anti-angiogenesis with other drugs or therapies.
RATIONALE FOR COMBINATION OF ICI
INHIBITORS WITH ANGIOGENESIS IN
NSCLC

Angiogenesis Fosters An
Immunosuppressive Tumor
Microenvironment by Modifying The
Recruitment of Immune Cells
TME is a dynamic ecosystem composed of tumor cells, immune
cells, fibroblasts, stroma cells, blood vessels and various soluble
FIGURE 1 | Monoclonal antibodies and small molecules targeting VEGF/VEGFR signaling in tumor angiogenesis. Monoclonal antibodies and small molecule TKIs
targeting the VEGFA/VEGFR-2/PLCg/Raf/PI3K signaling pathway could inhibit tumor angiogenesis and improve the efficiency of anticancer treatments. VEGF,
Vascular Endothelial Growth Factor; VEGFR, Vascular Endothelial Growth Factor Receptor; TKI, Tyrosine Kinase Inhibitor; PI3K, Phosphoitide 3-Kinase; AKT, serine/
threonine-specific protein kinase; mTOR, mammalian target of rapamycin; PLCg, Phospholipase C g; PI3P, Phosphatidylinositol 3-Phosphate; IP3, Inositol
Triphosphate; DAG, Diacyl Glycerol; pKC, Protein Kinase C; MEK, Mitogen-activated protein kinase; MAPK, Mitogen Activated Protein Kinase.
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factors, which suppress antitumor immune response and
promote resistance to immunotherapy (38). Excessive VEGF
signaling drives aberrant angiogenesis in tumor. Compared to
normal blood vessels in tissues, blood vessels in TME are leaky,
tortuous, cystic dilation, interlaced and randomly connected.
The tumor vascular endothelial cells have abnormal morphology,
loose connections between pericytes and varied basement
membrane thickness. These abnormalities of structure and
function lead to the heterogeneity of tumor blood perfusion,
and eventually form a microenvironment characterized by
increased interstitial fluid pressure, hypoxia and acidosis (39).
The hypoxic microenvironment induced by VEGF/VEGFR
signaling suppresses the antitumor immune response through
a variety of mechanisms (40, 41).

The TME is enriched with suppressive immune cells
including regulatory T cells (Tregs), myeloid-derived
suppressive cells (MDSCs), tumor associated macrophages
(TAMs), and immature dendritic cells (imDC). Hypoxia
facilitates the infiltration of these suppressive immune cells by
inducing the expression of chemokines recruiting these immune
cells. For example, C-C motif chemokine ligand 22 (CCL22) and
C-C motif chemokine ligand 28 (CCL28) recruits Tregs into
tumor (42); colony Stimulating factor 1 (CSF1), C-C motif
chemokine ligand 2 (CCL2) and C-X-C motif chemokine
ligand 12 (CXCL12) increases the recruitment of pro-
inflammatory monocytes and TAMs, and convert TAMs from
a pro-inflammatory M1-like type to a tumor-promoting M2-like
type (43); Dendritic cells (DCs) are mainly recruited into tumor
by C-C motif chemokine ligand 20 (CCL20), and granulocyte-
macrophage colony stimulating factor (GM-CSF), Interleukin-6
(IL-6), Interleukin-10 (IL-10) prevent maturation of recruited
DCs (44). Moreover, the hypoxic environment inhibits the
infiltration of effector T cells. VEGF can reduce the expression
of adhesion molecules critical for T cell infiltration, such as
integrin ligand vascular cell adhesion protein 1 (VCAM1) and
intercellular adhesion molecule 1 (ICAM1), on immune cells and
endothelial cells (ECs) (45). VEGF-A, IL-10 and prostaglandin
E2 (PGE2) induce the expression of Fas ligand on endothelial
cells, which causes cell death of endothelial cells and CD8+ T cells
through the Fas/FasL signaling pathway, and thus reduce T cell
mobilization and infiltration (46). Consistently, blockade of the
VEGF signaling reduced the recruitment of suppressive cells into
tumor but increased the infiltration of effector T cells (37),
indicating that anti-angiogenesis is a potential strategy to re-
program the immunosuppressive TME, and thus improve the
efficacy of immunotherapy.

Angiogenic Factors Directly Regulate
Differentiation of Various Immune Cells
In addition to its effect on immune cell migration, the VEGF
signaling directly regulates differentiation and proliferation of
suppressive immune cells including Tregs, TAMs, MDSCs, and
DCs (47, 48). VEGF (red stars) and angiopoietin-2 (ANG2)
(green pentagons) are also produced by these immune cells,
which foster both the paracrine and the autocrine VEGF (and/or
ANG2) signaling in tumor (49). Immunosuppressive cytokines
Frontiers in Immunology | www.frontiersin.org 4
secreted by these suppressive immune cells, including IL-10,
indoleamine 2,3-dioxygenase (IDO), and transforming growth
factor beta (TGF-b) et al., further worsen the environment by
inducing Tregs and inhibiting DC maturation, NK cell
activation, T cell activation and proliferation (50). Therefore,
angiogenesis inhibitors might normalize the aberrant vasculature
in tumor, reduce the development of suppressive immune cells,
enhance effector cell infiltration into tumor, and thus reprogram
the immunosuppressive to immunosupportive (Figure 2).

VEGF Inhibits the Maturation and Differentiation
of DCs
DCs are the professional antigen-presenting cells (APCs) which
play a critical role in the antitumor immune cycle. Following the
exposure to tumor antigens, DCs migrate to lymph nodes and
become mature during the migration. They initiate adaptive
antitumor immune response by activating T cells recognizing
tumor antigens (51). Plenty of evidence has shown that VEGF
could inhibit differentiation and maturation of DCs (52, 53). It
was found that elevated VEGF levels in mice hindered the
development of DCs (48). Studies have showed that VEGF-A
inhibited the differentiation of monocytes to DC, and VEGF-A
inhibition using bevacizumab or sorafenib restored this
process (54).

Due to the lack of costimulatory molecules, immature DCs
promote tolerance instead of activation of T cells. It was reported
that the binding of VEGF to VEGFR-2 on the surface of DC
restrains its maturation by inhibiting the nuclear factor kB (NF-kB)
signaling pathway (55). VEGF inhibition increases antigen uptake
and migration of tumor-associated DCs in mouse tumor models
(56). The VEGFR inhibitor Axitinib promotes maturation of
monocyte-derived human DCs, featured with elevated levels of
activation markers, major histocompatibility complex (MHC)
molecules and co-stimulatory genes such as CD80, CD86, and
CD83 (57).

VEGF Increases the Number of Tregs
It is known that Tregs in tumor suppress T cell response against
cancer (58). Studies have shown that the VEGF signaling
contributes to the induction, maintenance and activation of
Tregs in tumors. The expression of VEGF was found to be
positively associated with the levels of Tregs in tumor, which
indicate poor prognosis in many cancer types (59). Consistent
with this finding, higher expression of VEGFR2 was found in
Tregs compared to other CD4+ T cells (59, 60), suggesting a
preferential role of VEGF signaling in Tregs. Interestingly,
neuropilin-1, an co-receptor increasing the binding affinity of
VEGF for VEGFRs, is also highly expressed in Tregs (61), which
mediates the activation of Tregs and thus enhances their
suppressive function (62). VEGF can directly bind to
Neuropilin 1 (Nrp-1) on Tregs and guide their migration into
a tumor (63). Inhibition of VEGF signaling using sunitinib,
bevacizumab or soluble VEGFR-1/-2 reduce Treg proportion
in different mouse tumor models and in cancer patients (47, 64–
66). Decreased proliferation of Tregs and reduced levels of
peripheral Treg levels are also reported in some studies.
June 2021 | Volume 12 | Article 689132

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ren et al. Combination of ICB and Angiogenesis
Following the reduction of Tregs, enhanced antitumor immune
response was detected in tumors.

VEGF Promotes the Expansion of MDSCs
MDSCs were initially defined as CD11b+Gr-1+ cells in tumors.
There are two main major populations of MDSCs: monocytic
MDSCs (M-MDSC) and polymorphonuclear MDSCs (PMN-
MDSC). PMN-MDSCs are the dominant population of MDSCs
in mouse tumor models, while M-MDSCs are mainly found in
human tumors (67). MDSCs employ a number of mechanisms to
suppress the antitumor immune response, for examples,
consuming the nutrient of lymphocyte, reducing trafficking
and viability of lymphocyte, generating oxidative stress, and
inducing the differentiation of Tregs (67, 68).

The intratumoral level of MDSCs was found to be associated
with the VEGF concentration in mouse tumor models. In
addition, VEGF infusion significantly elevated levels of Gr1+

cells in normal mice without tumor (48), suggesting that VEGF
signaling is involved the differentiation of myeloid cells. It was
reported that VEGF-A-induced excessive activation of Janus
kinase 2/Signal transducer and activator of transcription 3
(Jak2/STAT3) signaling contributes to the abnormal myeloid
cell differentiation in cancer (69). Inhibition of VEGF signaling
by sunitinib decreased the levels of MDSC in the spleen, bone
marrow, and tumor in mouse models, and showed combinatory
effect with HPV vaccine for the treatment of tumors expressing
human papillomavirus (HPV) antigens (70). Mechanistically,
sunitinib downregulates STAT3 signaling and leads to
Frontiers in Immunology | www.frontiersin.org 5
apoptosis in MDSCs (71). In addition to the reduction in
MDSC quantity, VEGF inhibition impairs their suppressive
function. Axitinib treatment decreases the suppressive capacity
of MDSCs isolated from spleens or tumors in mouse models.
Moreover, axitinib promotes the differentiation of MDSC toward
a phenotype with enhanced capacity of antigen presentation
(72). Reduction of MDSCs was also observed in cancer patient
treated with sunitinib, which led to stronger T cell immune
response against cancer (73). A recent study also showed that
bevacizumab-containing regimens had low levels of the
granulocytic MDSCs than regimens without bevacizumab in
patient tumor samples of NSCLC (74).

VEGF Induces the Differentiation of Macrophages
From M1 to M2
TAMs promote angiogenesis by expressing a high level of VEGF.
The lacked expression of costimulatory molecules on TAMs
induces T cell tolerance and apoptosis. TAMs also promote
immunosuppression in tumor by secreting cytokines that can
suppress T cell recruitment and activation, such as IL-10, TGFb,
and prostaglandins (75). In addition to the recruitment of TAMs
into tumor, VEGF signaling is also involved in the conversion of
TAMs from the M1 to M2 phenotype. High levels of TAMs were
observed in tumors with increased expression of stromal-cell-
derived factor 1 alpha (SDF-1a), CXCL12, C-X-C motif
chemokine receptor 4 (CXCR4) and VEGF in mouse tumor
models (76, 77). Teresa E Peterson et al. have shown that dual
inhibition of VEGFRs and Ang-2 reduced macrophage
FIGURE 2 | VEGF and ANG2 regulate immune cells in tumor. The VEGF family can suppress the maturation, differentiation, and antigen presentation of APCs, DCs,
NKs, and T cells, while both VEGF and Ang2 can improve the suppressive effect of Tregs, TAMs, and MDSCs. VEGF, Vascular Endothelial Growth Factor; ANG2,
Angiogenin 2; APCs, Antigen Presenting Cells, DCs, Dendritic Cells; Treg, Regulatory T cells; NKs, Natural Killer Cells; TAMs, Tumor Associated Macrophages;
MDSCs, Myeloid Derived Suppressor Cells.
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recruitment and promoted the polarization of TAMs to a M1
antitumor phenotype (78). Deng et al. also found that VEGF
blockade potentiated antitumor efficacy in glioblastoma by
reducing TAM recruitment into tumor (79), The combination
of VEGFR and CXCR4 inhibitors also showed therapeutic effect
in glioblastoma multiforme (GBM) xenografts (80).

VEGF Inhibits the Development and Activation
of T Cells
T cells play an essential role in the antitumor immune response by
directly killing tumor cells. Boosting the T cell immune response
against cancer has become the primary goal of most
immunotherapies. Low expression of VEGF was detected in T
cells from tumor (81), suggesting that T cells might also promote
angiogenesis. Ohm et al. found that the infusion of VEGF-A to
tumor-bearing mice led to severe thymic atrophy resulted from a
dramatic reduction in CD4+/CD8+ thymocytes (82). The inhibition
of thymocyte maturation is mediated by the VEGFR2. These
findings indicate that the VEGF signaling could directly inhibit T
cell development. In addition, studies have shown that VEGF-A
produced in the tumor microenvironment promotes T cell
exhaustion by inducing the expression of co-inhibitory molecules
in CD8+ T cell, and targeting VEGF-A/VEGFR signaling could
reduce the expression of these suppressive genes (83).

VEGF-induced recruitment and expansion of suppressive
immune cells in tumor inhibit the activation of tumor antigen-
specific T cells. A lot of clinical and preclinical studies support that
blockade of the VEGF/VEGFR signaling can enhance T cell
response in tumor. Bevacizumab (Avastin) administration
increased cytotoxic T cell levels in colorectal cancer and NSCLC
patients (84, 85). Sunitinib treatment increase the levels of CD4+

and CD8+ T cell inmouse cancer models. Stronger cytotoxic activity
and elevated expression of Th1 cytokine (Interferon-gamma, IFN-g)
were observed in these T cells from sunitinib-treated tumors (71).
Similarly, Schmittnaegel et al. found that dual targeting of ANG2
and VEGFA increased the levels of effector CD8+ T cells in tumors
(86). Furthermore, IFN-g secreted by activated T cells has strong
anti-angiogenic activity, suggesting that immunotherapy can also be
antiangiogenic. The IFN-gR signaling could directly modulate the
function and phenotype of vascular endothelial cells, and thereby
normalize tumor blood vessels and promote effector T cell
infiltration (87).

Lenvatinib is a RTK that specifically inhibits the kinase
activities of VEGF receptors 1-3. Studies have shown that
Lenvatinib reduced TAMs and increased the levels of effector
CD8+ T cells. Combined with PD-1 blockade can further elevate
the levels of activated CD8+ T cells, and thereby enhance
antitumor immunity via the IFN signaling pathway (88).

Synergism of Anti-Angiogenesis Inhibitors
and ICB
Taken together, the VEGF signaling plays a pivotal role in the
immunosuppressive TME which severely inhibits antitumor
immune response. VEGF/VEGFR inhibition could reprogram the
TME from immunosuppressive into immunostimulating by
modulate the recruitment and function of immune suppressive
Frontiers in Immunology | www.frontiersin.org 6
cells and T cells. Therefore, anti-VEGF/VEGFR therapy not only
has anti-angiogenic effects but also promotes immune response
against cancer.

On the other hand, hypoxia-inducible factor 1-alpha (HIF-
1a) up-regulates the expression of immune checkpoint
molecules in tumor (83). VEGF-A directly increases the
expression of PD-1 on activated CD8+ T cells and Tregs
through VEGFR2 (83). Besides, elevated levels of IFN-g in
tumor resulted from VEGF signaling inhibition could induce
the expression of PD-L1 on tumor cells. These mechanisms
provide a theoretical basis for the combined treatment of
advanced NSCLC with ICB and anti-angiogenic agents.
IMMUNOTHERAPY AND
ANTIANGIOGENIC AGENTS:
PRECLINICAL STUDY

Plenty of preclinical evidence also indicates that combining
immunotherapy with anti-angiogenic inhibitors can improve the
therapeutic efficacy in advanced NSCLC. It was reported that
endostatin could improve the therapeutic effect of adoptive transfer
of cytokine-induced killer cells (CIKs) for the treatment of lung
carcinomas (89). Another preclinical study also showed that the
VEGF inhibitor bevacizumab improved the effect of CIKs therapy in
treating NSCLC (90). These findings provide evidence for the
combination of anti-angiogenesis therapy and immunotherapy to
treat lung cancer. In addition, the effects of different doses of
antiangiogenic inhibitors on the combination with immunotherapy
are also studied. A small dose of apatinib was enough to increase T
cells infiltration, reduce hypoxia, and decrease the recruitment of
TAMs into tumor (37, 91). Consistently, the combination of low-dose
apatinib and PD-L1 antibody can significantly inhibit tumor growth
and increase the survival time in mouse models (91).
IMMUNOTHERAPY AND
ANTIANGIOGENIC AGENTS:
CLINICAL DATA

Given that both the potential molecular mechanism and
preclinical evidence support the combination of immunotherapy
with anti-angiogenesis therapy, a number of clinical trials are
underway to evaluate the safety and efficacy of this new therapy in
NSCLC (Table 1). Preliminary data indicate that immunotherapy
combined with anti-vascular therapy is a promising approach for
the treatment of NSCLC.

Nivolumab Combined With Bevacizumab
The combination between PD-1 blockade and bevacizumab was
tested in the Checkmate012 phase I clinical trial (NCT01454102).
Advanced NSCLC patients who failed in the first-line chemotherapy
of platinum were divided into two groups, and treated with
nivolumab or the combination of nivolumab with bevacizumab.
The median PFS in the combination group was 37.1 weeks, while
June 2021 | Volume 12 | Article 689132
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the nivolumab monotherapy group was 16 weeks in patients with
squamous cancers and 21.4 weeks in patients with non-squamous
cancers. Lower incidence of severe adverse events (AEs) (grade 3 and
above) was observed in the combination. However, the objective
response rates (ORR) are similar in these two groups. Follow-up
studies are ongoing (12).
Pembrolizumab Combined With
Ramucirumab
The combination between ramucirumab and pembrolizumab has
been studying by a multicenter phase I study (NCT02443324) in
different types of cancers. 27 patients were recruited in this study. The
objective reactions in these NSCLC patients were 30%. The median
treatment time is 6.8months or longer, and themedian response time
is 1.45 months. The most common serious AEs related to treatment
in NSCLC patients were fatigue and myocardial infarction (7%) (92).
The team has also expanded a multi-center, open-label Phase 1a/b
trial to study ramoxiimab plus pembrolizumab in the treatment of
Frontiers in Immunology | www.frontiersin.org 7
advanced newly-treatedNSCLC (N=26) (11). The results showed that
22 (84.6%) patients had any grade of treatment-related AEs, and
hypertension is the most common side-effect (n = 4, 15.4%). The
ORR of the treatment group was 42.3%. The ORR in patients with
high PD-L1 expression levels (tumor proportion score (TPS)≥50%)
and low levels (TPS 1%-49%) were 56.3% and 22.2%, respectively.
The median PFS was 9.3 months in the treated group, and the
patients with PD-L1 TPS 1%-49%were 4.2months. The patients with
PD-L1 TPS≥50% did not reach the median PFS. The median OS was
not reached in the treated population.

Atezolizumab Combined
With Bevacizumab
The combination of bevacizumab with atezolizumab and
chemotherapy was studied by IMpower150, which is a phase III
randomized controlled clinical trial (NCT02366143). 1202 non-
squamous NSCLC patients with stage IV or recurrent metastatic
diseases who have not treated with chemotherapy were included.
Patients were randomized 1:1:1 to receive atezolizumab combined
TABLE 1 | Clinical trials of the combination of anti-angiogenic inhibitors with immune checkpoint blockade in NSCLC.

Clinical trial Patients Targeted Agent Primary Endpoint Phase Status

NCT01454102
(CheckMate 012)

Stage IIIB/IV NSCLC, first or
subsequent line of therapy

Bevacizumab + nivolumab SAE I Active,
not
recruiting

NCT02574078
(CheckMate 370)

Stage IV NSCLC Bevacizumab + Nivolumab PFS, OS I/II Completed

NCT02681549 Untreated brain metastases from melanoma or NSCLC Bevacizumab + Pembrolizumab BMRR II Recruiting
NCT02039674
(KEYNOTE- 021)

In participants with unresectable or metastatic NSCLC Pembrolizumab + paclitaxel +
bevacizumab

DLTs I/II Active,
not
recruiting

NCT02366143
(IMpower 150)

Stage IV non-squamous NSCLC Atezolizumab + bevacizumab
carboplatin + paclitaxel

PFS, OS III Completed

NCT02856425
(PEMBIB)

Solid tumors including NSCLC of adenocarcinoma and
squamous

Nintedanib + Pembrolizumab MTD of nintedanib,
Safety

Ib Recruiting

NCT02443324 LA/Unresectable/Metastatic NSCLC 0–3 prior lines of
therapy

Ramucirumab + pembrolizumab DLTs I Active,
not
recruiting

NCT02572687 LA/unresectable/metastatic/thoracic Malignancies Ramucirumab + MEDI4736 DLTs I Completed
NCT02174172 Advanced or metastatic NSCLC Bevacizumab + Atezolizumab Dose of

Atezolizumab
Ib Completed

NCT03377023 Advanced or metastatic NSCLC Ramucirumab + durvalumab MTD, ORR I/II Recruiting
NCT03713944 Stage IV Non-squamous NSCLC Bevacizumab + Atezolizumab PFS, ORR II Active,

not
recruiting

NCT03647956 EGFR-mutant Metastatic NSCLC Bevacizumab + Atezolizumab ORR II Unknown
NCT03527108 Recurrent, Advanced, Metastatic NSCLC Ramucirumab + Nivolumab DCR II Recruiting
NCT03689855
(RamAtezo-1)

Stage IV, NSCLC, after progression on immune
checkpoint blockers (ICBs)

Ramucirumab + Atezolizumab ORR I/II Active,
not
recruiting

NCT03786692 Stage IV NSCLC in never smokers or possess a driver
mutation

Bevacizumab + Atezolizumab PFS II Recruiting

NCT03836066 LA/metastasis/high-intermediate tumor mutation burden
in First Line NSCLC

Bevacizumab + Atezolizumab PFS, OS II Recruiting

NCT03616691 LA/metastatic NSCLC after Failure with atezolizumab
monotherapy

Bevacizumab + Atezolizumab DCR II Not yet
recruiting

NCT03786692 Stage IV NSCLC in never smokers or possess a driver
mutation

Bevacizumab + Atezolizumab PFS II Recruiting

NCT03735121 Previously Treated LA/Metastatic NSCLC Bevacizumab + rHuPH20 Drug serum
concentration

Ib/III Recruiting
June 2021 | Volum
e 12 | A
SAE, Serious Adverse Events; PFS, Progression-free survival; OS, Overall survival; BMRR, brain metastasis response rate; DLT, Dose-limiting Toxicity; MTD, Maximum Tolerated Dose
ORR, Objective Response Rate; DCR, Disease control rate; LA, Locally Advanced.
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with carboplatin + paclitaxel (ACP) (n = 402), atezolizumab
combined with carboplatin + paclitaxel + bevacizumab (ABCP)
(n = 400), carboplatin + Paclitaxel + Bevacizumab (BCP) (n =
400), after 4-6 courses of treatment, receive atezolizumab or
bevacizumab or both for maintenance treatment until the disease
progresses or no clinical benefit. The results of the study show that
immunotherapy on the basis of the combination of bevacizumab and
chemotherapy can prolong patient survival. The median PFS of the
ABCP was 8.3 months, and the BCP was 6.8 months (HR: 0.59,
P<0.0001). The median OS was 19.2 months for the ABCP group,
and 14.7 months for the BCP group (HR: 0.78, P=0.02). The
incidence of treatment-related serious AEs was 25.4% for ABCP
group and 19.3% for BCP group. However, 77.4% of ABCP patients
had grade 1-2 AEs. This study shows that, regardless of the PD-L1
expression, VEGFR or anaplastic lymphoma kinase mutation status,
the use of ABCP can significantly improve PFS and OS in patients
with metastatic non-squamous NSCLC (93). According to this study,
the FDA approved the combination therapy of ABCP as the first-line
treatment for metastatic non-squamous NSCLC in December 2018.
This combination is currently being tested in hepatocellular
carcinoma (HCC) as well. At the 2019 (ESMO) annual meeting, it
was reported that atilizumab combined with bevacizumab and
bisorafenib had better OS and PFS in patients with unresectable
hepatocellular carcinoma (94).

Apatinib Combined With SHR-1210
A single-arm phase II trial studying the combination of Apatinib
with SHR-1210 was reported at the ASCO meeting in 2019. 96
patients were recruited in this study. Apatinib is a small TKI that
primarily act on VEGFR-2, and SHR-1210 is another PD-1
antibody. These two drugs are developed in China. Patients failed
at least one previous line of chemotherapy received intravenous
infusion of SHR-1210 200 mg q2w combined with oral Apatinib
250 mg qd. The ORR of all evaluable patients was 30.8%. DCR was
82.4%. Median PFS was 5.9 months. The OS endpoint was not
reached. Among the patients with bTMB 1.54 mutations/Mb, the
ORR was 52.6%, and the DCR was 81.6%, suggesting that apatinib
combined with SHR-1210 might have better therapeutic effect in
patients with high tumor mutation burden (TMB) (95).

Overall, the combination of ICI and anti-angiogenic agents
has shown encouraging results in treating advanced NSCLC. To
achieve maximal therapeutic effect, a number of questions need
to be addressed in future trails, including the effect of different
anti-angiogenic inhibitors, the drug dose, the timing and
schedule of the two type of drugs in the treatment etc.
Frontiers in Immunology | www.frontiersin.org 8
CONCLUSION

In this paper, we overviewed the updated knowledge of ICB, anti-
angiogenesis, and the combination of these two kinds of therapies.
A lot of preclinical studies have revealed the potential mechanisms
of abnormal angiogenesis in the regulation of antitumor immunity
in mouse tumor models, and support the application of combining
immunotherapy and anti-angiogenesis for cancer treatment. The
combination of immunotherapy and anti-angiogenesis is expected
to enhance the efficacy of immunotherapy by converting the
immunosuppressive TME to immunosupportive. Results of the
ongoing clinical trials also support that the combination of ICB
and anti-angiogenesis is a promising approach for the treatment of
NSCLC. Translational studies and innovative clinical trials are
needed in the future to address important questions not resolved
in current studies, including the identification of biomarkers
precisely the response to the combination therapy, optimizing the
drug dose, administration schedule and the timing of the treatment.
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GLOSSARY

AE Adverse event
ANG2 Angiopoietin-2
APC Antigen-presenting cell
CCL2 C-C motif chemokine ligand 2
CCL20 C-C motif chemokine ligand 20
CCL22 C-C motif chemokine ligand 22
CCL28 C-C motif chemokine ligand 28
CIK Cytokine-induced killer cell
CSF1 Colony stimulating factor 1
CTLA4 Cytotoxic T-lymphocyte-associated protein 4
CXCL12 C-X-C motif chemokine ligand 12
CXCR4 C-X-C motif chemokine receptor 4
DC Dendritic cell
EC Endothelial cell
EMA Exponential moving average
FDA Food and Drug Administration
FGFR Fibroblast growth factor receptor
GBM Glioblastoma multiforme
GM-CSF Granulocyte-macrophage colony stimulating factor
HCC Hepatocellular carcinoma
HIF-1a Hypoxia-inducible factor 1-alpha
HPV Human papillomavirus
ICAM1 Intercellular adhesion molecule 1
ICB Immune checkpoint blockade
ICI Immune checkpoint inhibitor
IDO Indoleamine 2,3-dioxygenase
IFN-g Interferon-gamma

(Continued)
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Continued

IL-10 Interleukin-10
IL-6 Interleukin-6
imDC Immature dendritic cell
Jak2/STAT3 Janus kinase 2/Signal transducer and activator of transcription 3
MDSC Myeloid-derived suppressive cell
MHC Major histocompatibility complex
NF-kB Nuclear factor kB
Nrp-1 Neuropilin 1
NSCLC Non-small cell lung cancer
ORR Objective response rate
OS Overall survival
PD-1 Programmed cell death-1
PDGFR Platelet-derived growth factor receptor
PD-L1 Programmed death ligand 1
PFS Progress-free survival
PGE2 Prostaglandin E2
PI3K Phosphoinositide-3-kinase
PIGF Placental growth factor
PLCg Phospholipase C gamma
RTK Receptor tyrosine kinase
SDF-1a Stromal-cell-derived factor 1 alpha
TAM Tumor associated macrophage
TGF-b Transforming growth factor beta
TKI Tyrosine kinase inhibitor
TMB Tumor burden
TME Tumor microenvironment
TPS Tumor proportion score
Tregs Regulatory T cells
VCAM1 Vascular cell adhesion protein 1
VEGF Vascular endothelial growth factor
VEGFR Vascular endothelial growth factor receptor
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